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The algebraic methods are used in the web geometry, in particular in the 3-web. Along the line, we

suggest a new, alternative algebraic method for computation of the quantities
1
∇l a

i
jk
,

2
∇l a

i
jk
, and

di
jklm

by means of the embedding of local loops into Lie groups.

1. Introduction

Web geometry is one of the fields of mathematics which springs from two different fields
of mathematics, namely, projective differential geometry and nomography. It was derived
mostly from projective differential geometry. Initially, projective differential geometry mainly
consisted of the study of projective properties of curves and surfaces in R

3, that is, of their
differential properties that are invariant up to homographies. Web geometry studied the
properties of (curves and) surfaces in ordinary euclidian space that are invariant up to
isometric transformations. Gauss and other mathematicians have shown the usefulness of the
first and second fundamental forms in the study of surfaces. They also brought to light the
relevance of derived concepts, such as the principal, asymptotic, and conjugated directions.
When considering the integral curves of these tangent direction fields, the mathematicians
of the 19th century were considering what they called 2-nets of lines on surfaces, that is,
the data of 2 families of curves, or in more modern terms, 2-webs. It is when they tried
to generalize these constructions to the projective differential geometry that some 3-nets
projectively attached to surfaces in R

3 quite naturally made their appearance, Darboux
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introduced a 3-web named after him in [1]. These webs were useful at that time because they
encoded properties of the surfaces under study. Thomsen in [2] shows that a surface area in
R

3 is isothermally asymptotic if and only if its Darboux 3-web is hexagonal. At that time, the
study of 3-web on surfaces from the point of view of projective differential geometry was
on the agenda. Thomsens result has this particular feature of characterizing the geometric-
differential property of being isothermally asymptotic by a closedness property of more topo-
logical nature that is (or not) verified by a configuration traced on the surface itself. It is this
feature which struck some mathematicians and led to the study of webs at the beginning of
the 1930s. The development of geometry of fiber bundles and foliations stimulates the interest
for new investigation of three webs [3–17]. In [18–27], the techniques were developed for
webs using the intrinsic geometry structure. In this investigation, we propose to give another
approach of computation of some classical relations, using the technique of the projective
space. Our approach is based on the embedding of a smooth loop into a Lie group, by means
of a closed subgroup. This transports the geometric problem into an abstract algebraic prob-
lem, where the 3-web is seen as a homogeneous space coset in a generic position. Using this
technique the computation of the tensor structure of local loop is made easier. Therefore, we
give an application of the computation of the well-known tensor.We use algebraic methods to

compute the relations
1
∇la

i
jk,

2
∇la

i
jk, and di

jklm. The paper is organized as follows. In Section 2,
we derive the analytic representation of the law of composition of local smooth loops,
embedding in Lie groups. In Section 3, we evaluate tensor structure of a smooth analytic loop.
In Section 4, we look at the tensor structure of a smooth local loop, embedding in Lie group.

In Section 5 we applied our method to compute
2
∇la

i
jk and

1
∇la

i
jk. In Section 6 we deal with the

computation of the tensor di
jklm

=
2
∇mb

i
jkl
. The last section is devoted to the hexagonal loops.

2. Analytic Representation of Law of Composition of
Local Smooth Loops, Embedding in Lie Groups

Let 〈G, ·, e〉 be a local Lie group and let H be its local closed subgroup. Denote by G and h

their corresponding Lie algebra and Lie subalgebra, and let Q be a smooth space section of
left coset G mod H passing through e the unit element of G (e ∈ G).

The composition law

× : Q ×Q −→ Q,

(
x, y

) �−→ x×y =
∏

Q

(
x · y), (2.1)

where
∏

Q : G → Q is the projection onQ parallel to the subgroupH, defines inQ a structure
of a local loop, that is, 〈Q,×, e〉-loop [25, 28–36].

Let us map the tangent space TeQ with the vector subspace V ⊂ G such that TeQ = V .
Then G = V � h since the submanifolds Q and H are transversal in the Lie group G.

Let us introduce the mapping φ

φ : V −→ h,

ξ �−→ φ(ξ),
(2.2)
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defined by the condition exp(ξ +φ(ξ)) ∈ Q (for every vector ξ ∈ V , in the neighborhood ofO,
and the map φ is well defined).

Then φ(O) = O and

φ(ξ) = R(ξ, ξ) + S(ξ, ξ, ξ) + o(3), (2.3)

where

R : V × V −→ h,

S : V × V × V −→ h
(2.4)

are bilinear and trilinear symmetric maps. A base 〈e1, e2, . . . , eN〉 is fixed in G such that
〈e1, e2, . . . , en〉 generates V , that is, V = 〈e1, e2, . . . , en〉 and 〈en+1, en+2, . . . , eN〉 generates h :
h = 〈en+1, en+2, . . . , eN〉. Introduce in the local Lie group G the following normal coordinates:
the coordinate on the submanifoldQwhich is the projection from expV , that is, for all x ∈ Q,
x = (xi)i=1,n, this means exp(xiei + φ(xiei)) = x ∈ Q.

Introduce the map

Q −→ V,

x �−→ x = xiei.
(2.5)

Then the condition written before is equivalent to

x + φ(x) = x ∈ Q. (2.6)

In what follows, we will compute the constructed coordinates, fixed on the submanifold Q.
It is known that the law of composition in a Lie group G(·) has the following

representation up to the fourth order in the normal coordinates:

a · b = a + b +
1
2
[a, b] +

1
12

[a, [a, b]] +
1
12

[b, [b, a]]

− 1
48

[b, [a, [a, b]]] − 1
48

[a, [b, [a, b]]] + o(4).

(2.4′)

Consider the coordinate representation of the law of composition ×, for y : x = (x) and
y = (y) in Q. We have

(
x×y) = x + y +K

(
x, y

)
+ L

(
x, x, y

)
+M

(
x, y, y

)

+ P
(
x, x, x, y

)
+Q

(
x, x, y, y

)
+U

(
x, y, y, y

)
+ o(4).

(2.7)

(Our notations are similar to the notations of the work [24]).
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Denote the right side in (2.7) by z = (z). Then, for its computation, we obtain the
following:

exp
(
z + φ(z)

)
= exp

(
x + φ(x)

) · exp(y + φ
(
y
))
h, (2.8)

where h is an element from h, and indeed we have h = h(x, y).
The following proposition holds.

