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The purpose of the present paper is to characterize pseudoprojectively flat and pseudoprojective
semisymmetric generalized Sasakian-space-forms.

1. Introduction

Alegre et al. [1] introduced and studied the generalized Sasakian-space-forms. The authors
Alegre and Carriazo [2], Somashekhara and Nagaraja [3, 4], and De and Sarkar [5, 6] studied
the generalized Sasakian-space-forms. An almost contact metric manifold (M, ¢,¢,17,g) is
said to be a generalized Sasakian-space-form if there exist differentiable functions f1, f2, f3
such that curvature tensor R of M is given by

R(X, Y)Z = f1R1(X, Y)Z + szz(X, Y)Z + f3R3(X, Y)Z, (11)

for any vector fields X, Y, Z on M, where

Ro(X,Y)Z = g(X, pZ)PY - g(Y,$Z)$pX +2g(X, $pY)$Z, (1.2)
R3(X,Y)Z = n(X)n(2)Y —n(Y)n(Z)X + g(X, Z)n(Y)¢ - (Y, Z)n(X)s.
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In this paper, we study the curvature properties like flatness, symmetry, and semisymmetry
properties in a generalized Sasakian-space-form by considering a pseudoprojective curvature
tensor.

The paper is organized as follows. Section 2 of this paper contains some preliminary
results on the generalized Sasakian-space-forms. In Section 3, we study the pseudoprojec-
tively flat generalized Sasakian-space-form and obtain necessary and sufficient conditions for
a generalized Sasakian-space-form to be pseudoprojectively flat. In the next section, we deal
with pseudoprojectively semisymmetric generalized Sasakian-space-forms, and it is proved
that a generalized Sasakian-space-form is pseudoprojectively semisymmetric if and only if
the space form is pseudoprojectively flat and f; = f3. The last section is devoted to the study
of 7-flat and 7—¢-semi symmetric generalized Sasakian-space-forms. In this section, we prove
that the associated functions f1, f2, f3 are linearly dependent.

In a (2n + 1)-dimensional almost contact metric manifold, the pseudoprojective
curvature tensor P [7] is defined by

P(X,Y)Z = aR(X,Y)Z +b[S(Y, Z)X - S(X, Z)Y]
(1.3)

r a
" <% + b) [g(Y, 2)X - g(X, Z)Y],
where a and b are constants and R, S, and r are the Riemannian curvature tensor of type (0, 2),
the Ricci tensor, and the scalar curvature of the manifold, respectively. If a = 1, b = —(1/2n),
then (1.3) takes the form

P(X,Y)Z=P(X,Y)Z, (1.4)

where P is the projective curvature tensor. A manifold (M, ¢,¢,7,¢) shall be called
pseudoprojectively flat if the pseudoprojective curvature tensor P = 0. It is known that the
pseudoprojectively flat manifold is either projectively flat (if a #0) or Einstein (if a = 0 and
b#0).

2. Preliminaries

A (2n+1)-dimensional C*-differentiable manifold M is said to admit an almost contact metric
structure (¢, ¢, 7, g) if it satisfies the following relations:

X =-X+n(X)¢,  $¢=0, (2.1)

n¢) =1  gX¢=nX), n(¢$X)=0 (2.2)
(X, ¢Y) = g(X,Y) - n(X)n(Y), (2.3)
g(PX,Y) = -g(X, ¢Y), (24)

(Vxn)Y = g(Vx¢,Y), (2.5)

where ¢ is a tensor field of type (1,1), ¢ is a vector field, 77 is a 1-form, and g is a Riemannian
metric on M. A manifold equipped with an almost contact metric structure is called
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an almost contact metric manifold. An almost contact metric manifold is called a contact
metric manifold if it satisfies

g(X,9Y) =dn(X,Y), (2.6)

for all vector fields X and Y.
In a generalized Sasakian-space-form, the following hold:

