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Abstract. 
The algebraic methods are used in the web geometry, in particular in the 3-web. Along the line, we suggest a new, alternative algebraic method for computation of the quantities 
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				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	
, 
	
		
			

				2
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	
, and 
	
		
			

				𝑑
			

			
				𝑖
				𝑗
				𝑘
				𝑙
				𝑚
			

		
	
 by means of the embedding of local loops into Lie groups.


1. Introduction
Web geometry is one of the fields of mathematics which springs from two different fields of mathematics, namely, projective differential geometry and nomography. It was derived mostly from projective differential geometry. Initially, projective differential geometry mainly consisted of the study of projective properties of curves and surfaces in 
	
		
			

				ℝ
			

			

				3
			

		
	
, that is, of their differential properties that are invariant up to homographies. Web geometry studied the properties of (curves and) surfaces in ordinary euclidian space that are invariant up to isometric transformations. Gauss and other mathematicians have shown the usefulness of the first and second fundamental forms in the study of surfaces. They also brought to light the relevance of derived concepts, such as the principal, asymptotic, and conjugated directions. When considering the integral curves of these tangent direction fields, the mathematicians of the 19th century were considering what they called 2-nets of lines on surfaces, that is, the data of 2 families of curves, or in more modern terms, 2-webs. It is when they tried to generalize these constructions to the projective differential geometry that some 3-nets projectively attached to surfaces in 
	
		
			

				ℝ
			

			

				3
			

		
	
 quite naturally made their appearance, Darboux introduced a 3-web named after him in [1]. These webs were useful at that time because they encoded properties of the surfaces under study. Thomsen in [2] shows that a surface area in 
	
		
			

				ℝ
			

			

				3
			

		
	
 is isothermally asymptotic if and only if its Darboux 3-web is hexagonal. At that time, the study of 3-web on surfaces from the point of view of projective differential geometry was on the agenda. Thomsens result has this particular feature of characterizing the geometric-differential property of being isothermally asymptotic by a closedness property of more topological nature that is (or not) verified by a configuration traced on the surface itself. It is this feature which struck some mathematicians and led to the study of webs at the beginning of the 1930s. The development of geometry of fiber bundles and foliations stimulates the interest for new investigation of three webs [3–17]. In [18–27], the techniques were developed for webs using the intrinsic geometry structure. In this investigation, we propose to give another approach of computation of some classical relations, using the technique of the projective space. Our approach is based on the embedding of a smooth loop into a Lie group, by means of a closed subgroup. This transports the geometric problem into an abstract algebraic problem, where the 3-web is seen as a homogeneous space coset in a generic position. Using this technique the computation of the tensor structure of local loop is made easier. Therefore, we give an application of the computation of the well-known tensor. We use algebraic methods to compute the relations 
	
		
			

				1
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	
, 
	
		
			

				2
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	
, and 
	
		
			

				𝑑
			

			
				𝑖
				𝑗
				𝑘
				𝑙
				𝑚
			

		
	
. The paper is organized as follows. In Section 2, we derive the analytic representation of the law of composition of local smooth loops, embedding in Lie groups. In Section 3, we evaluate tensor structure of a smooth analytic loop. In Section 4, we look at the tensor structure of a smooth local loop, embedding in Lie group. In Section 5 we applied our method to compute 
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				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	
 and 
	
		
			

				1
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	
. In Section 6 we deal with the computation of the tensor 
	
		
			

				𝑑
			

			
				𝑖
				𝑗
				𝑘
				𝑙
				𝑚
			

			

				=
			

			

				2
			

			

				∇
			

			

				𝑚
			

			

				𝑏
			

			
				𝑖
				𝑗
				𝑘
				𝑙
			

		
	
. The last section is devoted to the hexagonal loops.
2. Analytic Representation of Law of Composition of Local Smooth Loops, Embedding in Lie Groups
Let 
	
		
			
				⟨
				𝐺
				,
				⋅
				,
				𝑒
				⟩
			

		
	
 be a local Lie group and let 
	
		
			

				𝐻
			

		
	
 be its local closed subgroup. Denote by 
	
		
			

				𝔊
			

		
	
 and 
	
		
			

				𝔥
			

		
	
 their corresponding Lie algebra and Lie subalgebra, and let 
	
		
			

				𝑄
			

		
	
 be a smooth space section of left coset 
	
		
			
				𝐺
				m
				o
				d
				𝐻
			

		
	
 passing through 
	
		
			

				𝑒
			

		
	
 the unit element of 
	
		
			
				𝐺
				(
				𝑒
				∈
				𝐺
				)
			

		
	
.
The composition law
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				×
			

			
				
			
			
				∶
				𝑄
				×
				𝑄
				⟶
				𝑄
				,
				(
				𝑥
				,
				𝑦
				)
				⟼
				𝑥
				×
			

			
				
			
			
				
				𝑦
				=
			

			

				𝑄
			

			
				(
				𝑥
				⋅
				𝑦
				)
				,
			

		
	

					where 
	
		
			

				∏
			

			

				𝑄
			

			
				∶
				𝐺
				→
				𝑄
			

		
	
 is the projection on 
	
		
			

				𝑄
			

		
	
 parallel to the subgroup 
	
		
			

				𝐻
			

		
	
, defines in 
	
		
			

				𝑄
			

		
	
 a structure of a local loop, that is, 
	
		
			
				⟨
				𝑄
				,
				×
			

			
				
			
			
				,
				𝑒
				⟩
			

		
	
-loop [25, 28–36]. 
Let us map the tangent space 
	
		
			

				𝑇
			

			

				𝑒
			

			

				𝑄
			

		
	
 with the vector subspace 
	
		
			
				𝑉
				⊂
				𝐺
			

		
	
 such that 
	
		
			

				𝑇
			

			

				𝑒
			

			
				𝑄
				=
				𝑉
			

		
	
. Then 
	
		
			
				𝔊
				=
				𝑉
				∔
				𝔥
			

		
	
 since the submanifolds 
	
		
			

				𝑄
			

		
	
 and 
	
		
			

				𝐻
			

		
	
 are transversal in the Lie group 
	
		
			

				𝐺
			

		
	
.
Let us introduce the mapping 
	
		
			

				𝜙
			

		
	

	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				𝜙
				∶
				𝑉
				⟶
				𝔥
				,
				𝜉
				⟼
				𝜙
				(
				𝜉
				)
				,
			

		
	

					defined by the condition 
	
		
			
				e
				x
				p
				(
				𝜉
				+
				𝜙
				(
				𝜉
				)
				)
				∈
				𝑄
			

		
	
 (for every vector 
	
		
			
				𝜉
				∈
				𝑉
			

		
	
, in the neighborhood of 
	
		
			

				𝑂
			

		
	
, and the map 
	
		
			

				𝜙
			

		
	
 is well defined).
Then 
	
		
			
				𝜙
				(
				𝑂
				)
				=
				𝑂
			

		
	
 and
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				𝜙
				(
				𝜉
				)
				=
				𝑅
				(
				𝜉
				,
				𝜉
				)
				+
				𝑆
				(
				𝜉
				,
				𝜉
				,
				𝜉
				)
				+
				𝑜
				(
				3
				)
				,
			

		
	

					where 
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				𝑅
				∶
				𝑉
				×
				𝑉
				⟶
				𝔥
				,
				𝑆
				∶
				𝑉
				×
				𝑉
				×
				𝑉
				⟶
				𝔥
			

		
	

					are bilinear and trilinear symmetric maps. A base 
	
		
			
				⟨
				𝑒
			

			

				1
			

			
				,
				𝑒
			

			

				2
			

			
				,
				…
				,
				𝑒
			

			

				𝑁
			

			

				⟩
			

		
	
 is fixed in 
	
		
			

				𝔊
			

		
	
 such that 
	
		
			
				⟨
				𝑒
			

			

				1
			

			
				,
				𝑒
			

			

				2
			

			
				,
				…
				,
				𝑒
			

			

				𝑛
			

			

				⟩
			

		
	
 generates 
	
		
			

				𝑉
			

		
	
, that is, 
	
		
			
				𝑉
				=
				⟨
				𝑒
			

			

				1
			

			
				,
				𝑒
			

			

				2
			

			
				,
				…
				,
				𝑒
			

			

				𝑛
			

			

				⟩
			

		
	
 and 
	
		
			
				⟨
				𝑒
			

			
				𝑛
				+
				1
			

			
				,
				𝑒
			

			
				𝑛
				+
				2
			

			
				,
				…
				,
				𝑒
			

			

				𝑁
			

			

				⟩
			

		
	
 generates 
	
		
			
				𝔥
				∶
				𝔥
				=
				⟨
				𝑒
			

			
				𝑛
				+
				1
			

			
				,
				𝑒
			

			
				𝑛
				+
				2
			

			
				,
				…
				,
				𝑒
			

			

				𝑁
			

			

				⟩
			

		
	
. Introduce in the local Lie group 
	
		
			

				𝐺
			

		
	
 the following normal coordinates: the coordinate on the submanifold 
	
		
			

				𝑄
			

		
	
 which is the projection from 
	
		
			
				e
				x
				p
				𝑉
			

		
	
, that is, for all 
	
		
			
				𝑥
				∈
				𝑄
			

		
	
, 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑖
			

			

				)
			

			
				𝑖
				=
			

			
				
			
			
				1
				,
				𝑛
			

		
	
, this means 
	
		
			
				e
				x
				p
				(
				𝑥
			

			

				𝑖
			

			

				𝑒
			

			

				𝑖
			

			
				+
				𝜙
				(
				𝑥
			

			

				𝑖
			

			

				𝑒
			

			

				𝑖
			

			
				)
				)
				=
				𝑥
				∈
				𝑄
			

		
	
.
Introduce the map 
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				𝑄
				⟶
				𝑉
				,
				𝑥
				⟼
			

			
				
			
			
				𝑥
				=
				𝑥
			

			

				𝑖
			

			

				𝑒
			

			

				𝑖
			

			

				.
			

		
	

					Then the condition written before is equivalent to 
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				
			
			
				
				𝑥
				+
				𝜙
			

			
				
			
			
				𝑥
				
				=
				𝑥
				∈
				𝑄
				.
			

		
	

					In what follows, we will compute the constructed coordinates, fixed on the submanifold 
	
		
			

				𝑄
			

		
	
. 
It is known that the law of composition in a Lie group 
	
		
			
				𝐺
				(
				⋅
				)
			

		
	
 has the following representation up to the fourth order in the normal coordinates:
	
 		
 			

				(
			
 			
				2
				.
				4
			
 			

				
			
 			

				)
			
 		
	

	
		
			
				1
				𝑎
				⋅
				𝑏
				=
				𝑎
				+
				𝑏
				+
			

			
				
			
			
				2
				[
				]
				+
				1
				𝑎
				,
				𝑏
			

			
				
			
			
				[
				[
				+
				1
				1
				2
				𝑎
				,
				𝑎
				,
				𝑏
				]
				]
			

			
				
			
			
				[
				[
				−
				1
				1
				2
				𝑏
				,
				𝑏
				,
				𝑎
				]
				]
			

			
				
			
			
				[
				[
				[
				−
				1
				4
				8
				𝑏
				,
				𝑎
				,
				𝑎
				,
				𝑏
				]
				]
				]
			

			
				
			
			
				[
				[
				[
				4
				8
				𝑎
				,
				𝑏
				,
				𝑎
				,
				𝑏
				]
				]
				]
				+
				𝑜
				(
				4
				)
				.
			

		
	

Consider the coordinate representation of the law of composition 
	
		
			

				×
			

			
				
			
		
	
, for 
	
		
			
				𝑦
				∶
				𝑥
				=
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑦
				=
				(
			

			
				
			
			
				𝑦
				)
			

		
	
 in 
	
		
			

				𝑄
			

		
	
. We have
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				
			
			
				
				𝑥
				×
			

			
				
			
			
				𝑦
				
				=
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				
				𝑦
				+
				𝐾
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝐿
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑀
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑃
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑄
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑈
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				+
				𝑜
				(
				4
				)
				.
			

		
	

(Our notations are similar to the notations of the work [24]). 
Denote the right side in (2.7) by 
	
		
			
				𝑧
				=
				(
			

			
				
			
			
				𝑧
				)
			

		
	
. Then, for its computation, we obtain the following: 
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				
				e
				x
				p
			

			
				
			
			
				
				𝑧
				+
				𝜙
			

			
				
			
			
				𝑧
				
				
				
				=
				e
				x
				p
			

			
				
			
			
				
				𝑥
				+
				𝜙
			

			
				
			
			
				𝑥
				
				
				
				⋅
				e
				x
				p
			

			
				
			
			
				
				𝑦
				+
				𝜙
			

			
				
			
			
				𝑦
				
				
				ℎ
				,
			

		
	

					where 
	
		
			

				ℎ
			

		
	
 is an element from 
	
		
			

				𝔥
			

		
	
, and indeed we have 
	
		
			
				ℎ
				=
				ℎ
				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
.
The following proposition holds.
Proposition 2.1.  We have
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				𝐾
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				=
				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

		
	

						where 
	
		
			
				∏
				[
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				]
			

		
	
 is the projection of the commutator 
	
		
			

				[
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				]
			

		
	
 on 
	
		
			

				𝑉
			

		
	
 parallel to the subalgebra 
	
		
			

				𝔥
			

		
	
 
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				1
				ℎ
				(
				𝑥
				,
				𝑦
				)
				=
				−
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				𝑜
				(
				2
				)
				.
			

		
	

Proof. we use the formulae (2.8). Comparing the terms from 
	
		
			

				𝑉
			

		
	
 and 
	
		
			

				𝔥
			

		
	
 and considering only the terms of the first order, we obtain that 
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				
			
			
				𝑧
				=
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				𝑦
				∈
				𝑉
				,
				ℎ
				=
				𝑜
				∈
				𝔥
				.
			