Proposition 2.1. We have

K
(
x, y

)
=

1
2

∏[
x, y

]
, (2.9)

where
∏

[x, y] is the projection of the commutator [x, y] on V parallel to the subalgebra h

h
(
x, y

)
= −1

2
[
x, y

]
+
1
2

∏[
x, y

]
+ 2R

(
x, y

)
+ o(2). (2.10)

Proof. we use the formulae (2.8). Comparing the terms from V and h and considering only
the terms of the first order, we obtain that

z = x + y ∈ V,

h = o ∈ h.
(2.11)

For computing the term of the second order, we denote

z = x + y +K
(
x, y

) ∈ V,

h = N
(
x, y

) ∈ h,
(2.12)

from (2.8) and considering (2.4) and (2.4′), we have

x + y +K
(
x, y

)
+ R(x, x) + R

(
y, y

)
+ 2R

(
x, y

)

= x + y +N
(
x, y

)
+ R(x, x) + R

(
y, y

)
+
1
2
[
x, y

]
,

(2.13)

then by comparing term from V and h and noting that

1
2
[
x, y

]
=

1
2

∏[
x, y

]
+
(
1
2
[
x, y

] − 1
2

∏[
x, y

]
)
, (2.14)
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hence

K
(
x, y

)
=

1
2

∏[
x, y

]
,

h
(
x, y

)
= −1

2
[
x, y

]
+
1
2

∏[
x, y

]
+ 2R

(
x, y

)
.

(2.15)

Corollary 2.2. From Proposition 2.1, it follows that

(
x×y) = x + y +

1
2

∏[
x, y

]
+ o(2). (2.16)

Proposition 2.3. One can show that

L
(
x, x, y

)
= −1

6

∏[
x,

[
x, y

]]
+

1
2

∏[
R(x, x), y

]
+
1
4

∏[
x,

∏[
x, y

]]
+
∏[

x,R
(
x, y

)]
,

M
(
x, y, y

)
=

1
3

∏[
y,

[
y, x

]]
+
1
2

∏[
x,R

(
y, y

)] − 1
4

∏[
y,

∏[
y, x

]]
+
∏[

y,R
(
x, y

)]
,

h
(
x, y

)
= −1

2
[
x, y

]
+
1
2

∏[
x, y

]
+ 2R

(
x, y

)
+ R

(
x,

∏[
x, y

])
+ 3S

(
x, x, y

)

+
1
6
Λ
[
x,

[
x, y

]] − 1
4
Λ
[
x,

∏[
x, y

]] − 1
2
Λ
[
R(x, x), y

] −Λ
[
x,R

(
x, y

)]

+ R
(
y,

∏[
x, y

])
+ 3S

(
x, y, y

) − 1
3
Λ
[
y,

[
y, x

]]

+
1
4
Λ
[
y,

∏[
y, x

]] − 1
2
Λ
[
x,R

(
y, y

)] −Λ
[
y,R

(
x, y

)]
+ 0(3),

(2.17)

where Λ : G → h is the projection on h parallel to V .

Proof. The proof is based on the direct computation. Denote that

z = x + y +
1
2
[
x, y

]
+ L

(
x, x, y

)
+M

(
x, y, y

)
,

h
(
x, y

)
= −1

2
[
x, y

]
+
1
2

∏[
x, y

]
+ 2R

(
x, y

)
+ E

(
x, x, y

)
+ F

(
x, y, y

)
.

(2.18)
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From (2.8) with the consideration of (2.4) and (2.4′), we obtain the following:

L
(
x, x, y

)
+M

(
x, y, y

)
+ R

(
x,

∏[
x, y

])
+ R

(
y,

∏[
x, y

])
+ S(x, x, x)

+ 3S
(
x, y, y

)
+ 3S

(
x, x, y

)
+ S

(
y, y, y

)
+ · · ·

=
1
12

[
x,

[
x, y

]]
+

1
12

[
y,

[
y, x

]]
+ E

(
x, x, y

)
+ F

(
x, y, y

)

+ S(x, x, x) + S
(
y, y, y

)
+
1
2
[
R(x, x), y

]
+
1
2
[
x,R

(
y, y

)]
+
1
4

[
x + y,

∏[
x, y

]]

− 1
4
[
x + y,

[
x, y

]]
+
[
x + y,R

(
x, y

)]
+ · · · .

(2.19)

Then by comparing term from V and h in the last identity, we obtain the requirement
for L(x, x, y), M(x, y, y) and h(x, y) in addition

E
(
x, x, y

)
= R

(
x,

∏[
x, y

])
+ 3S

(
x, x, y

)
+
1
6
Λ
[
x,

[
x, y

]] − 1
4
Λ
[
x,

∏[
x, y

]]

− 1
2
Λ
[
R(x, x), y

] −Λ
[
x,R

(
x, y

)]
,

F
(
x, y, y

)
= R

(
y,

∏[
x, y

])
+ 3S

(
x, y, y

) − 1
3
Λ
[
y,

[
y, x

]]
+
1
4
Λ
[
y,

∏[
y, x

]]

− 1
2
Λ
[
x,R

(
y, y

)] −Λ
[
y,R

(
x, y

)]
.

(2.20)

Corollary 2.4. One can obtain that

(
x×y) = x + y +

1
2

∏[
x, y

] − 1
6

∏[
x,

[
x, y

]]
+
1
2

∏[
R(x, x), y

]
+
1
4

∏[
x,

∏[
x, y

]]

+
∏[

x,R
(
x, y

)]
+
1
3

∏[
y,

[
y, x

]]
+
1
2

∏[
x,R

(
y, y

)]

− 1
4

∏[
y,

∏[
y, x

]]
+
∏[

y,R
(
x, y

)]
+ o(3).

(2.21)

For the computation of terms of the fourth order, denote that

z = (2.21) + P
(
x, x, x, y

)
+Q

(
x, x, y, y

)
+U

(
x, y, y, y

)
, (2.22)
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and for h to take terms of the third order

P
(
x, x, x, y

)
+Q

(
x, x, y, y

)
+U

(
x, y, y, y

)

= [x + R(x, x) + S(x, x, x)] · [y + R
(
y, y

)
+ S

(
y, y, y

)]

·
(
−1
2
Λ
[
x, y

]
+ 2R

(
x, y

)
+ E

(
x, x, y

)
+ F

(
x, y, y

)
+ · · ·

)
,

(2.23)

in the fourth order one needs to compute only the term in V . Conducting the reasoning as in the
previous cases one obtains that

P
(
x, x, x, y

)
+Q

(
x, x, y, y

)
+U

(
x, y, y, y

)
modh

=

=
{
x + R(x, x) + S(x, x, x) + y + R

(
y, y

)
+ S

(
y, y, y

)
+
1
2
[
x, y

]