RX,Y)Z= fi[g(Y,2)X - g(X, 2)Y] + f2[8(X, $Z)pY - g (Y, $Z)$X +2g(X, $Y) $Z]
+ f3[nX)n(Z2)Y —n(V)n(Z)X + g(X, Z)n(Y)é - (Y, Z)n(X)é],

(2.7)

QX = 2nfi+3f2— f3)X - Bf2 + 2n-1) f3)n(X)¢, (2.8)
S(X,Y)=(2nf1+3f2- f3)8(X,Y) = (3f2+ 2n—-1) f3)n(X)n(Y), (29)
r = 21’1(21’1 + 1)f1 + 61’lf2 - 41’lf3. (210)

3. Pseudoprojectively Flat Generalized Sasakian-Space-Forms

If the generalized Sasakian-space-form M(f1, f», f3) under consideration is pseudoprojec-
tively flat, then from (1.3) we have

R(X,Y, Z,W) = [S(X, )30, W) ~ S(X, Z)g(X, W)
3.1)

* m <% + b) [s(Y, 2)g(X, W) - (X, 2)g(Y, W)],

where a and b are constants and 'R(X, Y, Z, W) = g(R(X,Y)Z, W).
Now taking Z = ¢ in (3.1) and using (2.1), (2.2), (2.7), and (2.9), we get

(1= ) [ (X, W) = GO W] = 2221 = f3) (100G (X W) = ()Y, W)

_r (4 (3.2)
" 2n + 1)a<2n +b>

x (n(V)g(X, W) - n(X)g(Y,W)).

Again putting X = ¢in (3.2), we get

[<a+2nb><2ﬂ(zn+1)(f1 - f3) -

.
a 2n(2n +1) >] [1(V)n(W) - g(Y,W)] =0. (3.3)
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The aforementioned equation implies

<a . aznb> [2n(2n2+n1()2§1f1—1 )f3) - f] o, (3.4)
That is, either
(a+2nb) =0 (3.5)
or
r=2n2n+1)(fi - f3). (3.6)

If a+2nb=0,a#0and b#0, then, from (1.3), it follows that ﬁ(X,Y)Z =aP(X,Y)Z. Thus in
this case pseudoprojective flatness and projective flatness are equivalent.
If a+2nb#0, a#0and b#0, then comparing (2.10) and (3.6), we get

3fp+(2n-1)f3=0. (3.7)
Using (3.7) in (2.9), we get
S(X,Y) =2n(fi - f3)g(X, ). (38)

Let {e;} be an orthonormal basis of the tangent space at each point of the manifold. Taking
X =Y = e; and summing over 1 <i < 2n + 1, we obtain

r=2n2n+1)(f1- f3). (3.9)

This shows that M(fi, f2, f3) is Einstein with a scalar curvature r = 2n(2n + 1)(f1 — f3). Thus
we state the following.

Theorem 3.1. A pseudoprojectively flat generalized Sasakian-space-form is either projectively flat or
an Einstein manifold with a scalar curvature r = 2n(2n + 1)(f1 - f3)].

Suppose that (3.7) holds. Then in view of (2.7) and (2.9), we can write (1.3) as

'PX,Y,Z,W) = afi(3(Y,2)g(X, W) - g(X, Z)g(Y,W))
+af2[g(X,$Z)g(pY, W) - g(Y,$Z)g(pX, W) +2g(X, ¢Y)g($Z,W)]
+afs[nX)n(2)g(Y, W) -n(Y)n(Z)g(X, W) + n(Y)g(X, Z)g(¢, W)
- 1n(X)g(Y, Z2)g(¢, W)] +b[S(Y, Z2)g(X, W) - S(X, Z)g(Y,W)]

_ <2nr+ 1) <% + b) [§(Y, Z2)g(X, W) - g(X, Z)g(Y,W)],
(3.10)
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where

'P(X,Y,Z, W) = g(ﬁ(x, Y)Z, w). (3.11)
Replacing X by ¢X and Y by ¢Y, we get

P($X,$Y,Z,W) = afs(3($Y, 2)g(§X, W) - g(9X, Z) g ($Y, W)
+afa(3(@X,92)g(PY.W) - (@Y. 92)g(#X W)  (312)
+23(¢X, Y )(pZ,W)).