		
	

						For computing the term of the second order, we denote
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			
				
			
			
				𝑧
				=
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				
				𝑦
				+
				𝐾
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				∈
				𝑉
				,
				ℎ
				=
				𝑁
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				∈
				𝔥
				,
			

		
	

						from (2.8) and considering (2.4) and (
	
		
			
				2
				.
				4
			

			

				
			

		
	
), we have 
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			
				
			
			
				𝑥
				+
			

			
				
			
			
				
				𝑦
				+
				𝐾
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				
				+
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				=
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				
				𝑦
				+
				𝑁
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				
				+
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

		
	

						then by comparing term from 
	
		
			

				𝑉
			

		
	
 and 
	
		
			

				𝔥
			

		
	
 and noting that
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				=
				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				−
				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				,
			

		
	

						hence
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				𝐾
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				=
				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
				1
				ℎ
				(
				𝑥
				,
				𝑦
				)
				=
				−
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				.
			

		
	

Corollary 2.2.  From Proposition 2.1, it follows that 
							
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				
			
			
				
				𝑥
				×
			

			
				
			
			
				𝑦
				
				=
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				1
				𝑦
				+
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				𝑜
				(
				2
				)
				.
			

		
	

Proposition 2.3.  One can show that
							
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				𝐿
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				1
				=
				−
			

			
				
			
			
				6
				
				
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
				
				𝑅
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
				𝑀
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				=
				1
			

			
				
			
			
				3
				
				
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				+
				1
				
				
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				
				
				+
				
				
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
				ℎ
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				1
				=
				−
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑅
			

			
				
			
			
				
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				
				+
				3
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				6
				Λ
				
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
			

			
				
			
			
				4
				Λ
				
			

			
				
			
			
				
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				−
				1
			

			
				
			
			
				2
				Λ
				
				𝑅
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑦
				
				
				−
				Λ
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				
				+
				𝑅
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				
				+
				3
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				−
				1
			

			
				
			
			
				3
				Λ
				
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				+
				1
				
				
			

			
				
			
			
				4
				Λ
				
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				
				
				−
				1
			

			
				
			
			
				2
				Λ
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				
				−
				Λ
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				0
				(
				3
				)
				,
			

		
	

						where 
	
		
			
				Λ
				∶
				𝔊
				→
				𝔥
			

		
	
 is the projection on 
	
		
			

				𝔥
			

		
	
 parallel to 
	
		
			

				𝑉
			

		
	
.
Proof. The proof is based on the direct computation. Denote that
							
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				
			
			
				𝑧
				=
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				1
				𝑦
				+
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝐿
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑀
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				,
				ℎ
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				1
				=
				−
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝐸
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝐹
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				.
			

		
	
From (2.8) with the consideration of (2.4) and (
	
		
			
				2
				.
				4
			

			

				
			

		
	
), we obtain the following:
							
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			
				𝐿
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑀
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑅
			

			
				
			
			
				
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				
				+
				𝑅
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				
				+
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				
				+
				3
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				3
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑆
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				=
				1
				+
				⋯
			

			
				
			
			
				
				1
				2
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				
				1
				2
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				
				
				
				+
				𝐸
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝐹
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				
				+
				𝑆
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				2
				
				𝑅
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				4
				
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				−
				1
			

			
				
			
			
				4
				
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				
				
				
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				⋯
				.
			

		
	
Then by comparing term from 
	
		
			

				𝑉
			

		
	
 and 
	
		
			

				𝔥
			

		
	
 in the last identity, we obtain the requirement for 
	
		
			
				𝐿
				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
, 
	
		
			
				𝑀
				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 and 
	
		
			
				ℎ
				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 in addition
							
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			
				𝐸
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				=
				𝑅
			

			
				
			
			
				
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				
				+
				3
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				6
				Λ
				
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
			

			
				
			
			
				4
				Λ
				
			

			
				
			
			
				
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				−
				1
			

			
				
			
			
				2
				Λ
				
				𝑅
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑦
				
				
				−
				Λ
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
				𝐹
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				=
				𝑅
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				
				+
				3
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				−
				1
			

			
				
			
			
				3
				Λ
				
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				+
				1
				
				
			

			
				
			
			
				4
				Λ
				
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				
				
				−
				1
			

			
				
			
			
				2
				Λ
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				
				−
				Λ
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				.
				
				
			

		
	

Corollary 2.4.  One can obtain that
							
	
 		
 			
				(
				2
				.
				2
				1
				)
			
 		
	

	
		
			
				
			
			
				
				𝑥
				×
			

			
				
			
			
				𝑦
				
				=
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				1
				𝑦
				+
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				−
				1
			

			
				
			
			
				6
				
				
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
				
				𝑅
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				3
				
				
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				+
				1
				
				
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				
				
				+
				
				
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑜
				(
				3
				)
				.
			

		
	
 For the computation of terms of the fourth order, denote that
							
	
 		
 			
				(
				2
				.
				2
				2
				)
			
 		
	

	
		
			
				
			
			
				
				𝑧
				=
				(
				2
				.
				2
				1
				)
				+
				𝑃
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑄
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑈
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				,
			

		
	

						and for 
	
		
			

				ℎ
			

		
	
 to take terms of the third order  
							
	
 		
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			
				𝑃
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑄
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑈
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				=
				
			

			
				
			
			
				
				𝑥
				+
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				
				+
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				⋅
				
				
				
			

			
				
			
			
				
				𝑦
				+
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑆
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				⋅
				
				−
				1
				
				
			

			
				
			
			
				2
				Λ
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝐸
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝐹
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				,
				+
				⋯
			

		
	

						in the fourth order one needs to compute only the term in 
	
		
			

				𝑉
			

		
	
. Conducting the reasoning as in the previous cases one obtains that
							
	
 		
 			
				(
				2
				.
				2
				4
				)
			
 		
	

	
		
			
				𝑃
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑄
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑈
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
			

			
				m
				o
				d
			

			

				𝔥
			

			

				=
			

			
				=
				
			

			
				
			
			
				
				𝑥
				+
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				
				+
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				+
			

			
				
			
			
				
				𝑦
				+
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑆
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				2
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
				𝑅
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
			

			
				
			
			
				
				𝑥
				,
				𝑆
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
				𝑆
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				
				1
				2
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				
				1
				2
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
				
			

			
				
			
			
				
				1
				2
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				+
				1
				
				
			

			
				
			
			
				
				1
				2
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				−
				1
				
				
				
			

			
				
			
			
				
				4
				8
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
				
			

			
				
			
			
				
				4
				8
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				⋅
				
				−
				1
				
				
				
				+
				⋯
			

			
				
			
			
				2
				Λ
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝐸
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝐹
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				⋯
			

			
				m
				o
				d
			

			

				𝔥
			

			

				=
			

			

				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑥
				,
				𝐸
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑥
				,
				𝐹
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑦
				,
				𝐸
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑦
				,
				𝐹
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
			

			
				
			
			
				8
				
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				1
			

			
				
			
			
				2
				
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				1
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				1
				𝑥
				,
				−
			

			
				
			
			
				2
				Λ
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
				
				
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				1
				𝑦
				,
				−
			

			
				
			
			
				2
				Λ
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
				
				
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				1
				𝑦
				,
				−
			

			
				
			
			
				2
				Λ
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
				
				
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				1
				𝑥
				,
				−
			

			
				
			
			
				2
				Λ
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
				
				
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑥
				,
				𝑆
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
				
				𝑆
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
				
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				−
				1
				
				
				
			

			
				
			
			
				
				
				4
				8
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
				
			

			
				
			
			
				
				
				4
				8
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				.
				
				
				
			

		
	

						All the equalities in the above expression are modulo 
	
		
			

				𝔥
			

		
	
.
 Then the following proposition holds. 
Proposition 2.5.  We have the following:
							
	
 		
 			
				(
				2
				.
				2
				5
				)
			
 		
	

	
		
			
				𝑃
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				1
				=
				−
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑦
				,
				𝑆
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				+
				1
				
				
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				1
				𝑥
				,
				−
			

			
				
			
			
				Λ
				
				1
				2
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
				
				
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑥
				,
				𝐸
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
				𝑈
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				=
				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑥
				,
				𝑆
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				1
				𝑦
				,
				−
			

			
				
			
			
				Λ
				
				1
				2
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
				
				
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑦
				,
				𝐹
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
				𝑄
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				=
				1
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑦
				,
				𝐸
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑥
				,
				𝐹
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
			

			
				
			
			
				8
				
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				1
			

			
				
			
			
				2
				
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				1
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				1
				𝑦
				,
				−
			

			
				
			
			
				2
				Λ
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
				
				
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				1
				𝑥
				,
				−
			

			
				
			
			
				2
				Λ
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				2
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				+
				1
				
				
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
				
			

			
				
			
			
				
				
				1
				2
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				−
				1
				
				
				
			

			
				
			
			
				
				
				4
				8
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
				
			

			
				
			
			
				
				
				4
				8
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				.
				
				
				
			

		
	

Corollary 2.6.  We have the following:
							
	
 		
 			
				(
				2
				.
				2
				6
				)
			
 		
	

	
		
			

				
			

			
				
			
			
				𝑥
				×
			

			
				
			
			
				𝑦
				
				=
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				1
				𝑦
				+
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				−
				1
			

			
				
			
			
				6
				
				
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				2
				
				
				𝑅
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑦
				
				+
				1
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				1
				
				
			

			
				
			
			
				3
				
				
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				+
				1
				
				
			

			
				
			
			
				2
				
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				
				
				+
				
				
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				
				+
				𝑃
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑄
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑈
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				+
				0
				(
				4
				)
				,
			

		
	

						where 
	
		
			
				𝑃
				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
, 
	
		
			
				𝑄
				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				)
			

		
	
, and 
	
		
			
				𝑈
				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 are from (2.25).
3. Tensor Structure of a Smooth Analytic Loop
Let 
	
		
			
				⟨
				𝑄
				,
				×
				,
				𝑒
				⟩
			

		
	
 be a smooth analytic loop with the neutral element 
	
		
			

				𝑒
			

		
	
. In a standard way, see [26] on the Cartesian product 
	
		
			
				𝑄
				×
				𝑄
			

		
	
, we introduce the structure of a three-web 
	
		
			

				𝑊
			

		
	
 such that the submanifold in the view of 
	
		
			
				{
				𝑎
				}
				×
				𝑄
			

		
	
 is a vertical foliations 
	
		
			
				(
				𝑎
				∈
				𝑄
				)
			

		
	
, 
	
		
			
				𝑄
				×
				{
				𝑏
				}
			

		
	
 is a horizontal foliations 
	
		
			
				(
				𝑏
				∈
				𝑄
				)
			

		
	
 and the set 
	
		
			
				{
				(
				𝑎
				,
				𝑏
				)
				∶
				𝑎
				×
				𝑏
				=
				𝑐
				=
			

			
				c
				o
				n
				t
				s
			

			

				}
			

		
	
 foliations of the third family 
	
		
			
				(
				𝑐
				∈
				𝑄
				)
			

		
	
. In the coordinate 
	
		
			
				(
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
			

			

				1
			

			
				,
				𝑦
			

			

				2
			

			
				,
				…
				,
				𝑦
			

			

				𝑛
			

			

				)
			

		
	
, the indicated foliations are described by the system of differential 1-form [18, 19, 21, 23, 28, 37–40]
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝜔
			

			
				𝑖
				1
			

			
				=
				𝑜
				,
				𝜔
			

			
				𝑖
				2
			

			
				=
				𝑜
				,
				𝜔
			

			
				𝑖
				3
			

			
				=
				𝜔
			

			
				𝑖
				1
			

			
				+
				𝜔
			

			
				𝑖
				2
			

			
				=
				𝑜
				,
			

		
	

					where
						
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			

				𝜔
			

			
				𝑖
				1
			

			
				=
				𝑃
			

			
				𝑖
				𝛼
			

			
				𝑑
				𝑥
			

			

				𝛼
			

			
				,
				𝜔
			

			
				𝑖
				2
			

			
				=
				𝑄
			

			
				𝑖
				𝛽
			

			
				𝑑
				𝑦
			

			

				𝛽
			

			
				,
				𝑃
			

			
				𝑖
				𝛼
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				𝜕
				𝜇
			

			

				𝑖
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝛼
			

			
				,
				𝑄
			

			
				𝑖
				𝛽
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				𝜕
				𝜇
			

			

				𝑖
			

			
				
			
			
				𝜕
				𝑦
			

			

				𝛽
			

			
				,
				𝜇
			

			

				𝑖
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				(
				𝑥
				×
				𝑦
				)
			

			

				𝑖
			

			

				.
			