+
1
2
[
x,R

(
y, y

)]
+
1
2
[
R(x, x), R

(
y, y

)]
+
1
2
[
x, S

(
y, y, y

)]
+
1
2
[
S(x, x, x), y

]

+
1
12

[
x,

[
x, y

]]
+

1
12

[
x,

[
x,R

(
y, y

)]]
+

1
12

[
y,

[
y, x

]]
+

1
12

[
y,

[
y,R(x, x)

]]

− 1
48

[
y,

[
x,

[
x, y

]]] − 1
48

[
x,

[
y,

[
x, y

]]]
+ · · ·

}

·
(
−1
2
Λ
[
x, y

]
+ 2R

(
x, y

)
+ E

(
x, x, y

)
+ F

(
x, y, y

)
+ · · ·

)

modh
=

1
2

∏[
x, E

(
x, x, y

)]
+
1
2

∏[
x, F

(
x, y, y

)]
+
1
2

∏[
y, E

(
x, x, y

)]

+
1
2

∏[
y, F

(
x, y, y

)] − 1
8

∏[∏[
x, y

]
,
[
x, y

]]
+
1
2

∏[∏[
x, y

]
, R

(
x, y

)]

+
1
12

∏[
x,

[
x,−1

2
Λ
[
x, y

]
+ 2R

(
x, y

)
]]

+
1
12

∏[
y,

[
y,−1

2
Λ
[
x, y

]
+ 2R

(
x, y

)
]]

+
1
12

∏[
x,

[
y,−1

2
Λ
[
x, y

]
+ 2R

(
x, y

)
]]

+
1
12

∏[
y,

[
x,−1

2
Λ
[
x, y

]
+ 2R

(
x, y

)
]]

+
1
2

∏[
x, S

(
y, y, y

)]
+
1
2

∏[
S(x, x, x), y

]
+

1
12

∏[
x,

[
x,R

(
y, y

)]]

+
1
12

∏[
y,

[
y,R(x, x)

]] − 1
48

∏[
y,

[
x,

[
x, y

]]] − 1
48

∏[
x,

[
y,

[
x, y

]]]
.

(2.24)

All the equalities in the above expression are modulo h.
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Then the following proposition holds.

Proposition 2.5. We have the following:

P
(
x, x, x, y

)
= −1

2

∏[
y, S(x, x, x)

]
+

1
12

∏[
x,

[
x,− 1

12
Λ
[
x, y

]
+ 2R

(
x, y

)
]]

+
1
2

∏[
x, E

(
x, x, y

)]
,

U
(
x, y, y, y

)
=

1
2

∏[
x, S

(
y, y, y

)]
+

1
12

∏[
y,

[
y,− 1

12
Λ
[
x, y

]
+ 2R

(
x, y

)
]]

+
1
2

∏[
y, F

(
x, y, y

)]
,

Q
(
x, x, y, y

)
=

1
2

∏[
y, E

(
x, x, y

)]
+
1
2

∏[
x, F

(
x, y, y

)] − 1
8

∏[∏[
x, y

]
,
[
x, y

]]

+
1
2

∏[∏[
x, y

]
, R

(
x, y

)]
+

1
12

∏[
x,

[
y,−1

2
Λ
[
x, y

]
+ 2R

(
x, y

)
]]

+
1
12

∏[
y,

[
x,−1

2
Λ
[
x, y

]
+ 2R

(
x, y

)
]]

+
1
12

∏[
x,

[
x,R

(
y, y

)]]

+
1
12

∏[
y,

[
y,R(x, x)

]] − 1
48

∏[
y,

[
x,

[
x, y

]]] − 1
48

∏[
x,

[
y,

[
x, y

]]]
.

(2.25)

Corollary 2.6. We have the following:

(
x×y) = x + y +

1
2

∏[
x, y

] − 1
6

∏[
x,

[
x, y

]]
+
1
2

∏[
R(x, x), y

]
+
1
4

∏[
x,

∏[
x, y

]]

+
∏[

x,R
(
x, y

)]
+
1
3

∏[
y,

[
y, x

]]
+
1
2

∏[
x,R

(
y, y

)] − 1
4

∏[
y,

∏[
y, x

]]

+
∏[

y,R
(
x, y

)]
+ P

(
x, x, x, y

)
+Q

(
x, x, y, y

)
+U

(
x, y, y, y

)
+ 0(4),

(2.26)

where P(x, x, x, y), Q(x, x, y, y), and U(x, y, y, y) are from (2.25).

3. Tensor Structure of a Smooth Analytic Loop

Let 〈Q,×, e〉 be a smooth analytic loop with the neutral element e. In a standard way, see [26]
on the Cartesian product Q × Q, we introduce the structure of a three-web W such that the
submanifold in the view of {a} × Q is a vertical foliations (a ∈ Q), Q × {b} is a horizontal
foliations (b ∈ Q) and the set {(a, b) : a × b = c = conts} foliations of the third family (c ∈ Q).
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In the coordinate (x1, x2, . . . , xn, y1, y2, . . . , yn), the indicated foliations are described by the
system of differential 1-form [18, 19, 21, 23, 28, 37–40]

ωi
1 = o, ωi

2 = o, ωi
3 = ωi

1 +ωi
2 = o, (3.1)

where

ωi
1 = Pi

αdx
α, ωi

2 = Qi
βdy

β,

P i
α

(
x, y

)
=

∂μi

∂xα
,

Qi
β

(
x, y

)
=

∂μi

∂yβ
,

μi(x, y
)
=
(
x × y

)i
.

(3.2)

In the space of a 3-Web W , introduce the so-called Chern canonical connection ∇ =

(
1
∇,

2
∇) [24, 38].

The indicated connection is described by

ωk
j = Γkijω

i
1 + Γkjlω

j

2,

Γkij = −P̃ α
i Q̃

β

j

∂2μk

∂xα∂yβ
,

(3.3)

where P̃ α
i and Q̃

β

j are inverse matrices for Pα
i and Q

β

j , respectively, in terms of the following
structural equations:

dωk
1 = ωl

1 ∧ωk
l + ak

ijω
i
1 ∧ω

j

l ,

dωk
2 = ωl

2 ∧ωk
l − ak

ijω
i
2 ∧ω

j

2,

dωk
j = ωi

j ∧ωk
i + bkjlmω

l
1 ∧ωm

2 ,

(3.4)

where

ak
ij = −1

2
∂2μk

∂xα∂yβ

(
P̃ α
i Q̃

β

j − P̃ α
j Q̃

β

i

)
,

bkjlm =

(

− ∂3μk

∂xα∂xβ∂yγ
P̃
β

j +
∂3μk

∂xα∂yβ∂yγ
Q̃

β

j

)

P̃ α
l Q̃

γ
m − Γkpm

∂2μp

∂xα∂xβ
P̃α
l P̃

β

j

+ Γklp
∂2μp

∂yα∂yβ
P̃α
j Q̃

β
m − ΓkpmΓ

p

lj
+ ΓklpΓ

p

jm.