Let {e;} be an orthonormal basis of the tangent space at each point of the manifold.
Taking Y = W = ¢; and summation overi, 1 <i <2n+1, we get

2n+1

S P(¢X,dei, Z,er) = afs(3(dX, $2)) + afo(-g($X, §Z) g (pes, pei) - 3($°X, 4°2)).
i=1
(3.13)
Again putting X =Z = ¢; and taking summation overi, 1 <i <2n+1, we get f, = 0 with a#0.

In view of (3.7), we get f3 = 0.
Now (2.7) reduces to the form

R(X,Y)Z = fi[3(Y, 2)X - (X, 2)Y], (3.14)

from which we have S(X,Y) = 2nf1¢g(X,Y), and consequently

r=2n2n+1)f1. (3.15)

By using (3.14) and (3.15) in (1.3), we get ﬁ(X, Y)Z = 0. This leads to the following.

Theorem 3.2. A (2n + 1)-dimensional generalized Sasakian-space-form M(f1, f2, f3) is pseudopro-
jectively flat if and only if a + 2nb#0, a#0, b#0and 3f, + 2n-1)f3 =0.

Alegre and Carriazo [2] proved that any contact metric generalized Sasakian-space-
form M(f1, f2, f3) with a dimension greater than or equal to five is a Sasakian manifold and
f1, f>, and f3 must be constants.

Thus from (3.14), we have the following theorem.

Theorem 3.3. A (2n + 1)-dimensional generalized Sasakian-space-form M(f1, fa, f3) with a
dimension greater than or equal to 5 is of constant curvature fy if and only if a + 2nb#0, a#0,
b#0,and3f, + 2n—-1)f3 = 0.
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4. Pseudoprojective Semisymmetric Generalized
Sasakian-Space-Form

Definition 4.1. If a generalized Sasakian-space-form M(fi, f», f3) satisfies
R(X,Y)-D =0,

then the manifold is said to be pseudoprojectively semisymmetric manifold.

By using (1.3), (2.1), (2.2), (2.7), and (2.9), we have
1(Pen)z) = [athi- £ - (5757) (5 +0)| 50 2000 - X, 200
B[S, 20 - S, 2 ().
Taking Z = ¢ in (4.2), we get
;1<1’5(x, Y)§> = 0.
Again putting X = ¢ in (4.2), we get

(1(Pe2)) = |athi-2 - (57 (5 )

+b[S(Y,2) - 2n(fi - f)n(V)n(2)].

[8(Y,2) - n(Y)n(2)]

From (4.1), we have
(R(X,Y)ﬁ(u, V)w) - P(R(X, Y)U, V)W
- P(U,R(X,Y)V)W - P(U, V)R(X, Y)W =0.
Taking X = ¢ and contracting the above with respect to ¢, we get
(f1 = PV, W,Y) = ()7 (P, VYW ) + Wyn (P, V)W)

- gL wn(PEVIW) +n(Vn (P )W) - (¥, V)n(PU, W)
+ n(W)n(PUV)Y) - g(Y,W)n(P(U, V)E) } = 0.

Putting U = Y in (4.6) and with the help of (4.2) and (4.3), we get either

fi=f3

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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or

POV, W,Y) - g(,Y)n(PE, V)W)
(4.8)
-, V)n(POL W) + n(wn(P(Y, v)Y) =0.