		
	

In the space of a 3-Web 
	
		
			

				𝑊
			

		
	
, introduce the so-called Chern canonical connection 
	
		
			
				∇
				=
				(
			

			

				1
			

			
				∇
				,
			

			

				2
			

			
				∇
				)
			

		
	
 [24, 38].
The indicated connection is described by
						
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			

				𝜔
			

			
				𝑘
				𝑗
			

			
				=
				Γ
			

			
				𝑘
				𝑖
				𝑗
			

			

				𝜔
			

			
				𝑖
				1
			

			
				+
				Γ
			

			
				𝑘
				𝑗
				𝑙
			

			

				𝜔
			

			
				𝑗
				2
			

			
				,
				Γ
			

			
				𝑘
				𝑖
				𝑗
			

			
				
				𝑃
				=
				−
			

			
				𝛼
				𝑖
			

			
				
				𝑄
			

			
				𝛽
				𝑗
			

			

				𝜕
			

			

				2
			

			

				𝜇
			

			

				𝑘
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝛼
			

			
				𝜕
				𝑦
			

			

				𝛽
			

			

				,
			

		
	

					where 
	
		
			
				
				𝑃
			

			
				𝛼
				𝑖
			

		
	
 and 
	
		
			
				
				𝑄
			

			
				𝛽
				𝑗
			

		
	
 are inverse matrices for 
	
		
			

				𝑃
			

			
				𝛼
				𝑖
			

		
	
 and 
	
		
			

				𝑄
			

			
				𝛽
				𝑗
			

		
	
, respectively, in terms of the following structural equations:
						
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				𝑑
				𝜔
			

			
				𝑘
				1
			

			
				=
				𝜔
			

			
				𝑙
				1
			

			
				∧
				𝜔
			

			
				𝑘
				𝑙
			

			
				+
				𝑎
			

			
				𝑘
				𝑖
				𝑗
			

			

				𝜔
			

			
				𝑖
				1
			

			
				∧
				𝜔
			

			
				𝑗
				𝑙
			

			
				,
				𝑑
				𝜔
			

			
				𝑘
				2
			

			
				=
				𝜔
			

			
				𝑙
				2
			

			
				∧
				𝜔
			

			
				𝑘
				𝑙
			

			
				−
				𝑎
			

			
				𝑘
				𝑖
				𝑗
			

			

				𝜔
			

			
				𝑖
				2
			

			
				∧
				𝜔
			

			
				𝑗
				2
			

			
				,
				𝑑
				𝜔
			

			
				𝑘
				𝑗
			

			
				=
				𝜔
			

			
				𝑖
				𝑗
			

			
				∧
				𝜔
			

			
				𝑘
				𝑖
			

			
				+
				𝑏
			

			
				𝑘
				𝑗
				𝑙
				𝑚
			

			

				𝜔
			

			
				𝑙
				1
			

			
				∧
				𝜔
			

			
				𝑚
				2
			

			

				,
			

		
	

					where
						
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			

				𝑎
			

			
				𝑘
				𝑖
				𝑗
			

			
				1
				=
				−
			

			
				
			
			
				2
				𝜕
			

			

				2
			

			

				𝜇
			

			

				𝑘
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝛼
			

			
				𝜕
				𝑦
			

			

				𝛽
			

			
				
				
				𝑃
			

			
				𝛼
				𝑖
			

			
				
				𝑄
			

			
				𝛽
				𝑗
			

			
				−
				
				𝑃
			

			
				𝛼
				𝑗
			

			
				
				𝑄
			

			
				𝛽
				𝑖
			

			
				
				,
				𝑏
			

			
				𝑘
				𝑗
				𝑙
				𝑚
			

			
				=
				
				−
				𝜕
			

			

				3
			

			

				𝜇
			

			

				𝑘
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝛼
			

			
				𝜕
				𝑥
			

			

				𝛽
			

			
				𝜕
				𝑦
			

			

				𝛾
			

			
				
				𝑃
			

			
				𝛽
				𝑗
			

			
				+
				𝜕
			

			

				3
			

			

				𝜇
			

			

				𝑘
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝛼
			

			
				𝜕
				𝑦
			

			

				𝛽
			

			
				𝜕
				𝑦
			

			

				𝛾
			

			
				
				𝑄
			

			
				𝛽
				𝑗
			

			
				
				
				𝑃
			

			
				𝛼
				𝑙
			

			
				
				𝑄
			

			
				𝛾
				𝑚
			

			
				−
				Γ
			

			
				𝑘
				𝑝
				𝑚
			

			

				𝜕
			

			

				2
			

			

				𝜇
			

			

				𝑝
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝛼
			

			
				𝜕
				𝑥
			

			

				𝛽
			

			
				
				𝑃
			

			
				𝛼
				𝑙
			

			
				
				𝑃
			

			
				𝛽
				𝑗
			

			
				+
				Γ
			

			
				𝑘
				𝑙
				𝑝
			

			

				𝜕
			

			

				2
			

			

				𝜇
			

			

				𝑝
			

			
				
			
			
				𝜕
				𝑦
			

			

				𝛼
			

			
				𝜕
				𝑦
			

			

				𝛽
			

			
				
				𝑃
			

			
				𝛼
				𝑗
			

			
				
				𝑄
			

			
				𝛽
				𝑚
			

			
				−
				Γ
			

			
				𝑘
				𝑝
				𝑚
			

			

				Γ
			

			
				𝑝
				𝑙
				𝑗
			

			
				+
				Γ
			

			
				𝑘
				𝑙
				𝑝
			

			

				Γ
			

			
				𝑝
				𝑗
				𝑚
			

			

				.
			

		
	

The Chern connection in the 3-Web associated to the loop 
	
		
			
				⟨
				𝑄
				,
				×
				,
				𝑒
				⟩
			

		
	
 admits an alternative description in terms of antiproduct of the loop 
	
		
			

				𝑄
			

		
	
 by itself [31, 33]. In the set 
	
		
			
				𝑄
				×
				𝑄
			

		
	
, introduce the covering loopuscular structure, by denoting for any pair 
	
		
			
				𝑋
				=
				(
				𝑥
				,
				𝑥
			

			

				
			

			

				)
			

		
	
, 
	
		
			
				𝑌
				=
				(
				𝑦
				,
				𝑦
			

			

				
			

			

				)
			

		
	
, 
	
		
			
				𝐴
				(
				𝑢
				,
				𝑣
				)
			

		
	

	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				
				𝐿
				(
				𝑋
				,
				𝐴
				,
				𝑌
				)
				=
				(
				𝑥
				(
				𝑢
				⧵
				𝑦
				𝑣
				)
				)
				/
				𝑣
				,
				𝑢
				⧵
				
				
				𝑢
				𝑦
			

			

				
			

			
				
				𝑥
				/
				𝑣
			

			

				
			

			
				.
				
				
			

		
	

Then the Chern connection coincides with the connection tangent to the covering loopuscular structure [33].
In particular, for any tensor field 
	
		
			
				Ω
				(
				𝑢
				,
				𝑣
				)
			

		
	
, in the space of 3-web 
	
		
			
				𝑊
				=
				𝑄
				×
				𝑄
			

		
	

	
 		
 			
				(
				3
				.
				7
				)
			
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			

				1
			

			

				∇
			

			

				𝑖
			

			
				𝜕
				Ω
				(
				𝑢
				=
				𝑒
				,
				𝑣
				=
				𝑒
				)
				=
			

			
				
			
			
				𝜕
				𝑢
			

			

				𝑖
			

			
				
				
				
				𝐿
			

			
				(
				𝑒
				,
				𝑒
				)
				(
				𝑢
				,
				𝑒
				)
			

			

				
			

			
				∗
				,
				(
				𝑒
				,
				𝑒
				)
			

			

				
			

			
				−
				1
			

			
				
				|
				|
				|
				|
				|
				Ω
				(
				𝑢
				,
				𝑒
				)
			

			
				𝑢
				=
				𝑒
			

			

				,
			

			

				2
			

			

				∇
			

			

				𝑖
			

			
				𝜕
				Ω
				(
				𝑢
				=
				𝑒
				,
				𝑣
				=
				𝑒
				)
				=
			

			
				
			
			
				𝜕
				𝑣
			

			

				𝑖
			

			
				
				
				
				𝐿
			

			
				(
				𝑒
				,
				𝑒
				)
				(
				𝑒
				,
				𝑣
				)
			

			

				
			

			
				∗
				,
				(
				𝑒
				,
				𝑒
				)
			

			

				
			

			
				−
				1
			

			
				
				|
				|
				|
				|
				|
				Ω
				(
				𝑒
				,
				𝑣
				)
			

			
				𝑣
				=
				𝑒
			

			

				.
			

		
	

The value in the point 
	
		
			
				(
				𝑒
				,
				𝑒
				)
			

		
	
 of the 3-Web 
	
		
			
				𝑊
				=
				𝑄
				×
				𝑄
			

		
	
 to the loop 
	
		
			
				⟨
				𝑄
				,
				×
				,
				𝑒
				⟩
			

		
	
 fundamental tensor field 
	
		
			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	
, 
	
		
			

				𝑏
			

			
				𝑖
				𝑗
				𝑘
				𝑙
			

		
	
 and their corresponding derivations 
	
		
			

				1
			

			

				∇
			

			

				𝑖
			

		
	
, 
	
		
			

				2
			

			

				∇
			

			

				𝑖
			

		
	
 are called the tensors structure of the loop. The structure tensor of the smooth loop 
	
		
			
				⟨
				𝑄
				,
				×
				,
				𝑒
				⟩
			

		
	
 is defined uniquely by its construction up to isomorphism [24, 28, 29, 38].
Proposition 3.1 (see [17, 38]).  The following relations hold
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			

				1
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

			
				=
				𝑏
			

			
				𝑖
				|
				|
				𝑙
				|
				|
				[
				𝑗
				𝑘
				]
			

			

				,
			

			

				2
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

			
				=
				𝑏
			

			
				𝑖
				[
				𝑗
				𝑘
				]
				𝑙
			

			

				.
			

		
	

For the proof of the proposition, it is sufficient to consider the first differential expression of the system (3.4). 
Introduce the notation
						
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			

				𝑐
			

			
				𝑖
				𝑗
				𝑘
				𝑙
				𝑚
			

			

				=
			

			

				1
			

			

				∇
			

			

				𝑚
			

			

				𝑏
			

			
				𝑖
				𝑗
				𝑘
				𝑙
			

			
				|
				|
				|
				|
			

			
				(
				𝑒
				,
				𝑒
				)
			

			
				,
				𝑑
			

			
				𝑖
				𝑗
				𝑘
				𝑙
				𝑚
			

			

				=
			

			

				2
			

			

				∇
			

			

				𝑚
			

			

				𝑏
			

			
				𝑖
				𝑗
				𝑘
				𝑙
			

			
				|
				|
				|
				|
			

			
				(
				𝑒
				,
				𝑒
				)
			

			

				.
			

		
	

And consider Proposition 2.3. The law of composition 
	
		
			
				(
				×
				)
			

		
	
 of the smooth local loop 
	
		
			
				⟨
				𝑄
				,
				×
				,
				𝑒
				⟩
			

		
	
 in the coordinate 
	
		
			
				𝑥
				=
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 centralized at the point 
	
		
			

				𝑒
			

		
	
 is given by
						
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				
			
			
				(
				𝑥
				×
				𝑦
				)
				=
			

			
				
			
			
				𝑥
				+
			

			
				
			
			
				
				𝑦
				+
				𝐾
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝐿
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑀
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑃
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑄
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				
				+
				𝑈
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑦
				
				+
				𝑜
				(
				4
				)
				.
			

		
	

Consider 
	
		
			
				⟨
				𝑄
				,
				×
				,
				𝑒
				⟩
			

		
	
 as a coordinate loop of the 3-Web 
	
		
			

				𝑊
			

		
	
, defined in the neighborhood of the point 
	
		
			
				(
				𝑒
				,
				𝑒
				)
			

		
	
 of the manifold 
	
		
			
				𝑄
				×
				𝑄
			

		
	
. Then in conformity with [24, 37], the basic tensor of the web can be expressed in terms of coefficient of the decomposition of the loop in the following way:
						
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				𝑎
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				
				=
				−
				𝐾
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
				𝑏
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				
				=
				−
				𝐵
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑧
				
				,
				𝑐
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				,
			

			
				
			
			
				𝑡
				
				
				=
				(
				4
				𝑄
				−
				6
				𝑃
				)
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑡
				,
			

			
				
			
			

				x
			

			

				,
			

			
				
			
			
				𝑧
				
				
				+
				𝑎
			

			
				
			
			
				
				𝑡
				,
				𝑏
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				
				
				+
				𝑎
			

			
				
			
			
				
				𝑦
				,
				𝑏
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑡
				,
			

			
				
			
			
				𝑧
				
				
				
				−
				𝑏
			

			
				
			
			
				
				𝑥
				,
				𝑎
			

			
				
			
			
				𝑡
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				
				
				+
				𝑎
				2
				𝐿
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑡
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑧
				
				
				𝑎
				
				−
				2
				𝐿
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑡
				,
			

			
				
			
			
				𝑧
				
				
				−
				2
				𝐿
			

			
				
			
			
				
				𝑦
				,
				𝑎
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑡
				
				,
			

			
				
			
			
				𝑧
				
				
				−
				2
				𝐿
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				
				𝑡
				,
				𝑎
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑧
				,
				𝑑
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				,
			

			
				
			
			
				𝑡
				
				
				=
				(
				4
				𝑄
				−
				6
				𝑃
				)
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑧
				,
			

			
				
			
			
				𝑡
				
				
				𝑏
				
				−
				𝑎
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				,
			

			
				
			
			
				𝑡
				
				
				𝑏
				
				−
				𝑎
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑡
				
				,
			

			
				
			
			
				𝑧
				
				
				+
				𝑏
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				
				𝑦
				,
				𝑎
			

			
				
			
			
				𝑧
				,
			

			
				
			
			
				𝑡
				
				
				
				+
				𝑎
			

			
				
			
			
				
				𝑦
				,
				2
				𝑀
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑧
				,
			

			
				
			
			
				𝑡
				
				𝑎
				
				
				
				−
				2
				𝑀
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑧
				,
			

			
				
			
			
				𝑡
				
				
				−
				2
				𝑀
			

			
				
			
			
				
				𝑦
				,
				𝑎
			

			
				
			
			
				𝑧
				,
			

			
				
			
			
				𝑥
				
				,
			

			
				
			
			
				𝑡
				
				
				−
				2
				𝑀
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				
				𝑧
				,
				𝑎
			

			
				
			
			
				𝑡
				,
			

			
				
			
			
				𝑥
				,
				
				
			

		
	

					where 
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			
				𝐵
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				
				=
				2
				𝐿
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				
				−
				2
				𝑀
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				
				−
				𝐾
			

			
				
			
			
				
				𝑥
				,
				𝐾
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				𝐾
				
				
				
				+
				𝐾
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				.
			

		
	

4. Tensor Structure of a Smooth Local Loop, Embedding in Lie Group
Let 
	
		
			
				⟨
				𝑄
				,
				×
				,
				𝑒
				⟩
			

		
	
 be a local smooth loop, the embedding in the Lie group 
	
		
			

				𝐺
			

		
	
 as a section of left coset 
	
		
			
				𝐺
				m
				o
				d
				𝐻
			

		
	
, where 
	
		
			

				𝐻
			

		
	
 is a closed subgroup in 
	
		
			

				𝐺
			

		
	
. In what follows, we will consider that 
	
		
			
				⟨
				𝑄
				,
				×
				,
				𝑒
				⟩
			

		
	
 is referred to the normal coordinates 
	
		
			
				𝑋
				=
				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
Proposition 4.1.  The following relations holds
							
	
 		
 			
				(
				4
				.
				1
				)
			
 			
				(
				4
				.
				2
				)
			
 		
	

	
		
			
				𝑎
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				1
				=
				−
			

			
				
			
			
				2
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
				𝑏
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				1
				=
				−
			

			
				
			
			
				2
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				+
				1
			

			
				
			
			
				2
				
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				
				
				𝑅
				
				−
				2
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				.
			