(3.5)
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The Chern connection in the 3-Web associated to the loop 〈Q,×, e〉 admits an
alternative description in terms of antiproduct of the loopQ by itself [31, 33]. In the setQ×Q,
introduce the covering loopuscular structure, by denoting for any pairX = (x, x′), Y = (y, y′),
A(u, v)

L(X,A, Y ) =
((
x
(
u \ yv))/v, u \ ((uy′/v

)
x′)). (3.6)

Then the Chern connection coincides with the connection tangent to the covering
loopuscular structure [33].

In particular, for any tensor field Ω(u, v), in the space of 3-web W = Q ×Q

1
∇iΩ(u = e, v = e) =

∂

∂ui

[{[
L
(e,e)
(u,e)

]

∗,(e,e)

}−1
Ω(u, e)

]∣∣
∣
∣
∣
u=e

, (3.7)

2
∇iΩ(u = e, v = e) =

∂

∂vi

[{[
L
(e,e)
(e,v)

]

∗,(e,e)

}−1
Ω(e, v)

]∣∣∣∣∣
v=e

. (3.8)

The value in the point (e, e) of the 3-WebW = Q ×Q to the loop 〈Q,×, e〉 fundamental

tensor field ai
jk, b

i
jkl and their corresponding derivations

1
∇i,

2
∇i are called the tensors structure

of the loop. The structure tensor of the smooth loop 〈Q,×, e〉 is defined uniquely by its
construction up to isomorphism [24, 28, 29, 38].

Proposition 3.1 (see [17, 38]). The following relations hold

1
∇la

i
jk = bi[j|l|k],

2
∇la

i
jk = bi[jk]l.

(3.9)

For the proof of the proposition, it is sufficient to consider the first differential ex-
pression of the system (3.4).

Introduce the notation

cijklm =
1
∇mb

i
jkl

∣∣∣∣
(e,e)

,

di
jklm =

2
∇mb

i
jkl

∣∣∣∣
(e,e)

.

(3.10)

And consider Proposition 2.3. The law of composition (×) of the smooth local loop
〈Q,×, e〉 in the coordinate x = (x) centralized at the point e is given by

(
x × y

)
= x + y +K

(
x, y

)
+ L

(
x, x, y

)
+M

(
x, y, y

)
+ P

(
x, x, x, y

)

+Q
(
x, x, y, y

)
+U

(
x, y, y, y

)
+ o(4).

(3.11)
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Consider 〈Q,×, e〉 as a coordinate loop of the 3-Web W , defined in the neighborhood
of the point (e, e) of the manifold Q × Q. Then in conformity with [24, 37], the basic tensor
of the web can be expressed in terms of coefficient of the decomposition of the loop in the
following way:

a
(
x, y

)
= −K(

x, y
)
,

b
(
x, y, z

)
= −B(y, x, z),

(3.12)

c
(
x, y, z, t

)
= (4Q − 6P)

(
y, t, x, z

)
+ a

(
t, b

(
x, y, z

))
+ a

(
y, b

(
x, t, z

))

− b
(
x, a

(
t, y

)
, z
)
+ a

(
2L

(
y, t, x

)
, z
)
− 2L

(
a
(
x, y

)
, t, z

)

− 2L
(
y, a

(
x, t

)
, z
)
− 2L

(
y, t, a(x, z)

)
,

d
(
x, y, z, t

)
= (4Q − 6P)

(
y, x, z, t

)
− a

(
b
(
x, y, z

)
, t
)
− a

(
b
(
x, y, t

)
, z
)

+ b
(
x, y, a

(
z, t

))
+ a

(
y, 2M

(
x, z, t

))
− 2M

(
a
(
y, x

)
, z, t

)

− 2M
(
y, a(z, x), t

)
− 2M

(
y, z, a

(
t, x

))
,

(3.13)

where

B
(
x, y, z

)
= 2L

(
x, y, z

) − 2M
(
x, y, z

) −K
(
x,K

(
y, z

))
+K

(
K
(
x, y

)
, z
)
. (3.14)

4. Tensor Structure of a Smooth Local Loop, Embedding in Lie Group

Let 〈Q,×, e〉 be a local smooth loop, the embedding in the Lie group G as a section of left
coset G mod H, where H is a closed subgroup in G. In what follows, we will consider that
〈Q,×, e〉 is referred to the normal coordinates X = (x).

Proposition 4.1. The following relations holds

a
(
x, y

)
= −1

2

∏[
x, y

]
, (4.1)

b
(
x, y, z

)
= −1

2

∏[[
x, y

]
, z
]
+
1
2

∏[∏[
x, y

]
, z
]
− 2

∏[
R
(
x, y

)
, z
]
. (4.2)

Proof. The first relation follows from Proposition 2.1 and the relation (3.12). In the relation
(3.14), we have

B
(
x, y, z

)
= 2L

(
x, y, z

) − 2M
(
x, y, z

) −K
(
x,K

(
y, z

))
+K

(
K
(
x, y

)
, z
)
, (4.3)
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and from Proposition 2.3 we have

2L
(
x, y, z

)
= −1

6

∏[
x,

[
y, z

]]
+
∏[

R
(
x, y

)
, z
]
+
1
4

∏[
x,

∏[
y, z

]] − 1
6

∏[
y,

[
x, y

]]

+
∏[

x,R
(
y, z

)]
+
∏[

y,R(x, z)
]
+
1
4

∏[
y,

∏
[x, z]

]
,

2M
(
x, y, z

)
=

1
3

∏[
y, [z, x]

]
+
∏[

x,R
(
y, z

)] − 1
4

∏[
y,

∏
[z, x]

]
+
1
3

∏[
z,
[
y, x

]]

+
∏[

y,R(x, z)
]
+
∏[

z, R
(
x, y

)] − 1
4

∏[
z,
∏[

y, x
]]
,

(4.4)

Furthermore,

K
(
x,K

(
y, z

))
=

1
4

∏[
x,

∏[
y, z

]]
,

K
(
K
(
x, y

)
, z
)
=

1
4

∏[∏[
x, y

]
, z
]
.