Let {e;} be an orthonormal basis of the tangent space at each point of the manifold of the
manifold. Putting Y = e; and taking summation over i, 1 < i < 2n + 1, and using (4.2) and
(4.4), we obtain

S(V,W) = Ag(V,W) + Bn(V)n(W), (4.9)

where

A= 2nf1 + 3f2 - f3,

(4.10)
B=(2n+1)[-3f,-(2n-1)f3].
Now contracting (4.9), we obtain
r=02n+1)A+B. (4.11)
Using (4.10) in (4.11), we get
r=2n2n+1)(f1- f3). (4.12)
In view of (2.10), (4.12) yields
3f+(2n-1)f3=0. (4.13)
From (2.9) and (4.13), we have
S(V,W) = 2n(f1 - f2)g(V, W). (4.14)
Now using (4.12) and (4.14) in (4.2), we get
q(ﬁ(u, V)w) = 0. (4.15)
Plugging (4.15) in (4.6), we obtain
P(U,V,W,Y) = 0. (4.16)

Therefore by taking into account (4.7) and (4.16), we have either f1 = f3 or M(f1, f2, f3) is
pseudoprojectively flat.
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Conversely, suppose that f1 = f3. Then, from (2.1), (2.2) and (2.7), we have R(¢, X)Y =
0. Hence R(¢, U) - P = 0. If the space-form is pseudoprojectively flat then clearly it is pseudo-
projectively semisymmetric. Hence we can state the following.

Theorem 4.2. A 2n+ 1-dimensional generalized Sasakian-space-form is pseudoprojectively semisym-
metric if and only if the space form is either pseudoprojectively flat or f1 = f3.

By combining Theorems 3.2 and 4.2, we have the following.

Corollary 4.3. A (2n + 1)-dimensional generalized Sasakian-space-form M(f1, f2, f3) is pseudopro-
jectively flat if and only if f1 = faora+2nb#0and 3f, + 2n—-1)f3 = 0.

5. 7-Curvature Tensor in a Generalized Sasakian-Space-Form

Ina (2n + 1)-dimensional Riemannian manifold M, the T-curvature tensor is given by [8]

T(X,Y)Z = aoR(X,Y)Z + a1S(Y, Z)X + a,5(X, 2)Y + a3S(X,Y)Z
+a,3(Y, Z)QX + a53(X, Z2)QY + a¢g(X, Y)QZ (5.1)
+a7r(8(Y, 2)X - g(X, 2)Y),

where ay, ..., a; are some smooth functions on M. For different values of ay, ..., ay, the -
curvature tensor reduces to the curvature tensor, quasiconformal curvature tensor, conformal
curvature tensor, conharmonic curvature tensor, concircular curvature tensor, pseudo—
projective curvature tensor, projective curvature tensor, M-projective curvature tensor, W;-
curvature tensors (i =0,...9), and W]f‘-curvature tensors (j =0,1).

Suppose that M(f1, f2, f3) is T-flat. Then from (5.1), we have

—aoR(X,Y)Z = a1S(Y, Z)X + a,S(X, 2)Y + asS(X, Y ) Z
+a8(Y, Z)QX + a53(X, Z)QY + a¢g(X,Y)QZ (5.2)
+arr(g(Y, 2)X - g(X, 2)Y).

In view of (2.7), (2.8), and (2.9) in (5.2), we have

—ao{f1[g(Y, 2)X - g(X, 2)Y] + fo[g(X, §Z)pY - (Y, $Z)$pX + 28 (X, Y ) PZ]
+ fs[nX)n(2)Y - n(Y)n(2)X + g(X, Z)n(Y)¢ - g (Y, Z)n(X)¢] }
=m[Q2nfi+3f2- f3)g(Y,Z) - (3f2+ (2n - 1) f3)n(Y)n(2)] X
+a[(2nf1+3f2 - f3)8(X, Z) - 3f2+ (2n - 1) f3)n(X)n(Z)]Y
+as[(2nf1+3f2 - f3)8(X,Y) - Bf2+ 2n - 1) f3)n(X)n(Y)] Z
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+a8(Y, 2)[(2nf1 +3f2 - f3) X - (Bf2 + (2n - 1) f3)n(X)¢]
+a58(X,Z2) [(anl +3fr - f3)Y - (3f2 +(2n - 1)f3)1’l(Y)§]
+asg(X, V) [(2nf1+3f2 = f3)Z = (3f2+ (2n—1) f3)n(Z)¢]
+arr[g(Y,2)X - g(X, 2)Y].
(5.3)