		
	

Proof. The first relation follows from Proposition 2.1 and the relation (3.12). In the relation (3.14), we have
							
	
 		
 			
				(
				4
				.
				3
				)
			
 		
	

	
		
			
				𝐵
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				
				=
				2
				𝐿
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				
				−
				2
				𝑀
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				
				−
				𝐾
			

			
				
			
			
				
				𝑥
				,
				𝐾
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				𝐾
				
				
				
				+
				𝐾
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				,
			

		
	

						and from Proposition 2.3 we have
							
	
 		
 			
				(
				4
				.
				4
				)
			
 		
	

	
		
			
				
				2
				𝐿
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				1
				=
				−
			

			
				
			
			
				6
				
				
			

			
				
			
			
				
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				+
				
				
				𝑅
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				+
				1
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				
				−
				1
			

			
				
			
			
				6
				
				
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				+
				
				
				
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				+
				
				
				
				
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑧
				+
				1
				
				
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑧
				
				
				,
				
				2
				𝑀
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				=
				1
			

			
				
			
			
				3
				
				
			

			
				
			
			
				
				𝑦
				,
			

			
				
			
			
				𝑧
				,
			

			
				
			
			
				𝑥
				+
				
				
				
				
			

			
				
			
			
				
				𝑥
				,
				𝑅
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				−
				1
				
				
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑦
				,
			

			
				
			
			
				𝑧
				,
			

			
				
			
			
				𝑥
				
				
				+
				1
			

			
				
			
			
				3
				
				
			

			
				
			
			
				
				𝑧
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				+
				
				
				
				
			

			
				
			
			
				
				𝑦
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑧
				+
				
				
				
				
			

			
				
			
			
				
				𝑧
				,
				𝑅
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				−
				1
				
				
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑧
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				
				
				,
			

		
	
Furthermore,
							
	
 		
 			
				(
				4
				.
				5
				)
			
 		
	

	
		
			
				𝐾
				
			

			
				
			
			
				
				𝑥
				,
				𝐾
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				=
				1
				
				
			

			
				
			
			
				4
				
				
			

			
				
			
			
				
				
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				
				,
				𝐾
				
				𝐾
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				=
				1
			

			
				
			
			
				4
				
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				.
			

		
	
Substituting these expressions in 
	
		
			
				𝐵
				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				)
			

		
	
, we obtain that
							
	
 		
 			
				(
				4
				.
				6
				)
			
 		
	

	
		
			
				𝐵
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				1
				=
				−
			

			
				
			
			
				2
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				+
				1
			

			
				
			
			
				2
				
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				
				
				𝑅
				
				+
				2
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				,
			

		
	

						but from (3.12) we have 
	
		
			
				𝑏
				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				)
				=
				−
				𝐵
				(
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑧
				)
			

		
	
. Hence,
							
	
 		
 			
				(
				4
				.
				7
				)
			
 		
	

	
		
			
				𝑏
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				,
			

			
				
			
			
				𝑧
				
				1
				=
				−
			

			
				
			
			
				2
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				−
				1
			

			
				
			
			
				2
				
				
				
				
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				
				
				𝑅
				
				−
				2
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				
				,
			

			
				
			
			
				𝑧
				
				.
			

		
	
Let 
	
		
			

				Ω
			

		
	
 be one of the structural tensor of the loop 
	
		
			

				𝑄
			

		
	
, and consider the expression of the fundamental tensor field 
	
		
			
				Ω
				(
				𝑢
				,
				𝑣
				)
			

		
	
 in the space of three-web 
	
		
			
				𝑊
				=
				𝑄
				×
				𝑄
			

		
	
. Then 
	
		
			
				Ω
				=
				Ω
				(
				𝑢
				=
				𝑒
				,
				𝑣
				=
				𝑒
				)
			

		
	
 and for 
	
		
			

				1
			

			

				∇
			

			

				𝑖
			

			
				Ω
				(
				𝑢
				=
				𝑒
				,
				𝑣
				=
				𝑒
				)
			

		
	
, 
	
		
			

				2
			

			

				∇
			

			

				𝑖
			

			
				Ω
				(
				𝑢
				=
				𝑒
				,
				𝑣
				=
				𝑒
				)
			

		
	
, the formulae obtained in (3.7) hold.Consider the computation of 
	
		
			

				1
			

			

				∇
			

			

				𝑖
			

			
				Ω
				(
				𝑢
				=
				𝑒
				,
				𝑣
				=
				𝑒
				)
			

		
	
, the value of the tensor field 
	
		
			
				Ω
				(
				𝑢
				,
				𝑣
				)
			

		
	
 for 
	
		
			
				𝑣
				=
				𝑒
			

		
	
 can be seen as the structure of the smooth local loop 
	
		
			
				⟨
				𝑄
				,
				×
			

			

				𝑢
			

			
				,
				𝑢
				⟩
			

		
	
, where 
	
 		
 			
				(
				4
				.
				8
				)
			
 		
	

	
		
			
				𝑥
				×
			

			

				𝑢
			

			
				𝑦
				=
				𝑥
				×
				(
				𝑢
				⧵
				𝑦
				)
				.
			

		
	

						As a result, 
	
		
			

				∇
			

		
	
 is transported from 
	
		
			

				𝑇
			

			

				𝑢
			

			

				𝑄
			

		
	
 in 
	
		
			

				𝑇
			

			

				𝑒
			

			

				𝑄
			

		
	
 by means of the inverse transformation 
	
		
			

				𝑅
			

			

				𝑢
			

		
	
, which coincide with the structure of the tensor 
	
		
			
				
				Ω
			

			

				𝑢
			

		
	
 and the smooth local loop 
	
		
			
				⟨
				𝑄
				,
				⋅
			

			

				𝑢
			

			
				,
				𝑒
				⟩
			

		
	
 with the operation
							
	
 		
 			
				(
				4
				.
				9
				)
			
 		
	

	
		
			
				𝑥
				⋅
			

			

				𝑢
			

			
				𝑦
				=
				𝑢
				⧵
				(
				(
				𝑢
				×
				𝑥
				)
				×
				𝑦
				)
				.
			

		
	

						So that 
							
	
 		
 			
				(
				4
				.
				1
				0
				)
			
 		
	

	
		
			

				1
			

			

				∇
			

			

				𝑖
			

			
				𝜕
				
				Ω
				Ω
				(
				𝑢
				=
				𝑒
				,
				𝑣
				=
				𝑒
				)
				=
			

			

				𝑢
			

			
				
			
			
				𝜕
				𝑢
			

			

				𝑖
			

			
				|
				|
				|
				|
			

			
				𝑢
				=
				𝑒
			

			

				,
			

		
	

						in addition the law of composition (4.9) allows an intuitive algebraic interpretation in terms of the enveloping Lie group 
	
		
			

				𝐺
			

		
	
.Consider the section 
	
		
			

				𝑄
			

			
				
				𝑢
			

			
				=
				𝑄
				⋅
				𝑢
			

			
				−
				1
			

		
	
 of the coset space 
	
		
			
				
				𝐻
				𝐺
				/
			

			

				𝑢
			

		
	
, where  
	
		
			
				
				𝐻
			

			

				𝑢
			

			
				=
				𝑢
				⋅
				𝐻
				⋅
				𝑢
			

			
				−
				1
			

		
	
, 
	
		
			
				𝑢
				∈
				𝑄
			

		
	
 and the map
							
	
 		
 			
				(
				4
				.
				1
				1
				)
			
 		
	

	
		
			

				Ψ
			

			

				𝑢
			

			
				∶
				𝑄
				⟶
				𝑄
			

			
				
				𝑢
			

			
				𝑥
				⟼
				(
				𝑢
				×
				𝑥
				)
				×
				𝑢
			

			
				−
				1
			

			

				.
			

		
	

						Denote by 
	
		
			
				(
				∗
			

			

				𝑢
			

			

				)
			

		
	
 the law of composition in 
	
		
			

				𝑄
			

			
				
				𝑢
			

		
	
, so that 
							
	
 		
 			
				(
				4
				.
				1
				2
				)
			
 		
	

	
		
			
				𝑎
				∗
			

			

				𝑢
			

			
				
				𝑏
				=
			

			
				
				𝑢
			

			
				(
				𝑎
				𝑏
				)
				,
			

		
	

						where 
	
		
			

				∏
			

			
				
				𝑢
			

			
				∶
				𝐺
				→
				𝑄
			

			
				
				𝑢
			

		
	
 is the projection on 
	
		
			

				𝑄
			

			
				
				𝑢
			

		
	
 parallel to 
	
		
			
				
				𝐻
			

			

				𝑢
			

		
	
. The following proposition hold.
Proposition 4.2.  The map 
	
		
			

				Ψ
			

			

				𝑢
			

			
				∶
				𝑄
				→
				𝑄
			

			
				
				𝑢
			

		
	
 is an isomorphism of the smooth loops 
	
		
			
				⟨
				𝑄
				,
				⋅
			

			

				𝑢
			

			
				,
				𝑒
				⟩
			

		
	
 and 
	
		
			
				⟨
				𝑄
			

			
				
				𝑢
			

			
				,
				∗
			

			

				𝑢
			

			
				,
				𝑒
				⟩
			

		
	
.
Proof. Let 
	
		
			
				𝑎
				=
				Ψ
			

			

				𝑢
			

			

				𝑥
			

		
	
, 
	
		
			
				𝑏
				=
				Ψ
			

			

				𝑢
			

			

				𝑦
			

		
	
, and 
	
		
			
				𝑎
				∗
			

			

				𝑢
			

			
				𝑏
				=
				Ψ
			

			

				𝑢
			

			

				𝑧
			

		
	
, where 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑄
			

		
	
.Then
							
	
 		
 			
				(
				4
				.
				1
				3
				)
			
 		
	

	
		
			
				𝑎
				∗
			

			

				𝑢
			

			
				
				𝑏
				=
			

			
				
				𝑢
			

			
				
				(
				𝑎
				𝑏
				)
				=
			

			
				
				𝑢
			

			
				
				(
				𝑢
				×
				𝑥
				)
				⋅
				𝑢
			

			
				−
				1
			

			
				⋅
				(
				𝑢
				×
				𝑦
				)
				⋅
				𝑢
			

			
				−
				1
			

			
				
				,
				
				𝑎
				∗
			

			

				𝑢
			

			
				𝑏
				
				×
				𝑢
				⋅
				ℎ
				⋅
				𝑢
			

			
				−
				1
			

			
				=
				(
				𝑢
				×
				𝑥
				)
				𝑢
			

			
				−
				1
			

			
				⋅
				(
				𝑢
				×
				𝑦
				)
				⋅
				𝑢
			

			
				−
				1
			

			

				.
			

		
	
Multiplying by 
	
		
			

				𝑢
			

		
	
 we obtain that
							
	
 		
 			
				(
				4
				.
				1
				4
				)
			
 		
	

	
		
			
				
				𝑎
				∗
			

			

				𝑢
			

			
				𝑏
				
				×
				𝑢
				⋅
				ℎ
				=
				(
				𝑢
				×
				𝑥
				)
				×
				𝑦
				.
			

		
	

						Applying the projection to the last equality, we obtain that
							
	
 		
 			
				(
				4
				.
				1
				5
				)
			
 		
	

	
		
			
				
				𝑎
				∗
			

			

				𝑢
			

			
				𝑏
				
				×
				𝑢
				=
				(
				𝑢
				×
				𝑥
				)
				×
				𝑦
				.
			

		
	
Furthermore,
							
	
 		
 			
				(
				4
				.
				1
				6
				)
			
 		
	

	
		
			
				
				𝑎
				∗
			

			

				𝑢
			

			
				𝑏
				
				
				Ψ
				×
				𝑢
				=
			

			

				𝑢
			

			
				𝑧
				
				×
				𝑢
				=
				(
				𝑢
				×
				𝑧
				)
				⋅
				𝑢
			

			
				−
				1
			

			
				×
				𝑢
				=
				(
				𝑢
				×
				𝑥
				)
				×
				𝑦
				.
			

		
	

						Then 
	
		
			
				𝑧
				=
				𝑢
				⧵
				(
				𝑢
				×
				𝑥
				)
				×
				𝑦
			

		
	
 and
							
	
 		
 			
				(
				4
				.
				1
				7
				)
			
 		
	

	
		
			
				
				𝑎
				∗
			

			

				𝑢
			

			
				𝑏
				
				=
				
				Ψ
			

			

				𝑢
			

			
				𝑥
				
				∗
			

			

				𝑢
			

			
				
				Ψ
			

			

				𝑢
			

			
				𝑦
				
				=
				Ψ
			

			

				𝑢
			

			
				𝑧
				=
				Ψ
			

			

				𝑢
			

			
				{
				𝑢
				⧵
				(
				𝑢
				×
				𝑥
				)
				×
				𝑦
				}
				=
				Ψ
			

			

				𝑢
			

			
				
				𝑥
				⋅
			

			

				𝑢
			

			
				𝑦
				
				.
			

		
	

						Therefore 
	
		
			

				Ψ
			

			

				𝑢
			

			
				(
				𝑥
				⋅
			

			

				𝑢
			

			
				𝑦
				)
				=
				(
				Ψ
			

			

				𝑢
			

			
				𝑥
				)
				∗
				(
				Ψ
			

			

				𝑢
			

			
				𝑦
				)
			

		
	
. Hence, here is the result. Similarly we establish that
							
	
 		
 			
				(
				4
				.
				1
				8
				)
			
 		
	

	
		
			

				2
			

			

				∇
			

			

				𝑖
			

			
				𝜕
				
				
				Ω
				Ω
				(
				𝑢
				=
				𝑒
				,
				𝑣
				=
				𝑒
				)
				=
			

			

				𝑣
			

			
				
			
			
				𝜕
				𝑣
			

			

				𝑖
			

			
				|
				|
				|
				|
				|
			

			
				𝜐
				=
				𝑒
			

			

				,
			

		
	

						where 
	
		
			
				
				
				Ω
			

		
	
 correspond to the structure tensor of the local loop 
	
		
			
				⟨
				𝑄
				,
				1
				/
				𝑣
				,
				𝑒
				⟩
			

		
	
 with the composition law
							
	
 		
 			
				(
				4
				.
				1
				9
				)
			
 		
	

	
		
			
				𝑥
				1
			

			
				
			
			
				𝑣
				𝑦
				=
				(
				𝑥
				×
				(
				𝑦
				×
				𝑣
				)
				)
				/
				𝑣
				.
			