(4.5)

Substituting these expressions in B(x, y, z), we obtain that

B
(
x, y, z

)
= −1

2

∏[[
x, y

]
, z
]
+
1
2

∏[∏[
x, y

]
, z
]
+ 2

∏[
R
(
x, y

)
, z
]
, (4.6)

but from (3.12) we have b(x, y, z) = −B(y, x, z). Hence,

b
(
x, y, z

)
= −1

2

∏[[
x, y

]
, z
] − 1

2

∏[∏[
x, y

]
, z
]
− 2

∏[
R
(
x, y

)
, z
]
. (4.7)

Let Ω be one of the structural tensor of the loop Q, and consider the expression of the
fundamental tensor fieldΩ(u, v) in the space of three-webW = Q×Q. ThenΩ = Ω(u = e, v =

e) and for
1
∇iΩ(u = e, v = e),

2
∇iΩ(u = e, v = e), the formulae obtained in (3.7) hold.

Consider the computation of
1
∇iΩ(u = e, v = e), the value of the tensor fieldΩ(u, v) for

v = e can be seen as the structure of the smooth local loop 〈Q,×
u
, u〉, where

x ×
u
y = x × (

u \ y). (4.8)

As a result, ∇ is transported from TuQ in TeQ by means of the inverse transformation Ru,
which coincide with the structure of the tensor Ω̃u and the smooth local loop 〈Q, ·

u
, e〉 with

the operation

x ·
u
y = u \ ((u × x) × y

)
. (4.9)
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So that

1
∇iΩ(u = e, v = e) =

∂Ω̃u

∂ui

∣
∣
∣
∣∣
u=e

, (4.10)

in addition the law of composition (4.9) allows an intuitive algebraic interpretation in terms
of the enveloping Lie group G.

Consider the section Q′
u = Q · u−1 of the coset space G/H̃u, where H̃u = u · H · u−1,

u ∈ Q and the map

Ψu : Q −→ Q′
u

x �−→ (u × x) × u−1.
(4.11)

Denote by (∗
u
) the law of composition in Q′

u, so that

a ∗
u
b =

∏′
u
(ab), (4.12)

where
∏′

u : G → Q′
u is the projection on Q′

u parallel to H̃u. The following proposition
hold.

Proposition 4.2. The map Ψu : Q → Q′
u is an isomorphism of the smooth loops 〈Q, ·

u
, e〉 and

〈Q′
u, ∗u, e〉.

Proof. Let a = Ψux, b = Ψuy, and a ∗
u
b = Ψuz, where x, y, z ∈ Q.

Then

a ∗
u
b =

∏′
u
(ab) =

∏′
u

(
(u × x) · u−1 · (u × y

) · u−1
)
,

(
a ∗

u
b

)
× u · h · u−1 = (u × x)u−1 · (u × y

) · u−1.
(4.13)

Multiplying by u we obtain that

(
a ∗

u
b

)
× u · h = (u × x) × y. (4.14)

Applying the projection to the last equality, we obtain that

(
a ∗

u
b

)
× u = (u × x) × y. (4.15)
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Furthermore,

(
a ∗

u
b

)
× u = (Ψuz) × u = (u × z) · u−1 × u = (u × x) × y. (4.16)

Then z = u \ (u × x) × y and

(
a ∗

u
b

)
= (Ψux) ∗

u

(
Ψuy

)
= Ψuz = Ψu

{
u \ (u × x) × y

}
= Ψu

(
x ·

u
y

)
. (4.17)

Therefore Ψu(x ·
u
y) = (Ψux) ∗ (Ψuy). Hence, here is the result. Similarly we establish that

2
∇iΩ(u = e, v = e) =

∂
˜̃Ωv

∂vi

∣
∣∣∣∣∣
υ=e

, (4.18)

where ˜̃Ω correspond to the structure tensor of the local loop 〈Q, 1/v, e〉with the composition
law

x
1
v
y =

(
x × (

y × v
))
/v. (4.19)

The law of composition (4.19) allows us to find an algebraic interpretation in terms of
the enveloping Lie group G.

Let us introduce in consideration the subgroup H ′′
v = vHv−1 where v ∈ Q. The

following proposition holds.

Proposition 4.3. We have the following:

x
1
v
y =

∏′′
v

(
xy

)
(4.20)

for all x, y ∈ Q, where

∏′′
v
: G → Q is the projection on Q parallel to H ′′

v. (4.21)

Proof. In the Lie group G, we have xy = (x ⊥ y) × vhv−1 which is equivalent to xy · v = (x ⊥
y) × vh. Applying

∏
to the last formula, we get the following:

x × (
y × v

)
=
(
x ⊥ y

) × v. (4.22)

Therefore, x ⊥ y = x × (y × v)/v.
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5. Application: Computation of
2
∇la

i
jk and

1
∇la

i
jk

(I) Computation of
2
∇la

i
jk

For u ∈ Q, introduce the map

Adu : G −→ G,

x �−→ uxu−1.
(5.1)

Let u = exp ζ, where ζ ∈ Q and g ∈ H. Then

Adu

(
g
)
= ugu−1 = Ad

(
exp ζ

)(
g
)
= exp

(
adζ

(
g
))

= g +
[
ζ, g

]
+ o(ζ) (5.2)

and g + [ζ, g] + o(ζ) ∈ H ′′
u, where H ′′

u = uHu−1.
Let

∏′′
u : G → TeQ be the projection on TeQ parallel to h′′

u and exp h′′
u = H ′′

u.
By fixing ξ, η from G, we find that

[
ξ, η

]
=
∏[

ξ, η
]
+ h1, (5.3)

[
ξ, η

]
=
∏′′

u

[
ξ, η

]
+ h2, (5.4)

where h1 ∈ h and h2 ∈ h′′
u. From (5.2)we obtain that h2 has the form h2 = h1 + ĥ(ζ) + [ζ, h1] +

o(ζ), where ĥ(ζ) ∈ h′′
u. From (5.3) and (5.4), it follows that

∏′′
u

[
ξ, η

]
=
[
ξ, η

] − h2 =
∏[

ξ, η
] − ĥ(ζ) − [ζ, h1] + o(ζ) =

∏[
ξ, η

] −
∏

[ζ, h1] + o(ζ).
(5.5)

But from (5.3), we have h1 = [ξ, η] −∏
[ξ, η]. It follows that

∏′′
u

[
ξ, η

]
=
∏[

ξ, η
] −

∏[
ζ,
[
ξ, η

]]
+
∏[

ζ,
∏[

ξ, η
]]

+ o(ζ)

=
∏[

ξ, η
]
+
∏[[

ξ, η
]
, ζ
] −

∏[∏[
ξ, η

]
, ζ
]
+ o(ζ).