Putting X = ¢Y in (5.3), we get

- ao{ f1[8(X, 2)9Y - 2BV, 2)Y] + fo[3($Y, §Z)$Y - 8(Y, $Z,)$*Y +28($Y,$Y)$Z]
+ f[-nOm2)pY + g(9Y, Z)n(¥)é] }
=m[@nfi+3f2- f3)8(Y,Z2) - (3f2+ (2n-1) f3)n(YV)n(2)] Y
+ax(2nf1 +3f2— f3)8(PY, Z)Y + as(2nf1 +3f2 - f3)g(Y, Z)$pY
+asg(9Y, Z) [(2nf1+3f2 - f3)Y = (Bf2+ 2n - 1) f3)n(Y)¢]

+ayr[g(Y, Z)pY - g(¢Y, 2)Y].
(5.4)

If we choose a unit vector U orthogonal to ¢ and taking Y = U, then making use of (2.1) and
(2.3) in (5.4), we obtain

[—a0f1 + (az + a5) (211f1 + 3f2 - f3) —arr + fz]g(d)ll, Z)LI
+ [ao (f1 + f2) + (a1 + a4) (anl + 3f2 - f3) + ayr]g(ll, Z)(;bll (5.5)
+ 2a0f2g(ll, ll)(i)Z =0.

Putting Z = U in (5.5), we have
)L]f] + )szz + )L3f3 = 0, (56)

where

A = ap+2n(ay + as) +2n(2n + 1)ay,
Ay = 3(610 +ay+ayg+ 211617), (5.7)
)L3 = - (a1 + ayg + 411[17).

Thus we have the following.

Theorem 5.1. Ifa (2n+1)-dimensional generalized Sasakian-space-form M(f1, fo, f3) is T-flat, then
(5.6) holds.

From the above theorem, we discuss the following cases.
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Case (i). (1) If M(f1, f2, f3) is quasiconformally flat, then a; = —a, = a4 = —as, az = as = 0,
ay = (-1/(2n +1))(ag/2n + 2a;). Putting these in (5.7), we obtain A1 #0, 1, #0, A3 #0.

(2) If M(f1, f2, f3) is conharmonically flat, thenag =1, a1 = —a> = a4 = —as = —(1/(2n-
1)), az = as = 0, ay = 0. Putting these in (5.7), we get 11 #0, A, #0, A3 #0.

Similarly for W;-flat, Wi-flat, W3-flat, Wo-flat spaces, (5.7) gives A1 #0, 12 #0, A3 #0.

Case (ii). If M(f1, f2, f3) is conformally flat, then ap = 1, a1 = —a = a4 = —as = —(1/(2n -
1),as=a¢=0,a;,=1/2n2n-1).
Putting these in (5.7), we obtain A; = 0, A, #0, A3 = 0. Hence f, = 0.

Case (iii). (a) If M(f1, f2, f3) is pseudoprojectively flat, then a; = —as,a3 = a4 = as = a¢ = 0,
a;=—(1/2n+1))(ap/2n + ay).

By putting these values in (5.7), we have 11 =0, 1, #0, A3 #0.

(b) If M(f1, f2, f3) is projectively flat, then agp =1, a1 = —a, = —(1/2n), az = as = as =
ag = ay = 0.

Making use of the above functional values in (5.7), we get A1 =0, 1, #0, A3 #0.

Similarly for concircularly flat, M-projectively flat, Wo-flat, Wi-flat, W»-flat, We-flat,
and W;s-flat spaces, (5.7) gives A1 = 0,1, #0, A3 #0.
Case (iv). (a) If M(f1, f2, f3) is Wy-flat, thenao =1, as=-a¢=1/2n, ay =ay=az=as =ay =
0.