		
	
The law of composition (4.19) allows us to find an algebraic interpretation in terms of the enveloping Lie group 
	
		
			

				𝐺
			

		
	
.
Let us introduce in consideration the subgroup 
	
		
			

				𝐻
			

			
				𝑣
				
				
			

			
				=
				𝑣
				𝐻
				𝑣
			

			
				−
				1
			

		
	
 where 
	
		
			
				𝑣
				∈
				𝑄
			

		
	
. The following proposition holds.
Proposition 4.3.  We have the following:
							
	
 		
 			
				(
				4
				.
				2
				0
				)
			
 		
	

	
		
			
				𝑥
				1
			

			
				
			
			
				𝑣
				
				𝑦
				=
			

			
				𝑣
				
				
			

			
				(
				𝑥
				𝑦
				)
			

		
	

						for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑄
			

		
	
, where
							
	
 		
 			
				(
				4
				.
				2
				1
				)
			
 		
	

	
		
			

				
			

			
				𝑣
				
				
			

			
				∶
				𝐺
				→
				𝑄
			

			
				i
				s
				t
				h
				e
				p
				r
				o
				j
				e
				c
				t
				i
				o
				n
				o
				n
			

			

				𝑄
			

			
				p
				a
				r
				a
				l
				l
				e
				l
				t
				o
			

			

				𝐻
			

			
				𝑣
				
				
			

			

				.
			

		
	

Proof. In the Lie group 
	
		
			

				𝐺
			

		
	
, we have 
	
		
			
				𝑥
				𝑦
				=
				(
				𝑥
				⟂
				𝑦
				)
				×
				𝑣
				ℎ
				𝑣
			

			
				−
				1
			

		
	
 which is equivalent to 
	
		
			
				𝑥
				𝑦
				⋅
				𝑣
				=
				(
				𝑥
				⟂
				𝑦
				)
				×
				𝑣
				ℎ
			

		
	
. Applying 
	
		
			

				∏
			

		
	
 to the last formula, we get the following: 
							
	
 		
 			
				(
				4
				.
				2
				2
				)
			
 		
	

	
		
			
				𝑥
				×
				(
				𝑦
				×
				𝑣
				)
				=
				(
				𝑥
				⟂
				𝑦
				)
				×
				𝑣
				.
			

		
	

						Therefore, 
	
		
			
				𝑥
				⟂
				𝑦
				=
				𝑥
				×
				(
				𝑦
				×
				𝑣
				)
				/
				𝑣
			

		
	
.
5. Application: Computation of 
	
		
			

				2
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	
 and 
	
		
			

				1
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	

(I) Computation of 
	
		
			

				2
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	
For 
	
		
			
				𝑢
				∈
				𝑄
			

		
	
, introduce the map
							
	
 		
 			
				(
				5
				.
				1
				)
			
 		
	

	
		
			
				𝐴
				𝑑
			

			

				𝑢
			

			
				∶
				𝐺
				⟶
				𝐺
				,
				𝑥
				⟼
				𝑢
				𝑥
				𝑢
			

			
				−
				1
			

			

				.
			

		
	

						Let 
	
		
			
				𝑢
				=
				e
				x
				p
				𝜁
			

		
	
, where 
	
		
			
				𝜁
				∈
				𝑄
			

		
	
 and 
	
		
			
				𝑔
				∈
				𝐻
			

		
	
. Then
							
	
 		
 			
				(
				5
				.
				2
				)
			
 		
	

	
		
			
				𝐴
				𝑑
			

			

				𝑢
			

			
				(
				𝑔
				)
				=
				𝑢
				𝑔
				𝑢
			

			
				−
				1
			

			
				[
				]
				=
				𝐴
				𝑑
				(
				e
				x
				p
				𝜁
				)
				(
				𝑔
				)
				=
				e
				x
				p
				(
				𝑎
				𝑑
				𝜁
				(
				𝑔
				)
				)
				=
				𝑔
				+
				𝜁
				,
				𝑔
				+
				𝑜
				(
				𝜁
				)
			

		
	

						and 
	
		
			
				𝑔
				+
				[
				𝜁
				,
				𝑔
				]
				+
				𝑜
				(
				𝜁
				)
				∈
				𝐻
			

			
				𝑢
				
				
			

		
	
, where 
	
		
			

				𝐻
			

			
				𝑢
				
				
			

			
				=
				𝑢
				𝐻
				𝑢
			

			
				−
				1
			

		
	
.Let 
	
		
			

				∏
			

			
				𝑢
				
				
			

			
				∶
				𝔊
				→
				𝑇
			

			

				𝑒
			

			

				𝑄
			

		
	
 be the projection on 
	
		
			

				𝑇
			

			

				𝑒
			

			

				𝑄
			

		
	
 parallel to 
	
		
			

				𝔥
			

			
				𝑢
				
				
			

		
	
 and 
	
		
			
				e
				x
				p
				𝔥
			

			
				𝑢
				
				
			

			
				=
				𝐻
			

			
				𝑢
				
				
			

		
	
.By fixing 
	
		
			
				𝜉
				,
				𝜂
			

		
	
 from 
	
		
			

				𝔊
			

		
	
, we find that
							
	
 		
 			
				(
				5
				.
				3
				)
			
 			
				(
				5
				.
				4
				)
			
 		
	

	
		
			
				[
				]
				=
				
				[
				]
				𝜉
				,
				𝜂
				𝜉
				,
				𝜂
				+
				ℎ
			

			

				1
			

			
				,
				[
				]
				=
				
				𝜉
				,
				𝜂
			

			
				𝑢
				
				
			

			
				[
				]
				𝜉
				,
				𝜂
				+
				ℎ
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			

				ℎ
			

			

				1
			

			
				∈
				𝔥
			

		
	
 and 
	
		
			

				ℎ
			

			

				2
			

			
				∈
				𝔥
			

			
				𝑢
				
				
			

		
	
. From (5.2) we obtain that 
	
		
			

				ℎ
			

			

				2
			

		
	
 has the form 
	
		
			

				ℎ
			

			

				2
			

			
				=
				ℎ
			

			

				1
			

			
				+
				
				ℎ
				(
				𝜁
				)
				+
				[
				𝜁
				,
				ℎ
			

			

				1
			

			
				]
				+
				𝑜
				(
				𝜁
				)
			

		
	
, where 
	
		
			
				
				ℎ
				(
				𝜁
				)
				∈
				𝔥
			

			
				𝑢
				
				
			

		
	
. From (5.3) and (5.4), it follows that
							
	
 		
 			
				(
				5
				.
				5
				)
			
 		
	

	
		
			

				
			

			
				𝑢
				
				
			

			
				[
				]
				=
				[
				]
				𝜉
				,
				𝜂
				𝜉
				,
				𝜂
				−
				ℎ
			

			

				2
			

			
				=
				
				[
				]
				−
				
				
				𝜉
				,
				𝜂
				ℎ
				(
				𝜁
				)
				−
				𝜁
				,
				ℎ
			

			

				1
			

			
				
				
				[
				]
				−
				
				
				+
				𝑜
				(
				𝜁
				)
				=
				𝜉
				,
				𝜂
				𝜁
				,
				ℎ
			

			

				1
			

			
				
				+
				𝑜
				(
				𝜁
				)
				.
			

		
	
But from (5.3), we have 
	
		
			

				ℎ
			

			

				1
			

			
				∏
				=
				[
				𝜉
				,
				𝜂
				]
				−
				[
				𝜉
				,
				𝜂
				]
			

		
	
. It follows that
							
	
 		
 			
				(
				5
				.
				6
				)
			
 		
	

	
		
			

				
			

			
				𝑢
				
				
			

			
				[
				]
				=
				
				[
				]
				−
				
				[
				[
				+
				
				
				
				[
				]
				
				=
				
				[
				]
				+
				
				]
				]
				−
				
				
				
				[
				]
				
				𝜉
				,
				𝜂
				𝜉
				,
				𝜂
				𝜁
				,
				𝜉
				,
				𝜂
				]
				]
				𝜁
				,
				𝜉
				,
				𝜂
				+
				𝑜
				(
				𝜁
				)
				𝜉
				,
				𝜂
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
				𝜉
				,
				𝜂
				,
				𝜁
				+
				𝑜
				(
				𝜁
				)
				.
			

		
	
Denote by 
	
		
			

				𝑎
			

			
				𝑢
				
				
			

			
				∏
				(
				𝜉
				,
				𝜂
				)
				=
				−
				(
				1
				/
				2
				)
			

			
				𝑢
				
				
			

			
				[
				𝜉
				,
				𝜂
				]
			

		
	
. Then 
							
	
 		
 			
				(
				5
				.
				7
				)
			
 		
	

	
		
			

				𝑎
			

			
				𝑢
				
				
			

			
				1
				(
				𝜉
				,
				𝜂
				)
				=
				𝑎
				(
				𝜉
				,
				𝜂
				)
				−
			

			
				
			
			
				2
				
				+
				1
				[
				[
				𝜉
				,
				𝜂
				]
				]
			

			
				
			
			
				2
				
				
				
				[
				]
				
				.
				𝜉
				,
				𝜂
				,
				𝜁
			

		
	
Finally we have
							
	
 		
 			
				(
				5
				.
				8
				)
			
 		
	

	
		
			

				2
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝜉
			

			

				𝑗
			

			

				𝜂
			

			

				𝑘
			

			

				𝜁
			

			

				𝑙
			

			
				=
				𝑑
			

			
				
			
			
				
				𝑎
				𝑑
				𝑡
			

			
				
				
				e
				x
				p
				𝑡
				𝜁
			

			
				
				|
				|
				|
				(
				𝜉
				,
				𝜂
				)
			

			
				𝑡
				=
				0
			

			
				1
				=
				−
			

			
				
			
			
				2
				
				+
				1
				[
				[
				𝜉
				,
				𝜂
				]
				]
			

			
				
			
			
				2
				
				
				
				[
				]
				
				.
				𝜉
				,
				𝜂
				,
				𝜁
			

		
	
We obtain a result in conformity with Proposition 3.1 and the relation (4.2) indeed, from the relation (4.2) 
							
	
 		
 			
				(
				5
				.
				9
				)
			
 		
	

	
		
			
				1
				𝑏
				(
				𝜉
				,
				𝜂
				,
				𝜁
				)
				=
				−
			

			
				
			
			
				2
				]
				]
				+
				1
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				2
				
				
				
				[
				]
				
				
				[
				]
				.
				𝜉
				,
				𝜂
				,
				𝜁
				−
				2
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
			

		
	

						From which we find that 
							
	
 		
 			
				(
				5
				.
				1
				0
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				[
				]
				1
				𝑏
				(
				𝜉
				,
				𝜂
				,
				𝜁
				)
				−
				𝑏
				(
				𝜂
				,
				𝜉
				,
				𝜁
				)
				=
				−
			

			
				
			
			
				2
				
				]
				]
				+
				1
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				2
				
				
				
				[
				]
				
				,
				𝜉
				,
				𝜂
				,
				𝜁
			

		
	

						so that 
	
		
			

				2
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

			
				=
				𝑏
			

			
				𝑖
				[
				𝑗
				𝑘
				]
				𝑙
			

		
	
.
(II) Computation of 
	
		
			

				1
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

		
	
Let us introduce the map
							
	
 		
 			
				(
				5
				.
				1
				1
				)
			
 		
	

	
		
			

				Ψ
			

			

				𝑢
			

			
				∶
				𝑄
				⟶
				𝑄
			

			
				
				𝑢
			

			
				,
				𝑥
				⟼
				(
				𝑢
				×
				𝑥
				)
				𝑢
			

			
				−
				1
			

			

				.
			

		
	
Then 
	
		
			
				𝑑
				Ψ
			

			

				𝑢
			

			

				|
			

			

				𝑒
			

			
				∶
				𝑇
			

			

				𝑒
			

			
				𝑄
				→
				𝑇
			

			

				𝑒
			

			

				𝑄
			

			
				
				𝑢
			

		
	
. Then the following proposition holds.
Proposition 5.1.  The map defined from the tangent space 
	
		
			

				𝑇
			

			

				𝑒
			

			

				𝑄
			

		
	
 to tangent space 
	
		
			

				𝑇
			

			

				𝑒
			

			

				𝑄
			

			
				
				𝑢
			

		
	
 is defined as follows:
							
	
 		
 			
				(
				5
				.
				1
				2
				)
			
 		
	

	
		
			
				𝑑
				Ψ
			

			

				𝑢
			

			
				|
				|
			

			

				𝑒
			

			
				∶
				𝑇
			

			

				𝑒
			

			
				𝑄
				⟶
				𝑇
			

			

				𝑒
			

			

				𝑄
			

			
				
				𝑢
			

			
				,
				1
				𝜉
				⟼
				𝜉
				+
			

			
				
			
			
				2
				[
				]
				+
				1
				𝑢
				,
				𝜉
			

			
				
			
			
				2
				
				[
				]
				𝑢
				,
				𝜉
				+
				2
				𝑅
				(
				𝑢
				,
				𝜉
				)
				+
				𝑜
				(
				𝑢
				)
				.
			

		
	

Proof. For the proof of this proposition, using the notion from Section 2 and the relation (2.8), we have 
	
		
			
				𝑢
				×
				𝜉
				=
				(
				𝑢
				⋅
				𝜉
				)
				⋅
				ℎ
			

		
	
 but from Proposition 1.4, we have
							
	
 		
 			
				(
				5
				.
				1
				3
				)
			
 		
	

	
		
			
				1
				ℎ
				(
				𝑢
				,
				𝜉
				)
				=
				−
			

			
				
			
			
				2
				[
				]
				+
				1
				𝑢
				,
				𝜉
			

			
				
			
			
				2
				[
				]
				𝑢
				,
				𝜉
				+
				2
				𝑅
				(
				𝑢
				,
				𝜉
				)
				+
				𝑜
				(
				𝑢
				)
				.
			