(5.6)

Denote by a′′
u(ξ, η) = −(1/2)∏′′

u[ξ, η]. Then

a′′
u

(
ξ, η

)
= a

(
ξ, η

) − 1
2

∏[[
ξ, η

]]
+
1
2

∏[∏[
ξ, η

]
, ζ
]
. (5.7)

Finally we have

2
∇la

i
jkξ

jηkζl =
d

dt

(
a′′
exp tζ

(
ξ, η

))
∣∣∣∣
t=0

= −1
2

∏[[
ξ, η

]]
+
1
2

∏[∏[
ξ, η

]
, ζ
]
. (5.8)
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We obtain a result in conformity with Proposition 3.1 and the relation (4.2) indeed,
from the relation (4.2)

b
(
ξ, η, ζ

)
= −1

2
[[
ξ, η

]
, ζ
]
+
1
2

∏[∏[
ξ, η

]
, ζ
]
− 2

∏[
R
(
ξ, η

)
, ζ
]
. (5.9)

From which we find that

1
2
[
b
(
ξ, η, ζ

) − b
(
η, ξ, ζ

)]
= −1

2

∏[[
ξ, η

]
, ζ
]
+
1
2

∏[∏[
ξ, η

]
, ζ
]
, (5.10)

so that
2
∇la

i
jk

= bi[jk]l.

(II) Computation of
1
∇la

i
jk

Let us introduce the map

Ψu : Q −→ Q′
u,

x �−→ (u × x)u−1.
(5.11)

Then dΨu|e : TeQ → TeQ
′
u. Then the following proposition holds.

Proposition 5.1. The map defined from the tangent space TeQ to tangent space TeQ′
u is defined as

follows:

dΨu|e : TeQ −→ TeQ
′
u,

ξ �−→ ξ +
1
2
[u, ξ] +

1
2

∏
[u, ξ] + 2R(u, ξ) + o(u).

(5.12)

Proof. For the proof of this proposition, using the notion from Section 2 and the relation (2.8),
we have u × ξ = (u · ξ) · h but from Proposition 1.4, we have

h(u, ξ) = −1
2
[u, ξ] +

1
2
[u, ξ] + 2R(u, ξ) + o(u). (5.13)

Thus,

u × ξ = (u · ξ) · h = u + ξ +
1
2
[u, ξ] +

1
2

∏
[u, ξ] + 2R(u, ξ) + o(u),

(u × ξ) × u−1 = u + ξ +
1
2

∏
[u, ξ] + 2R(u, ξ) − u − 1

2
[ξ, u] + o(u)

= ξ +
1
2

∏
[u, ξ] +

1
2
[u, ξ] + 2R(u, ξ) + o(u).

(5.14)
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Let
∏̃

u : G → TeQ
′ be the projection on TeQ

′ parallel to h̃u
′
where exp h̃u

′
= uHu−1.

Then we obtain the following:

ω + h1 = ω′ + h′
1 +

[
u, h′

1

]
(5.15)

with ω ∈ TeQ, h1 ∈ h, ω′ ∈ TeQ
′, h′

1 ∈ h. For the computation of ω′ = ω′(u,ω). From
Proposition 5.1, we have

ω + h1 = ω̃ +
1
2

∏
[u, ω̃] +

1
2
[u, ω̃] + 2R(u, ω̃) + h′

1 +
[
u, h′

1

]
+ o(u), (5.16)

where ω̃ ∈ TeQ, so that

ω̃ +
1
2

∏
[u, ω̃] +

1
2
[u, ω̃] + 2R(u, ω̃) = ω′. (5.17)

It follows that

ω = ω̃ +
∏

[u, ω̃] +
[
u, h′

1

]
,

h1 = h′
1 + terms with u,

(5.18)

from which

ω̃ = ω −
∏

[u,ω] − [
u, h′

1

]
,

h′
1 = h1 + term with u.

(5.19)

Then substituting in ω′ the expression from ω̃, we obtain that

ω′ = ω −
∏

[u,ω] −
∏

[u, h1] +
1
2

∏
[u, h1] +

1
2
[u,ω] + 2R(u,ω) + o(u)

= ω +
1
2
[u,ω] − 1

2

∏
[u,ω] −

∏
[u, h1] + 2R(u,ω) + o(u),

(5.20)

from which we find that

∏̃

u

(ω + h1) = ω′ = ω +
1
2
[u,ω] − 1

2
[u,ω] + 2R(u,ω) −

∏
[u, h1]. (5.21)

Now let us compute that

ãu

(
ξ, η

)
= −1

2
(dΨ)−1

∏̃

u

[
dΨξ, dΨη

]
, (5.22)
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where ξ, η ∈ TeQ,

(dΨ)−1
∏̃

u

[
dΨξ, dΨη

]

= (dΨ)−1
∏̃

u

[
ξ +

1
2
[u, ξ] +

1
2

∏
[u, ξ] + 2R(u, ξ), η +

1
2
[
u, η

]

+
1
2

∏[
u, η

]
+ 2R

(
u, η

)
]

= (dΨ)−1
∏̃

u

{
[
ξ, η

]
+
1
2
[
ξ,
[
u, η

]]
+
1
2

[
ξ,
∏[

u, η
]]

+ 2
[
ξ, R

(
u, η

)]

−1
2
[
η, [u, ξ]

] − 1
2

[
η,
∏

[u, ξ]
]
− 2

[
η, R(u, ξ)

]
}

= (dΨ)−1
{∏[

ξ, η
]
+
1
2

∏[
ξ,
[
u, η

]]
+
1
2

∏[
ξ,
∏[

u, η
]]

+ 2
∏[

ξ, R
(
u, η

)]

− 1
2

∏[
η, [u, ξ]

] − 1
2

∏[
η,
∏

[u, ξ]
]
− 2

∏[
η, R(u, ξ)

]
+
1
2

[
u,

∏[
ξ, η

]]

−1
2

[
u,

∏[
ξ, η

]]
+ 2R

(
u,

∏[
ξ, η

]) −
∏[

u,
[
ξ, η

]]
+
∏[

u,
∏[

ξ, η
]]
}

=
∏[

ξ, η
]
+
1
2
[
ξ,
[
u, η

]]
+
1
2

∏[
ξ,
∏[

u, η
]]

+ 2
∏[

ξ, R
(
u, η

)] − 1
2

∏[
η, [u, ξ]

]

− 1
2

∏[
η,
∏

[u, ξ]
]
− 2

∏[
η, R(u, ξ)

] −
∏[

u,
[
ξ, η

]]

=
∏[

ξ, η
]
+
1
2
[
ξ,
[
η, u

]] − 1
2

∏[
ξ,
∏[

η, u
]]

+ 2
∏[

ξ, R
(
u, η

)]

− 1
2

∏[
η, [ξ, u]

]
+
1
2

∏[
η,
∏

[ξ, u]
]
− 2

∏[
η, R(u, ξ)

]
,

(5.23)

where

ãu

(
ξ, η

)
= −1

2

∏[
ξ, η

] − 1
4

∏[
[ξ, u], η

]
+
1
4

∏[∏
[ξ, u], η

]
−
∏[

R(u, ξ), η
]

+
1
4

∏[[
η, u

]
, ξ
] − 1

4

∏[∏[
η, u

]
, ξ
]
+
∏[

R
(
u, η

)
, ξ
]
.