Putting these in (5.7), we obtain that Ay #0, 1, #0, A3 = 0.

(b) If M(f1, f2, f3) is Ws-flat, thenag =1, ay = —as = —(1/2n), a1 = az = as = ag = ay =
0. Putting these in (5.7), we have A; #0, A, #0, A3 = 0.

Similarly, for a W7-flat space, (5.7) gives A1 #0, 1, #0, A3 = 0.
Summarizing the above cases, we have the following corollaries.

Corollary 5.2. If a (2n + 1)-dimensional generalized Sasakian-space-form M(f1, f2, f3) is either
quasiconformally flat, conharmonically flat, W;-flat, W1-flat, Ws-flat, or Wo-flat, then f1, fo, and
f3 are linearly dependent.

Corollary 5.3. If a (2n + 1)-dimensional generalized Sasakian-space-form M(f1, f2, f3) is confor-
mally flat, then f, = 0.

The above corollary was already proved by Kim [9] and Sarkar and De [10].
Corollary 5.4. If a (2n + 1)-dimensional generalized Sasakian-space-form M(f1, f2, f3) is either
pseudoprojectively flat, projectively flat, concircularly flat, M-projectively flat, Wo-flat, Wi-flat, W~
flat, We-flat, or Wg-flat, then f, and f3 are linearly dependent.

Corollary 5.5. Ifa (2n+1)-dimensional generalized Sasakian-space-form M(f1, f2, f3) is either Wy-
flat, Ws-flat, or Wy-flat, then f1 and f, are linearly dependent.
5.1. 7 — ¢p-Semisymmetric Generalized Sasakian-Space-Form

Definition 5.6. M(f1, f, f3) is T — ¢-semisymmetric if

(X, Y)-$=0 (5.8)

holds in M(f1, fa, f3)-
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We know that
(T(X,Y)-)Z = (X, V)$Z - p(1(X,Y)Z). (5.9)
From (5.8) and (5.9), we have
(X, Y)$Z - $(t(X,Y)Z) = 0. (5.10)
By using (5.1) in (5.10), we have
aRX, Y)$Z + a1S(Y,$Z)X + a:S (X, pZ)Y + asS(X,Y)$pZ
+asg(Y,¢Z)QX + asg (X, ¢Z)QY + asg(X, Y)Q(¢$Z)
+a;r[g(Y,$Z)X - g(X, $Z)Y] - arr[g(Y, Z)$X - g(X, Z)$Y] (5.11)
—{aop(R(X, Y)PZ) + a1S(Y, Z)§X + a25(X, Z)pY + azS(X, Y)pZ

+ 18 (Y, Z)P(QX) + asg(X, Z)P(QY) + asg (X, Y)$(QZ) } = 0.

Let {e;} be an orthonormal basis of the tangent space at each point of the manifold.
Contracting (5.11) with respect to W and putting Y = W = ¢;, also taking summation over i,
1<i<2n+1, and making use of (2.1), (2.4), (2.7), (2.9), and (2.8), we have

[2a1 + 2n+1)a]S(X, ¢Z) = Ag(X, $2), (5.12)
where
A= [—(Zn —1)ag +4nas +2n(2n + 1)as — 211(4112 - 1>a7]f1
+ [2(n —1)ag + 6a4 + 6nas — 6n(2n - 1)az] f> (5.13)
+ [-2a4 —4nas + 4n(2n - 1)ay] f5.
Changing Z to ¢Z in (5.12) and also in view of (2.1) and (2.2), (2.9) yields

A
(2a; + 2n+1)ay)

2n(2a + @+ Day) (fi ~ f3) = A
’ [ (2a; + 2n +1)ay) :I’Z(X)H(Z).

S(X,Z) =

8(X,Z)
(5.14)

Thus we can state the following.

Theorem 5.7. A T —¢-semisymmetric generalized Sasakian-space-form is nj-Einstein provided (2a; +
(2n +1)ay) #£0.
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