		
	
Thus,
							
	
 		
 			
				(
				5
				.
				1
				4
				)
			
 		
	

	
		
			
				1
				𝑢
				×
				𝜉
				=
				(
				𝑢
				⋅
				𝜉
				)
				⋅
				ℎ
				=
				𝑢
				+
				𝜉
				+
			

			
				
			
			
				2
				[
				]
				+
				1
				𝑢
				,
				𝜉
			

			
				
			
			
				2
				
				[
				]
				𝑢
				,
				𝜉
				+
				2
				𝑅
				(
				𝑢
				,
				𝜉
				)
				+
				𝑜
				(
				𝑢
				)
				,
				(
				𝑢
				×
				𝜉
				)
				×
				𝑢
			

			
				−
				1
			

			
				1
				=
				𝑢
				+
				𝜉
				+
			

			
				
			
			
				2
				
				[
				]
				1
				𝑢
				,
				𝜉
				+
				2
				𝑅
				(
				𝑢
				,
				𝜉
				)
				−
				𝑢
				−
			

			
				
			
			
				2
				[
				]
				1
				𝜉
				,
				𝑢
				+
				𝑜
				(
				𝑢
				)
				=
				𝜉
				+
			

			
				
			
			
				2
				
				[
				]
				+
				1
				𝑢
				,
				𝜉
			

			
				
			
			
				2
				[
				]
				𝑢
				,
				𝜉
				+
				2
				𝑅
				(
				𝑢
				,
				𝜉
				)
				+
				𝑜
				(
				𝑢
				)
				.
			

		
	
Let 
	
		
			
				
				∏
			

			

				𝑢
			

			
				∶
				𝔊
				→
				𝑇
			

			

				𝑒
			

			

				𝑄
			

			

				
			

		
	
 be the projection on 
	
		
			

				𝑇
			

			

				𝑒
			

			

				𝑄
			

			

				
			

		
	
 parallel to 
	
		
			
				
				𝔥
			

			
				𝑢
				
			

		
	
 where 
	
		
			
				
				𝔥
				e
				x
				p
			

			
				𝑢
				
			

			
				=
				𝑢
				𝐻
				𝑢
			

			
				−
				1
			

		
	
.Then we obtain the following:
	
 		
 			
				(
				5
				.
				1
				5
				)
			
 		
	

	
		
			
				𝜔
				+
				ℎ
			

			

				1
			

			
				=
				𝜔
			

			

				
			

			
				+
				ℎ
			

			
				
				1
			

			
				+
				
				𝑢
				,
				ℎ
			

			
				
				1
			

			

				
			

		
	

						with 
	
		
			
				𝜔
				∈
				𝑇
			

			

				𝑒
			

			

				𝑄
			

		
	
, 
	
		
			

				ℎ
			

			

				1
			

			
				∈
				𝔥
			

		
	
, 
	
		
			

				𝜔
			

			

				
			

			
				∈
				𝑇
			

			

				𝑒
			

			

				𝑄
			

			

				
			

		
	
, 
	
		
			

				ℎ
			

			
				
				1
			

			
				∈
				𝔥
			

		
	
. For the computation of 
	
		
			

				𝜔
			

			

				
			

			
				=
				𝜔
			

			

				
			

			
				(
				𝑢
				,
				𝜔
				)
			

		
	
. From Proposition 5.1, we have 
							
	
 		
 			
				(
				5
				.
				1
				6
				)
			
 		
	

	
		
			
				𝜔
				+
				ℎ
			

			

				1
			

			
				1
				=
				
				𝜔
				+
			

			
				
			
			
				2
				
				
				
				+
				1
				𝑢
				,
				
				𝜔
			

			
				
			
			
				2
				
				
				
				
				𝑢
				,
				
				𝜔
				+
				2
				𝑅
				𝑢
				,
				
				𝜔
				+
				ℎ
			

			
				
				1
			

			
				+
				
				𝑢
				,
				ℎ
			

			
				
				1
			

			
				
				+
				𝑜
				(
				𝑢
				)
				,
			

		
	

						where 
	
		
			
				
				𝜔
				∈
				𝑇
			

			

				𝑒
			

			

				𝑄
			

		
	
, so that 
							
	
 		
 			
				(
				5
				.
				1
				7
				)
			
 		
	

	
		
			
				1
				
				𝜔
				+
			

			
				
			
			
				2
				
				
				
				+
				1
				𝑢
				,
				
				𝜔
			

			
				
			
			
				2
				
				
				
				
				𝑢
				,
				
				𝜔
				+
				2
				𝑅
				𝑢
				,
				
				𝜔
				=
				𝜔
			

			

				
			

			

				.
			

		
	

						It follows that
							
	
 		
 			
				(
				5
				.
				1
				8
				)
			
 		
	

	
		
			
				
				
				
				+
				
				𝜔
				=
				
				𝜔
				+
				𝑢
				,
				
				𝜔
				𝑢
				,
				ℎ
			

			
				
				1
			

			
				
				,
				ℎ
			

			

				1
			

			
				=
				ℎ
			

			
				
				1
			

			

				+
			

			
				t
				e
				r
				m
				s
				w
				i
				t
				h
			

			
				𝑢
				,
			

		
	

						from which
							
	
 		
 			
				(
				5
				.
				1
				9
				)
			
 		
	

	
		
			
				
				[
				]
				−
				
				
				𝜔
				=
				𝜔
				−
				𝑢
				,
				𝜔
				𝑢
				,
				ℎ
			

			
				
				1
			

			
				
				,
				ℎ
			

			
				
				1
			

			
				=
				ℎ
			

			

				1
			

			

				+
			

			
				t
				e
				r
				m
				w
				i
				t
				h
			

			
				𝑢
				.
			

		
	

						Then substituting in 
	
		
			

				𝜔
			

			

				
			

		
	
 the expression from 
	
		
			
				
				𝜔
			

		
	
, we obtain that
							
	
 		
 			
				(
				5
				.
				2
				0
				)
			
 		
	

	
		
			

				𝜔
			

			

				
			

			
				
				[
				]
				−
				
				
				=
				𝜔
				−
				𝑢
				,
				𝜔
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				+
				1
			

			
				
			
			
				2
				
				
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				+
				1
			

			
				
			
			
				2
				[
				]
				1
				𝑢
				,
				𝜔
				+
				2
				𝑅
				(
				𝑢
				,
				𝜔
				)
				+
				𝑜
				(
				𝑢
				)
				=
				𝜔
				+
			

			
				
			
			
				2
				[
				]
				−
				1
				𝑢
				,
				𝜔
			

			
				
			
			
				2
				
				[
				]
				−
				
				
				𝑢
				,
				𝜔
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				+
				2
				𝑅
				(
				𝑢
				,
				𝜔
				)
				+
				𝑜
				(
				𝑢
				)
				,
			

		
	

						from which we find that 
							
	
 		
 			
				(
				5
				.
				2
				1
				)
			
 		
	

	
		
			
				
				∏
			

			

				𝑢
			

			
				
				𝜔
				+
				ℎ
			

			

				1
			

			
				
				=
				𝜔
			

			

				
			

			
				1
				=
				𝜔
				+
			

			
				
			
			
				2
				[
				]
				−
				1
				𝑢
				,
				𝜔
			

			
				
			
			
				2
				[
				]
				
				
				𝑢
				,
				𝜔
				+
				2
				𝑅
				(
				𝑢
				,
				𝜔
				)
				−
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				.
			

		
	
Now let us compute that
							
	
 		
 			
				(
				5
				.
				2
				2
				)
			
 		
	

	
		
			
				
				𝑎
			

			

				𝑢
			

			
				1
				(
				𝜉
				,
				𝜂
				)
				=
				−
			

			
				
			
			
				2
				(
				𝑑
				Ψ
				)
			

			
				−
				1
			

			
				
				∏
			

			

				𝑢
			

			
				
				𝑑
				Ψ
			

			

				𝜉
			

			
				,
				𝑑
				Ψ
			

			

				𝜂
			

			
				
				,
			

		
	

						where 
	
		
			
				𝜉
				,
				𝜂
				∈
				𝑇
			

			

				𝑒
			

			

				𝑄
			

		
	
,          
							
	
 		
 			
				(
				5
				.
				2
				3
				)
			
 		
	

	
		
			
				(
				𝑑
				Ψ
				)
			

			
				−
				1
			

			
				
				∏
			

			

				𝑢
			

			
				
				𝑑
				Ψ
			

			

				𝜉
			

			
				,
				𝑑
				Ψ
			

			

				𝜂
			

			
				
				=
				(
				𝑑
				Ψ
				)
			

			
				−
				1
			

			
				
				∏
			

			

				𝑢
			

			
				
				1
				𝜉
				+
			

			
				
			
			
				2
				[
				]
				+
				1
				𝑢
				,
				𝜉
			

			
				
			
			
				2
				
				[
				]
				1
				𝑢
				,
				𝜉
				+
				2
				𝑅
				(
				𝑢
				,
				𝜉
				)
				,
				𝜂
				+
			

			
				
			
			
				2
				[
				]
				+
				1
				𝑢
				,
				𝜂
			

			
				
			
			
				2
				
				[
				]
				
				𝑢
				,
				𝜂
				+
				2
				𝑅
				(
				𝑢
				,
				𝜂
				)
				=
				(
				𝑑
				Ψ
				)
			

			
				−
				1
			

			
				
				∏
			

			

				𝑢
			

			
				
				[
				]
				+
				1
				𝜉
				,
				𝜂
			

			
				
			
			
				2
				[
				[
				+
				1
				𝜉
				,
				𝑢
				,
				𝜂
				]
				]
			

			
				
			
			
				2
				
				
				[
				]
				
				[
				]
				−
				1
				𝜉
				,
				𝑢
				,
				𝜂
				+
				2
				𝜉
				,
				𝑅
				(
				𝑢
				,
				𝜂
				)
			

			
				
			
			
				2
				[
				[
				−
				1
				𝜂
				,
				𝑢
				,
				𝜉
				]
				]
			

			
				
			
			
				2
				
				
				[
				]
				
				[
				]
				
				𝜂
				,
				𝑢
				,
				𝜉
				−
				2
				𝜂
				,
				𝑅
				(
				𝑢
				,
				𝜉
				)
				=
				(
				𝑑
				Ψ
				)
			

			
				−
				1
			

			
				
				
				[
				]
				+
				1
				𝜉
				,
				𝜂
			

			
				
			
			
				2
				
				[
				[
				+
				1
				𝜉
				,
				𝑢
				,
				𝜂
				]
				]
			

			
				
			
			
				2
				
				
				
				[
				]
				
				
				[
				]
				−
				1
				𝜉
				,
				𝑢
				,
				𝜂
				+
				2
				𝜉
				,
				𝑅
				(
				𝑢
				,
				𝜂
				)
			

			
				
			
			
				2
				
				[
				[
				−
				1
				𝜂
				,
				𝑢
				,
				𝜉
				]
				]
			

			
				
			
			
				2
				
				
				
				[
				]
				
				
				[
				]
				+
				1
				𝜂
				,
				𝑢
				,
				𝜉
				−
				2
				𝜂
				,
				𝑅
				(
				𝑢
				,
				𝜉
				)
			

			
				
			
			
				2
				
				
				[
				]
				
				−
				1
				𝑢
				,
				𝜉
				,
				𝜂
			

			
				
			
			
				2
				
				
				[
				]
				
				
				
				[
				]
				
				−
				
				[
				[
				+
				
				
				
				[
				]
				=
				
				[
				]
				+
				1
				𝑢
				,
				𝜉
				,
				𝜂
				+
				2
				𝑅
				𝑢
				,
				𝜉
				,
				𝜂
				𝑢
				,
				𝜉
				,
				𝜂
				]
				]
				𝑢
				,
				𝜉
				,
				𝜂
				
				
				𝜉
				,
				𝜂
			

			
				
			
			
				2
				[
				[
				+
				1
				𝜉
				,
				𝑢
				,
				𝜂
				]
				]
			

			
				
			
			
				2
				
				
				
				[
				]
				
				
				[
				]
				−
				1
				𝜉
				,
				𝑢
				,
				𝜂
				+
				2
				𝜉
				,
				𝑅
				(
				𝑢
				,
				𝜂
				)
			

			
				
			
			
				2
				
				[
				[
				−
				1
				𝜂
				,
				𝑢
				,
				𝜉
				]
				]
			

			
				
			
			
				2
				
				
				
				[
				]
				
				
				[
				]
				−
				
				[
				[
				=
				
				[
				]
				+
				1
				𝜂
				,
				𝑢
				,
				𝜉
				−
				2
				𝜂
				,
				𝑅
				(
				𝑢
				,
				𝜉
				)
				𝑢
				,
				𝜉
				,
				𝜂
				]
				]
				𝜉
				,
				𝜂
			

			
				
			
			
				2
				[
				[
				−
				1
				𝜉
				,
				𝜂
				,
				𝑢
				]
				]
			

			
				
			
			
				2
				
				
				
				[
				]
				
				
				[
				]
				−
				1
				𝜉
				,
				𝜂
				,
				𝑢
				+
				2
				𝜉
				,
				𝑅
				(
				𝑢
				,
				𝜂
				)
			

			
				
			
			
				2
				
				[
				[
				+
				1
				𝜂
				,
				𝜉
				,
				𝑢
				]
				]
			

			
				
			
			
				2
				
				
				
				[
				]
				
				
				[
				]
				,
				𝜂
				,
				𝜉
				,
				𝑢
				−
				2
				𝜂
				,
				𝑅
				(
				𝑢
				,
				𝜉
				)
			

		
	

						where
							
	
 		
 			
				(
				5
				.
				2
				4
				)
			
 		
	

	
		
			
				
				𝑎
			

			

				𝑢
			

			
				1
				(
				𝜉
				,
				𝜂
				)
				=
				−
			

			
				
			
			
				2
				
				[
				]
				−
				1
				𝜉
				,
				𝜂
			

			
				
			
			
				4
				
				]
				]
				+
				1
				[
				[
				𝜉
				,
				𝑢
				,
				𝜂
			

			
				
			
			
				4
				
				
				
				[
				]
				
				−
				
				[
				]
				+
				1
				𝜉
				,
				𝑢
				,
				𝜂
				𝑅
				(
				𝑢
				,
				𝜉
				)
				,
				𝜂
			

			
				
			
			
				4
				
				]
				]
				−
				1
				[
				[
				𝜂
				,
				𝑢
				,
				𝜉
			

			
				
			
			
				4
				
				
				
				[
				]
				