(5.24)

From this last equation, it follows that

1
∇la

i
jkξ

jηkζl =
d

dt
ãexp tζ

(
ξ, η

)
∣∣∣∣
t=0

= −1
4

∏[
[ξ, ζ], η

]
+
1
4

∏[∏
[ξ, ζ], η

]
−
∏[

R(ξ, ζ), η
]

+
1
4

∏[[
η, ζ

]
, ξ
] − 1

4

∏[∏[
η, ζ

]
, ξ
]
+
∏[

R
(
η, ζ

)
, ξ
]
.

(5.25)
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We obtain a result in conformity with Proposition 3.1 and the relation (4.2) indeed
from the formulae (4.2), it follows that

1
2
[
b
(
ξ, ζ, η

) − b
(
η, ζ, ξ

)]
=

1
2

{
−1
2

∏[
[ξ, ζ], η

]
+
1
2

∏[∏
[ξ, ζ], η

]
− 2

∏[
R(ξ, ζ), η

]

+
1
2

∏[[
η, ζ

]
, ξ
] − 1

2

∏[∏[
η, ζ

]
, ξ
]
+ 2

∏[
R
(
η, ζ

)
, ξ
]
}

= −1
4

∏[
[ξ, ζ], η

]
+
1
4

∏[∏
[ξ, ζ], η

]
−
∏[

R(ξ, ζ), η
]

+
1
4

∏[[
η, ζ

]
, ξ
] − 1

4

∏[∏[
η, ζ

]
, ξ
]
+
∏[

R
(
η, ζ

)
, ξ
]
.

(5.26)

Therefore,

1
∇la

i
jk = bi

[j|j|k]. (5.27)

6. Computation of the Tensor di
jklm =

2
∇mb

i
jkl

Denote that u · R(η, η) · u−1 by R′′
u(η, η). For the computation of di

jklm
let us firstly compute

R′′
u(η, η).

The following proposition holds.

Proposition 6.1. We have the following:

R′′
u

(
η, η

)
= R

(
η, η

)
+
∏[

u,R
(
η, η

)]
+ 0

(
u, η2

)
. (6.1)

The proof of this proposition is from Section 1. It is clear that ξ + φ(ξ) ∈ Q, and from
Section 4 h′′

u = h1+[u, h1]+0(u), where h1 ∈ h. Furthermore η+R′′
u(η, η) ∈ Q but R′′

u(η, η) ∈ h′′
u

that is why R′′
u(η, η) can be represented as R′′

u(η, η) = h1 + [u, h1] + 0(u), where h1 = R′′
u(η, η)−

[u,R′′
u(η, η)] + 0(u). Let us write η + R′′

u(η, η) as

η + R′′
u

(
η, η

)
=
{(

η +
∏[

u,R′′
u

(
η, η

)])
+
(
R′′

u

(
η, η

) − [
u,R′′

u

(
η, η

)])

+
([

u,R′′
u

(
η, η

)] −
∏[

u,R′′
u

(
η, η

)])}
,

(6.2)

put η +
∏

[u,R′′
u(η, η)] = ξ then

φ(ξ) = R′′
u

(
η, η

) − [
u,R′′

u

(
η, η

)]
+
[
u,R′′

u

(
η, η

)] −
∏[

u,R′′
u

(
η, η

)]

= R′′
u

(
η, η

) −
∏[

u,R′′
u

(
η, η

)]
+ o(u),

(6.3)

from the relation (2.4) we have φ(ξ) = R(ξ, ξ) + S(ξ, ξ, ξ) + 0(3).
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Therefore by comparing the term on the right hand sides of the last two relations, we
obtain that

R′′
u

(
η, η

)
= R

(
η, η

)
+
∏[

u,R
(
η, η

)]
+ 0

(
u, η2

)
. (6.4)

Let
∏′′

u : G → V = TeQ be the projection of G to V parallel to h′′
u. Then we obtain the

following:

ξ + h̃ = ξ̃ + h1 + [u, h1], (6.5)

where ξ, ξ̃ ∈ V and h̃, h1 ∈ h for the search of ξ̃ = ξ̃(ξ, u), we have

ξ + h̃ = ξ̃ + h1 +
∏

[u, h1] +
(
[u, h1] −

∏
[u, h1]

)
, (6.6)

where

ξ = ξ̃ +
∏

[u, h1],

h̃ = h1 + [u, h1] −
∏

[u, h1] = h1 + terms with u.
(6.7)

From these two equalities, we obtain that

ξ̃ = ξ −
∏[

u, h̃
]
+ 0(u). (6.8)

Hence

∏′′
u

(
ξ + h̃

)
= ξ −

∏[
u, h̃

]
. (6.9)

We pass now to the computation of di
jklm

.
From (4.2) it follows that

b
(
ξ, η, ζ

)
= −1

2

∏[[
ξ, η

]
, ζ
]
+
1
2

∏[∏[
ξ, η

]
, ζ
]
− 2

∏[
R
(
ξ, η

)
, ζ
]
, (6.10)

that is why

b′′u
(
ξ, η, ζ

)
= −1

2

∏′′
u

[[
ξ, η

]
, ζ
]
+
1
2

∏′′
u

[
∏

u

[
ξ, η

]
, ζ

]

− 2
∏′′

u

[
R′′

u

(
ξ, η

)
, ζ
]
. (6.11)

From (6.9) it follows that

−1
2

∏′′
u

[[
ξ, η

]
, ζ
]
= −1

2

∏[[
ξ, η

]
, ζ
]
+
1
2

∏[
u,

[[
ξ, η

]
, ζ
]] − 1

2

∏[
u,

∏[[
ξ, η

]
, ζ
]]
. (6.12)
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Furthermore,

1
2

∏′′
u

[∏′′
u

[
ξ, η

]
, ζ
]
=

1
2

∏′′
u

[∏[
ξ, η

]
, ζ
]
− 1
2

∏′′
u

[∏[
u,

[
ξ, η

]]
, ζ
]

+
1
2

∏′′
u

[∏[
u,

∏[
ξ, η

]]
, ζ
]

=
1
2

∏[∏[
ξ, η

]
, ζ
]
− 1
2

∏[
u,

[∏[
ξ, η

]
, ζ
]]

+
1
2

∏[
u,

∏[∏[
ξ, η

]
, ζ
]]

+ o(u).
(6.13)

Finally from (6.1) and (6.9), it follows that

−2
∏′′

u

[
R′′

u

(
ξ, η

)
, ζ
]
= −2

∏′′
u

[
Ru

(
ξ, η

)
, ζ
] − 2

∏′′
u

[∏[
u,R

(
ξ, η

)]
, ζ
]

= −2
∏[

R
(
ξ, η

)
, ζ
]
+ 2

∏[
u,

[
R
(
ξ, η

)
, ζ
]] − 2

∏[
u,

∏[
R
(
ξ, η

)
, ζ
]]

− 2
∏[∏[

u,R
(
ξ, η

)]
, ζ
]
+ o(u)

(6.14)

from (6.12), (6.13), and (6.14), it follows that

d
(
ξ, η, ζ, τ

)
=

2
∇mb

i
jkl

∣∣∣∣
(e,e)

ξjηkζlτm =
d

dt

(
b′′exp tτ

(
ξ, η, ζ

))
∣∣∣∣
t=0

=
1
2

∏[
τ,
[[
ξ, η

]
, ζ
]] − 1

2

∏[
τ,
∏[[

ξ, η
]
, ζ
]] − 1

2

∏[
τ,
[∏[

ξ, η
]
, ζ
]]

+
1
2

∏[
τ,
∏[∏[

ξ, η
]
, ζ
]]

− 1
2

∏[∏[
τ,
[
ξ, η

]]
, ζ
]
+
1
2

∏[∏[
τ,
∏[

ξ, η
]]
, ζ
]

+ 2
∏[

τ,
[
R
(
ξ, η

)
, ζ
]] − 2

∏[
τ,
∏[

R
(
ξ, η

)
, ζ
]] − 2

∏[∏[
τ, R

(
ξ, η

)]
, ζ
]
.

(6.15)

In the theory of 3-Web [17, 37, 39], the following relation is known:

di
jk[lm] = −bijkpa

p

lm
. (6.16)
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Let us verify that:

1
2
(
d
(
ξ, η, ζ, τ

) − d
(
ξ, η, τ, ζ

))

=
1
4

∏[
τ,
[[
ξ, η

]
, ζ
]] − 1

4

∏[
ζ,
[[
ξ, η

]
, τ
]] − 1

4

∏[
τ,
∏[[

ξ, η
]
, ζ
]]

+
1
4

∏[
ζ,
∏[[

ξ, η
]
, τ
]] − 1

4

∏[
τ,
[∏[

ξ, η
]
, ζ
]]

+
1
4

∏[
ζ,
[∏[

ξ, η
]
, τ
]]

+
1
4

∏[
τ,
∏[∏[

ξ, η
]
, ζ
]]

− 1
4

∏[
ζ,
∏[∏[

ξ, η
]
, τ
]]

− 1
4

∏[∏[
τ,
[
ξ, η

]]
, ζ
]

+
1
4

∏[∏[
ζ,
[
ξ, η

]]
, τ
]
+
1
4

∏[∏[
τ,
∏

[ξ, τ]
]
, ζ
]
− 1
4

∏[∏[
ζ,
∏[

ξ, η
]]
, τ
]

+
∏[

τ,
[
R
(
ξ, η

)
, ζ
]] −

∏[
ζ,
[
R
(
ξ, η

)
, τ
]] −

∏[
τ,
∏[

R
(
ξ, η

)
, ζ
]]

+
∏[

ζ,
∏[

R
(
ξ, η

)
, τ
]] −

∏[∏[
τ, R

(
ξ, η

)]
, ζ
]
+
∏[∏[

ζ, R
(
ξ, η

)]
, τ
]

= −1
4

∏[[
ξ, η

]
, [ζ, τ]

]
+
1
4

∏[∏[
ξ, η

]
, [ζ, τ]

]
−
∏[

R
(
ξ, η

)
, [ζ, τ]

]
.

(6.17)

In addition, considering that

[ζ, τ] =
∏

[ζ, τ] +
(
[ζ, τ] −

∏
[ζ, τ]

)
. (6.18)

One obtain that

1
2
(
d
(
ξ, η, ζ, τ

) − d
(
ξ, η, τ, ζ

))
= −1

4

∏[[
ξ, η

]
,
∏

[ζ, τ]
]
+
1
4

∏[∏[
ξ, η

]
,
∏

[ζ, τ]
]

−
∏[

R
(
ξ, η

)
,
∏

[ζ, τ]
]
.

(6.19)

From relations (4.1) and (4.2), it follows that

b
(
ξ, η, a(ζ, τ)

)
=

1
2
b
(
ξ, η,

∏
[ζ, τ]

)

= −1
4

∏[[
ξ, η

]
,
∏

[ζ, τ]
]

+
1
4

∏[∏[
ξ, η

]
,
∏

[ζ, τ]
]
−
∏[

R
(
ξ, η

)
,
∏

[ζ, τ]
]
.

(6.20)

Hence di
jk[lm] = −bi

jkp
a
p

lm
.
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7. Hexagonal Loops

The analytic hexagonal 3-Web and their corresponding loops can be characterize by the
following condition:

bi(jkl) = 0, (7.1)

where b(ξ, η, ζ) = −(1/2)∏[[ξ, η], ζ]+(1/2)
∏

[
∏

[ξ, η], ζ]−2∏[R(ξ, η), ζ], that is, way, bi(jkl) =
0 is equivalent to the following condition:

∏[
R
(
ξ, η

)
, ζ
]
+
∏[

R
(
η, ζ

)
, ξ
]
+
∏[

R(ζ, ξ), η
]
= 0, (7.2)

which can be written as follows:

σ
ξηζ

∏[
R
(
ξ, η

)
, ζ
]
= 0, (7.3)

where σ
ξηζ

is the cyclic sum for ξ, η, ζ.

We have furthermore, for the hexagonal three webs the following relation:

di

(jkl)m = 0. (7.4)

Considering (6.15) and (7.2), one obtain that

σ
ξηζ

∏{[
τ,
[
R
(
ξ, η

)
, ζ
]] −

[∏[
τ, R

(
ξ, η

)]
, ζ
]}

= 0, (7.5)

where σ
ξηζ

is the cyclic sum for ξ, η, ζ.
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