				+
				
				[
				]
				.
				𝜂
				,
				𝑢
				,
				𝜉
				𝑅
				(
				𝑢
				,
				𝜂
				)
				,
				𝜉
			

		
	
From this last equation, it follows that
							
	
 		
 			
				(
				5
				.
				2
				5
				)
			
 		
	

	
		
			

				1
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝜉
			

			

				𝑗
			

			

				𝜂
			

			

				𝑘
			

			

				𝜁
			

			

				𝑙
			

			
				=
				𝑑
			

			
				
			
			
				𝑑
				𝑡
				
				𝑎
			

			
				e
				x
				p
				𝑡
				𝜁
			

			
				|
				|
				|
				(
				𝜉
				,
				𝜂
				)
			

			
				𝑡
				=
				0
			

			
				1
				=
				−
			

			
				
			
			
				4
				
				]
				]
				+
				1
				[
				[
				𝜉
				,
				𝜁
				,
				𝜂
			

			
				
			
			
				4
				
				
				
				[
				]
				
				−
				
				[
				]
				+
				1
				𝜉
				,
				𝜁
				,
				𝜂
				𝑅
				(
				𝜉
				,
				𝜁
				)
				,
				𝜂
			

			
				
			
			
				4
				
				]
				]
				−
				1
				[
				[
				𝜂
				,
				𝜁
				,
				𝜉
			

			
				
			
			
				4
				
				
				
				[
				]
				
				+
				
				[
				]
				.
				𝜂
				,
				𝜁
				,
				𝜉
				𝑅
				(
				𝜂
				,
				𝜁
				)
				,
				𝜉
			

		
	
We obtain a result in conformity with Proposition 3.1 and the relation (4.2) indeed from the formulae (4.2), it follows that
							
	
 		
 			
				(
				5
				.
				2
				6
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				[
				]
				=
				1
				𝑏
				(
				𝜉
				,
				𝜁
				,
				𝜂
				)
				−
				𝑏
				(
				𝜂
				,
				𝜁
				,
				𝜉
				)
			

			
				
			
			
				2
				
				−
				1
			

			
				
			
			
				2
				
				]
				]
				+
				1
				[
				[
				𝜉
				,
				𝜁
				,
				𝜂
			

			
				
			
			
				2
				
				
				
				[
				]
				
				
				[
				]
				+
				1
				𝜉
				,
				𝜁
				,
				𝜂
				−
				2
				𝑅
				(
				𝜉
				,
				𝜁
				)
				,
				𝜂
			

			
				
			
			
				2
				
				]
				]
				−
				1
				[
				[
				𝜂
				,
				𝜁
				,
				𝜉
			

			
				
			
			
				2
				
				
				
				[
				]
				
				
				[
				]
				
				1
				𝜂
				,
				𝜁
				,
				𝜉
				+
				2
				𝑅
				(
				𝜂
				,
				𝜁
				)
				,
				𝜉
				=
				−
			

			
				
			
			
				4
				
				]
				]
				+
				1
				[
				[
				𝜉
				,
				𝜁
				,
				𝜂
			

			
				
			
			
				4
				
				
				
				[
				]
				
				−
				
				[
				]
				+
				1
				𝜉
				,
				𝜁
				,
				𝜂
				𝑅
				(
				𝜉
				,
				𝜁
				)
				,
				𝜂
			

			
				
			
			
				4
				
				]
				]
				−
				1
				[
				[
				𝜂
				,
				𝜁
				,
				𝜉
			

			
				
			
			
				4
				
				
				
				[
				]
				
				+
				
				[
				𝑅
				]
				.
				𝜂
				,
				𝜁
				,
				𝜉
				(
				𝜂
				,
				𝜁
				)
				,
				𝜉
			

		
	
Therefore, 
							
	
 		
 			
				(
				5
				.
				2
				7
				)
			
 		
	

	
		
			

				1
			

			

				∇
			

			

				𝑙
			

			

				𝑎
			

			
				𝑖
				𝑗
				𝑘
			

			
				=
				𝑏
			

			
				𝑖
				|
				|
				𝑗
				|
				|
				[
				𝑗
				𝑘
				]
			

			

				.
			

		
	

6. Computation of the Tensor 
	
		
			

				𝑑
			

			
				𝑖
				𝑗
				𝑘
				𝑙
				𝑚
			

			

				=
			

			

				2
			

			

				∇
			

			

				𝑚
			

			

				𝑏
			

			
				𝑖
				𝑗
				𝑘
				𝑙
			

		
	

Denote that 
	
		
			
				𝑢
				⋅
				𝑅
				(
				𝜂
				,
				𝜂
				)
				⋅
				𝑢
			

			
				−
				1
			

		
	
 by 
	
		
			

				𝑅
			

			
				𝑢
				
				
			

			
				(
				𝜂
				,
				𝜂
				)
			

		
	
. For the computation of 
	
		
			

				𝑑
			

			
				𝑖
				𝑗
				𝑘
				𝑙
				𝑚
			

		
	
 let us firstly compute 
	
		
			

				𝑅
			

			
				𝑢
				
				
			

			
				(
				𝜂
				,
				𝜂
				)
			

		
	
.
The following proposition holds.
Proposition 6.1.  We have the following:
							
	
 		
 			
				(
				6
				.
				1
				)
			
 		
	

	
		
			

				𝑅
			

			
				𝑢
				
				
			

			
				
				[
				]
				
				(
				𝜂
				,
				𝜂
				)
				=
				𝑅
				(
				𝜂
				,
				𝜂
				)
				+
				𝑢
				,
				𝑅
				(
				𝜂
				,
				𝜂
				)
				+
				0
				𝑢
				,
				𝜂
			

			

				2
			

			
				
				.
			

		
	

The proof of this proposition is from Section 1. It is clear that 
	
		
			
				𝜉
				+
				𝜙
				(
				𝜉
				)
				∈
				𝑄
			

		
	
, and from Section 4  
	
		
			

				ℎ
			

			
				𝑢
				
				
			

			
				=
				ℎ
			

			

				1
			

			
				+
				[
				𝑢
				,
				ℎ
			

			

				1
			

			
				]
				+
				0
				(
				𝑢
				)
			

		
	
, where 
	
		
			

				ℎ
			

			

				1
			

			
				∈
				ℎ
			

		
	
. Furthermore 
	
		
			
				𝜂
				+
				𝑅
			

			
				𝑢
				
				
			

			
				(
				𝜂
				,
				𝜂
				)
				∈
				𝑄
			

		
	
 but 
	
		
			

				𝑅
			

			
				𝑢
				
				
			

			
				(
				𝜂
				,
				𝜂
				)
				∈
				ℎ
			

			
				𝑢
				
				
			

		
	
 that is why 
	
		
			

				𝑅
			

			
				𝑢
				
				
			

			
				(
				𝜂
				,
				𝜂
				)
			

		
	
 can be represented as 
	
		
			

				𝑅
			

			
				𝑢
				
				
			

			
				(
				𝜂
				,
				𝜂
				)
				=
				ℎ
			

			

				1
			

			
				+
				[
				𝑢
				,
				ℎ
			

			

				1
			

			
				]
				+
				0
				(
				𝑢
				)
			

		
	
, where 
	
		
			

				ℎ
			

			

				1
			

			
				=
				𝑅
			

			
				𝑢
				
				
			

			
				(
				𝜂
				,
				𝜂
				)
				−
				[
				𝑢
				,
				𝑅
			

			
				𝑢
				
				
			

			
				(
				𝜂
				,
				𝜂
				)
				]
				+
				0
				(
				𝑢
				)
			

		
	
. Let us write 
	
		
			
				𝜂
				+
				𝑅
			

			
				𝑢
				
				
			

			
				(
				𝜂
				,
				𝜂
				)
			

		
	
 as
						
	
 		
 			
				(
				6
				.
				2
				)
			
 		
	

	
		
			
				𝜂
				+
				𝑅
			

			
				𝑢
				
				
			

			
				
				
				(
				𝜂
				,
				𝜂
				)
				=
				
				
				𝜂
				+
				𝑢
				,
				𝑅
			

			
				𝑢
				
				
			

			
				
				
				+
				
				𝑅
				(
				𝜂
				,
				𝜂
				)
			

			
				𝑢
				
				
			

			
				
				(
				𝜂
				,
				𝜂
				)
				−
				𝑢
				,
				𝑅
			

			
				𝑢
				
				
			

			
				+
				
				
				(
				𝜂
				,
				𝜂
				)
				
				
				𝑢
				,
				𝑅
			

			
				𝑢
				
				
			

			
				
				−
				
				
				(
				𝜂
				,
				𝜂
				)
				𝑢
				,
				𝑅
			

			
				𝑢
				
				
			

			
				
				,
				(
				𝜂
				,
				𝜂
				)
				
				
			

		
	

 put 
	
		
			
				∏
				𝜂
				+
				[
				𝑢
				,
				𝑅
			

			
				𝑢
				
				
			

			
				(
				𝜂
				,
				𝜂
				)
				]
				=
				𝜉
			

		
	
 then
						
	
 		
 			
				(
				6
				.
				3
				)
			
 		
	

	
		
			
				𝜙
				(
				𝜉
				)
				=
				𝑅
			

			
				𝑢
				
				
			

			
				
				(
				𝜂
				,
				𝜂
				)
				−
				𝑢
				,
				𝑅
			

			
				𝑢
				
				
			

			
				
				+
				
				(
				𝜂
				,
				𝜂
				)
				𝑢
				,
				𝑅
			

			
				𝑢
				
				
			

			
				
				−
				
				
				(
				𝜂
				,
				𝜂
				)
				𝑢
				,
				𝑅
			

			
				𝑢
				
				
			

			
				
				(
				𝜂
				,
				𝜂
				)
				=
				𝑅
			

			
				𝑢
				
				
			

			
				
				
				(
				𝜂
				,
				𝜂
				)
				−
				𝑢
				,
				𝑅
			

			
				𝑢
				
				
			

			
				
				(
				𝜂
				,
				𝜂
				)
				+
				𝑜
				(
				𝑢
				)
				,
			

		
	

					from the relation (2.4) we have 
	
		
			
				𝜙
				(
				𝜉
				)
				=
				𝑅
				(
				𝜉
				,
				𝜉
				)
				+
				𝑆
				(
				𝜉
				,
				𝜉
				,
				𝜉
				)
				+
				0
				(
				3
				)
			

		
	
.
Therefore by comparing the term on the right hand sides of the last two relations, we obtain that 
	
 		
 			
				(
				6
				.
				4
				)
			
 		
	

	
		
			

				𝑅
			

			
				𝑢
				
				
			

			
				
				[
				]
				
				(
				𝜂
				,
				𝜂
				)
				=
				𝑅
				(
				𝜂
				,
				𝜂
				)
				+
				𝑢
				,
				𝑅
				(
				𝜂
				,
				𝜂
				)
				+
				0
				𝑢
				,
				𝜂
			

			

				2
			

			
				
				.
			

		
	

Let 
	
		
			

				∏
			

			
				𝑢
				
				
			

			
				∶
				𝔊
				→
				𝑉
				=
				𝑇
			

			

				𝑒
			

			

				𝑄
			

		
	
 be the projection of 
	
		
			

				𝔊
			

		
	
 to 
	
		
			

				𝑉
			

		
	
 parallel to 
	
		
			

				𝔥
			

			
				𝑢
				
				
			

		
	
. Then we obtain the following: 
	
 		
 			
				(
				6
				.
				5
				)
			
 		
	

	
		
			
				
				̃
				𝜉
				+
				ℎ
				=
				𝜉
				+
				ℎ
			

			

				1
			

			
				+
				
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				,
			

		
	

					where 
	
		
			
				̃
				𝜉
				,
				𝜉
				∈
				𝑉
			

		
	
 and 
	
		
			
				
				ℎ
				,
				ℎ
			

			

				1
			

			
				∈
				𝔥
			

		
	
 for the search of 
	
		
			
				̃
				̃
				𝜉
				=
				𝜉
				(
				𝜉
				,
				𝑢
				)
			

		
	
, we have
	
 		
 			
				(
				6
				.
				6
				)
			
 		
	

	
		
			
				
				̃
				𝜉
				+
				ℎ
				=
				𝜉
				+
				ℎ
			

			

				1
			

			
				+
				
				
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				+
				
				
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				−
				
				
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				
				,
			

		
	

					where
						
	
 		
 			
				(
				6
				.
				7
				)
			
 		
	

	
		
			
				̃
				
				
				𝜉
				=
				𝜉
				+
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				,
				
				ℎ
				=
				ℎ
			

			

				1
			

			
				+
				
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				−
				
				
				𝑢
				,
				ℎ
			

			

				1
			

			
				
				=
				ℎ
			

			

				1
			

			

				+
			

			
				t
				e
				r
				m
				s
				w
				i
				t
				h
			

			
				𝑢
				.
			

		
	

					From these two equalities, we obtain that
	
 		
 			
				(
				6
				.
				8
				)
			
 		
	

	
		
			
				̃
				
				
				
				ℎ
				
				𝜉
				=
				𝜉
				−
				𝑢
				,
				+
				0
				(
				𝑢
				)
				.
			

		
	

					Hence 
	
 		
 			
				(
				6
				.
				9
				)
			
 		
	

	
		
			

				
			

			
				𝑢
				
				
			

			
				
				
				ℎ
				
				
				
				
				ℎ
				
				.
				𝜉
				+
				=
				𝜉
				−
				𝑢
				,
			

		
	

We pass now to the computation of 
	
		
			

				𝑑
			

			
				𝑖
				𝑗
				𝑘
				𝑙
				𝑚
			

		
	
.
From (4.2) it follows that
	
 		
 			
				(
				6
				.
				1
				0
				)
			
 		
	

	
		
			
				1
				𝑏
				(
				𝜉
				,
				𝜂
				,
				𝜁
				)
				=
				−
			

			
				
			
			
				2
				
				]
				]
				+
				1
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				2
				
				
				
				[
				]
				
				
				[
				]
				,
				𝜉
				,
				𝜂
				,
				𝜁
				−
				2
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
			

		
	

					that is why 
	
 		
 			
				(
				6
				.
				1
				1
				)
			
 		
	

	
		
			

				𝑏
			

			
				𝑢
				
				
			

			
				1
				(
				𝜉
				,
				𝜂
				,
				𝜁
				)
				=
				−
			

			
				
			
			
				2
				
			

			
				𝑢
				
				
			

			
				]
				]
				+
				1
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				2
				
			

			
				𝑢
				
				
			

			
				
				
			

			

				𝑢
			

			
				[
				]
				
				
				𝜉
				,
				𝜂
				,
				𝜁
				−
				2
			

			
				𝑢
				
				
			

			
				
				𝑅
			

			
				𝑢
				
				
			

			
				
				.
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
			

		
	

From (6.9) it follows that
	
 		
 			
				(
				6
				.
				1
				2
				)
			
 		
	

	
		
			
				−
				1
			

			
				
			
			
				2
				
			

			
				𝑢
				
				
			

			
				]
				]
				1
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
				=
				−
			

			
				
			
			
				2
				
				]
				]
				+
				1
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				2
				
				[
				]
				−
				1
				𝑢
				,
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
				]
				]
			

			
				
			
			
				2
				
				
				
				]
				]
				
				.
				𝑢
				,
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
			

		
	

Furthermore,
						
	
 		
 			
				(
				6
				.
				1
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				
			

			
				𝑢
				
				
			

			
				
				
			

			
				𝑢
				
				
			

			
				[
				]
				
				=
				1
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				2
				
			

			
				𝑢
				
				
			

			
				
				
				[
				]
				
				−
				1
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				2
				
			

			
				𝑢
				
				
			

			
				
				
				[
				[
				
				+
				1
				𝑢
				,
				𝜉
				,
				𝜂
				]
				]
				,
				𝜁
			

			
				
			
			
				2
				
			

			
				𝑢
				
				
			

			
				
				
				
				
				[
				]
				
				
				=
				1
				𝑢
				,
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				2
				
				
				
				[
				]
				
				−
				1
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				2
				
				
				
				
				[
				]
				+
				1
				𝑢
				,
				𝜉
				,
				𝜂
				,
				𝜁
				
				
			

			
				
			
			
				2
				
				
				
				
				
				[
				]
				𝑢
				,
				𝜉
				,
				𝜂
				,
				𝜁
				
				
				+
				𝑜
				(
				𝑢
				)
				.
			

		
	

					Finally from (6.1) and (6.9), it follows that 
						
	
 		
 			
				(
				6
				.
				1
				4
				)
			
 		
	

	
		
			
				
				−
				2
			

			
				𝑢
				
				
			

			
				
				𝑅
			

			
				𝑢
				
				
			

			
				
				
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				=
				−
				2
			

			
				𝑢
				
				
			

			
				
				𝑅
			

			

				𝑢
			

			
				
				
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				−
				2
			

			
				𝑢
				
				
			

			
				
				
				[
				]
				
				
				[
				]
				
				[
				[
				
				
				
				[
				]
				
				
				
				
				[
				]
				
				𝑢
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				=
				−
				2
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				+
				2
				𝑢
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				]
				]
				−
				2
				𝑢
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				−
				2
				𝑢
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				+
				𝑜
				(
				𝑢
				)
			

		
	

					from (6.12), (6.13), and (6.14), it follows that 
						
	
 		
 			
				(
				6
				.
				1
				5
				)
			
 		
	

	
		
			
				𝑑
				(
				𝜉
				,
				𝜂
				,
				𝜁
				,
				𝜏
				)
				=
			

			

				2
			

			

				∇
			

			

				𝑚
			

			

				𝑏
			

			
				𝑖
				𝑗
				𝑘
				𝑙
			

			
				|
				|
				|
				|
			

			
				(
				𝑒
				,
				𝑒
				)
			

			

				𝜉
			

			

				𝑗
			

			

				𝜂
			

			

				𝑘
			

			

				𝜁
			

			

				𝑙
			

			

				𝜏
			

			

				𝑚
			

			
				=
				𝑑
			

			
				
			
			
				
				𝑏
				𝑑
				𝑡
			

			
				
				
				e
				x
				p
				𝑡
				𝜏
			

			
				(
				
				|
				|
				|
				𝜉
				,
				𝜂
				,
				𝜁
				)
			

			
				𝑡
				=
				0
			

			
				=
				1
			

			
				
			
			
				2
				
				[
				]
				−
				1
				𝜏
				,
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
				]
				]
			

			
				
			
			
				2
				
				
				
				]
				]
				
				−
				1
				𝜏
				,
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				2
				
				
				
				
				[
				]
				+
				1
				𝜏
				,
				𝜉
				,
				𝜂
				,
				𝜁
				
				
			

			
				
			
			
				2
				
				
				
				
				
				[
				]
				−
				1
				𝜏
				,
				𝜉
				,
				𝜂
				,
				𝜁
				
				
			

			
				
			
			
				2
				
				
				
				[
				[
				
				+
				1
				𝜏
				,
				𝜉
				,
				𝜂
				]
				]
				,
				𝜁
			

			
				
			
			
				2
				
				
				
				
				
				[
				]
				
				
				
				[
				[
				
				
				
				[
				]
				
				
				
				
				[
				]
				
				.
				𝜏
				,
				𝜉
				,
				𝜂
				,
				𝜁
				+
				2
				𝜏
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				]
				]
				−
				2
				𝜏
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				−
				2
				𝜏
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
			

		
	

					In the theory of 3-Web [17, 37, 39], the following relation is known: 
	
 		
 			
				(
				6
				.
				1
				6
				)
			
 		
	

	
		
			

				𝑑
			

			
				𝑖
				[
				]
				𝑗
				𝑘
				𝑙
				𝑚
			

			
				=
				−
				𝑏
			

			
				𝑖
				𝑗
				𝑘
				𝑝
			

			

				𝑎
			

			
				𝑝
				𝑙
				𝑚
			

			

				.
			

		
	

					Let us verify that:
						
	
 		
 			
				(
				6
				.
				1
				7
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				=
				1
				(
				𝑑
				(
				𝜉
				,
				𝜂
				,
				𝜁
				,
				𝜏
				)
				−
				𝑑
				(
				𝜉
				,
				𝜂
				,
				𝜏
				,
				𝜁
				)
				)
			

			
				
			
			
				4
				
				[
				]
				−
				1
				𝜏
				,
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
				]
				]
			

			
				
			
			
				4
				
				[
				]
				−
				1
				𝜁
				,
				[
				[
				𝜉
				,
				𝜂
				,
				𝜏
				]
				]
			

			
				
			
			
				4
				
				
				
				]
				]
				
				+
				1
				𝜏
				,
				[
				[
				𝜉
				,
				𝜂
				,
				𝜁
			

			
				
			
			
				4
				
				
				
				]
				]
				
				−
				1
				𝜁
				,
				[
				[
				𝜉
				,
				𝜂
				,
				𝜏
			

			
				
			
			
				4
				
				
				
				
				[
				]
				+
				1
				𝜏
				,
				𝜉
				,
				𝜂
				,
				𝜁
				
				
			

			
				
			
			
				4
				
				
				
				
				[
				]
				+
				1
				𝜁
				,
				𝜉
				,
				𝜂
				,
				𝜏
				
				
			

			
				
			
			
				4
				
				
				
				
				
				[
				]
				−
				1
				𝜏
				,
				𝜉
				,
				𝜂
				,
				𝜁
				
				
			

			
				
			
			
				4
				
				
				
				
				
				[
				]
				−
				1
				𝜁
				,
				𝜉
				,
				𝜂
				,
				𝜏
				
				
			

			
				
			
			
				4
				
				
				
				[
				[
				
				+
				1
				𝜏
				,
				𝜉
				,
				𝜂
				]
				]
				,
				𝜁
			

			
				
			
			
				4
				
				
				
				[
				[
				
				+
				1
				𝜁
				,
				𝜉
				,
				𝜂
				]
				]
				,
				𝜏
			

			
				
			
			
				4
				
				
				
				
				
				[
				]
				
				
				−
				1
				𝜏
				,
				𝜉
				,
				𝜏
				,
				𝜁
			

			
				
			
			
				4
				
				
				
				
				
				[
				]
				
				
				+
				
				[
				[
				−
				
				[
				[
				−
				
				
				
				[
				]
				
				+
				
				
				
				[
				]
				
				−
				
				
				
				[
				]
				
				+
				
				
				
				[
				]
				
				1
				𝜁
				,
				𝜉
				,
				𝜂
				,
				𝜏
				𝜏
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				]
				]
				𝜁
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜏
				]
				]
				𝜏
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				𝜁
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜏
				𝜏
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				𝜁
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜏
				=
				−
			

			
				
			
			
				4
				
				]
				,
				[
				+
				1
				[
				[
				𝜉
				,
				𝜂
				𝜁
				,
				𝜏
				]
				]
			

			
				
			
			
				4
				
				
				
				[
				]
				,
				[
				]
				
				−
				
				[
				[
				.
				𝜉
				,
				𝜂
				𝜁
				,
				𝜏
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				,
				𝜏
				]
				]
			

		
	

In addition, considering that 
	
 		
 			
				(
				6
				.
				1
				8
				)
			
 		
	

	
		
			
				[
				]
				=
				
				[
				]
				+
				
				[
				]
				−
				
				[
				]
				
				.
				𝜁
				,
				𝜏
				𝜁
				,
				𝜏
				𝜁
				,
				𝜏
				𝜁
				,
				𝜏
			

		
	

One obtain that
						
	
 		
 			
				(
				6
				.
				1
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				1
				(
				𝑑
				(
				𝜉
				,
				𝜂
				,
				𝜁
				,
				𝜏
				)
				−
				𝑑
				(
				𝜉
				,
				𝜂
				,
				𝜏
				,
				𝜁
				)
				)
				=
				−
			

			
				
			
			
				4
				
				
				[
				]
				,
				
				[
				]
				
				+
				1
				𝜉
				,
				𝜂
				𝜁
				,
				𝜏
			

			
				
			
			
				4
				
				
				
				[
				]
				,
				
				[
				]
				
				−
				
				
				
				[
				]
				
				.
				𝜉
				,
				𝜂
				𝜁
				,
				𝜏
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				,
				𝜏
			

		
	

From relations (4.1) and (4.2), it follows that
						
	
 		
 			
				(
				6
				.
				2
				0
				)
			
 		
	

	
		
			
				1
				𝑏
				(
				𝜉
				,
				𝜂
				,
				𝑎
				(
				𝜁
				,
				𝜏
				)
				)
				=
			

			
				
			
			
				2
				𝑏
				
				
				[
				]
				
				1
				𝜉
				,
				𝜂
				,
				𝜁
				,
				𝜏
				=
				−
			

			
				
			
			
				4
				
				
				[
				]
				,
				
				[
				]
				
				+
				1
				𝜉
				,
				𝜂
				𝜁
				,
				𝜏
			

			
				
			
			
				4
				
				
				
				[
				]
				,
				
				[
				]
				
				−
				
				
				
				[
				]
				
				.
				𝜉
				,
				𝜂
				𝜁
				,
				𝜏
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				,
				𝜏
			

		
	

					Hence 
	
		
			

				𝑑
			

			
				𝑖
				𝑗
				𝑘
				[
				𝑙
				𝑚
				]
			

			
				=
				−
				𝑏
			

			
				𝑖
				𝑗
				𝑘
				𝑝
			

			

				𝑎
			

			
				𝑝
				𝑙
				𝑚
			

		
	
.
7. Hexagonal Loops
The analytic hexagonal 3-Web and their corresponding loops can be characterize by the following condition: 
	
 		
 			
				(
				7
				.
				1
				)
			
 		
	

	
		
			

				𝑏
			

			
				𝑖
				(
				𝑗
				𝑘
				𝑙
				)
			

			
				=
				0
				,
			

		
	

					where 
	
		
			
				∏
				∏
				[
				∏
				∏
				𝑏
				(
				𝜉
				,
				𝜂
				,
				𝜁
				)
				=
				−
				(
				1
				/
				2
				)
				[
				[
				𝜉
				,
				𝜂
				]
				,
				𝜁
				]
				+
				(
				1
				/
				2
				)
				[
				𝜉
				,
				𝜂
				]
				,
				𝜁
				]
				−
				2
				[
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				]
			

		
	
, that is, way, 
	
		
			

				𝑏
			

			
				𝑖
				(
				𝑗
				𝑘
				𝑙
				)
			

			
				=
				0
			

		
	
 is equivalent to the following condition:
	
 		
 			
				(
				7
				.
				2
				)
			
 		
	

	
		
			
				
				[
				]
				+
				
				[
				]
				+
				
				[
				]
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				𝑅
				(
				𝜂
				,
				𝜁
				)
				,
				𝜉
				𝑅
				(
				𝜁
				,
				𝜉
				)
				,
				𝜂
				=
				0
				,
			

		
	

					which can be written as follows:
						
	
 		
 			
				(
				7
				.
				3
				)
			
 		
	

	
		
			

				𝜎
			

			
				𝜉
				𝜂
				𝜁
			

			
				
				[
				]
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				=
				0
				,
			

		
	

					where 
	
		
			

				𝜎
			

			
				𝜉
				𝜂
				𝜁
			

		
	
 is the cyclic sum for 
	
		
			
				𝜉
				,
				𝜂
				,
				𝜁
			

		
	
.
We have furthermore, for the hexagonal three webs the following relation: 
	
 		
 			
				(
				7
				.
				4
				)
			
 		
	

	
		
			

				𝑑
			

			
				𝑖
				(
				𝑗
				𝑘
				𝑙
				)
				𝑚
			

			
				=
				0
				.
			

		
	

					Considering (6.15) and (7.2), one obtain that
	
 		
 			
				(
				7
				.
				5
				)
			
 		
	

	
		
			

				𝜎
			

			
				𝜉
				𝜂
				𝜁
			

			
				
				
				[
				[
				−
				
				
				[
				]
				𝜏
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				]
				]
				𝜏
				,
				𝑅
				(
				𝜉
				,
				𝜂
				)
				,
				𝜁
				
				
				=
				0
				,
			

		
	

					where 
	
		
			

				𝜎
			

			
				𝜉
				𝜂
				𝜁
			

		
	
 is the cyclic sum for 
	
		
			
				𝜉
				,
				𝜂
				,
				𝜁
			

		
	
.
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