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We study the splitting of domain walls in 5-dimensional flat Minkowski spacetime. To construct a
domainwall structure we utilize a potential of the form V (ϕ) = aϕ2−bϕ4+cϕ6 and for simplicity we
assume the scalar field to be real. We also assume the coefficient a to be temperature-dependent.We
find exact analytical expressions for the energy density of the domainwall and from this expression
we find close analytical form for the separation of the divided domain walls. We find that near
critical temperature TC the domain walls split. At the critical temperature, the domain walls rejoin.
In the region above this critical temperature, the kink solution is nontopological. We find that
the phenomena of splitting of domain walls occurs in this region as well. This effect is especially
manifest near the inflection point of the potential.

1. Introduction

The subject of extra dimension has become an active area of research in the past decade and
many models have been constructed to address fundamental problems of particle physics
and cosmology, for instances the issue of hierarchy and the cosmological constant problem
[1–3].

An essential idea in the Ekpyrotic model of universe [4] is that the hot big bang is
as a result of collisions of two branes. An important feature of this model is nucleation and
splitting of the branes. To realize the phenomena of splitting of branes, a complex scalar field
is coupled to gravity in a five-dimensional world with warped geometry [5]. In this work, a
numerical solution is found and the region close to the critical temperature is studied. In a
recent attempt [6], a real scalar field is utilized to describe brane splitting and localization of
fermions in five dimensions. They consider the case in the Newtonian limit as well as the case
with the inclusion of gravity. Numerical techniques are also employed to obtain their results.

In the present work, we attempt an analytical treatment for the discussion of the
brane splitting, and for simplicity we mainly consider the Newtonian limit. In this limit,
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it is possible to obtain analytical expressions [7, 8] for the equations of motions in the static
case. Having these exact solutions, we compute the energy density of the domain wall, and by
mapping out the structure of the critical points of this quantity we find analytical expressions
for the distance between the separated domain walls.

The plan of this paper is as follows. In Section 2, we describe the model. And we
unravel the critical structure of the potential V (ϕ). In Section 3, we discuss the equation of
motion in the static case. We find the domain wall solutions in different regions and we
compute the energy density for each case. We find that the general form of this energy density
has two symmetric maxima with respect to a minima at the origin. We notice that away from
a critical value of the mass parameter a the solution is a single kink, but the energy density of
this kink is not sharp and has a slight distortion manifested as two maxima of this quantity.
But very close to this critical value of the mass parameter these twomaxima of energy density
comprise two separate kinks. Finally we conclude in Section 4. Technical details are explained
in the appendix.

2. The Model

In this work, we assume a flat background metric, gMN = Diag[+1,−1,−1,−1,−1], where the
capital Latin letters M,N, . . . run over five dimensions and the Greek letters over the four
dimensions. The space coordinates XM = [xμ,w] are decomposed into the 4d subset xμ and
the extra dimension directionw. The action contains only one real scalar field and it is defined
by

S =
∫
dxμdw

[
1
2
gMN∂Mϕ∂Nϕ − V

(
ϕ
)]
, (2.1)

where the potential V (ϕ) is given by

V
(
ϕ
)
= aϕ2 − bϕ4 + cϕ6. (2.2)

a, b and c are real and nonnegative quantities. Now if we assume that all of these parameters
be strictly positive, then the potential will have three local minima, one is ϕ(1) = 0
corresponding to a disordered bulk phase and the other two are at ϕ(2) =−ϕ(3) = v with

v =

√√
b2 − 3ac
3c

+
b

3c
. (2.3)

They correspond to ordered bulk phases. The potential also contains maxima at ϕ(4) = −ϕ(5) =
v1, where

v1 =

√
−
√
b2 − 3ac
3c

+
b

3c
. (2.4)

The parameters a and b may not be constant. In this work, we only investigate the variation
of the mass parameter a on the structure of the domain wall [6]. We also assume that ϕ is
only a function of the extra dimension w, namely, ϕ = ϕ(w).
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Figure 1: The solid curve represents the distance between the two maxima of the energy density denoted
by L (3.6). The value of the mass parameter a is in the range 0.001 ≤ a ≤ 0.999.

3. Effects of the Variation of the Mass Parameter a on
the Thick Brane Solutions

The equation of motion from the action is

d2ϕ

dw2
=

dV
(
ϕ
)

dϕ
. (3.1)

While resorting to numerical solutions [5, 6], the strategy is to prescribe some boundary
conditions. However, in the exact treatment, the boundary conditions are a by-product of
the solutions. We distinguish three different regions.

3.1. The Region below Critical Temperature Tc

In this region, b2 > 4ac. We present the exact solution of (3.1) in the following form:

ϕ =
A tanh(Bw)√

1 −D tanh2(Bw)
, (3.2)

where the coefficients A, B are

B =

√
2a

3D − 2
, A =

√
(1 −D)(3D − 1)

2b
B, (3.3)
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Figure 2: The same as Figure 1 but the mass parameter is parameterized by a = 1 − ε. And we have taken
10−12 ≤ ε ≤ 10−11. Therefore, close to the critical value of ac, the solution is composed of two distinct domain
walls.
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Figure 3: The scalar field (3.2) versus the extra dimensional coordinate which we designate byw. The mass
parameter is parameterized by a = 1−ε. The solid curve corresponds to the case where ε = 10−8, the dashed
curve is for ε = 10−10, and finally the dotted curve is for ε = 10−12.
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Figure 4: The dashed curve represents the scalar field (3.7) when a = ac. The solid curves shows the
associated energy density (3.5).

and finally the coefficient D is given by

D =
1
3

[
1 +

b√
b2 − 3ac

]
. (3.4)

The energy density of the scalar field is given by

ρ(w) =
1
2

(
dϕ

dw

)2

+ V
(
φ(w)

)
. (3.5)

In the appendix, we show that this function has two maxima which are symmetric with
respect tow = 0. We also compute the distance between these two maxima, which is given by

L =

√
3c

2ξ(b + ξ)
Ln

[√
ac + b − ξ√
ac − b − ξ

]
, (3.6)

where ξ =
√
b2 − 3ac. If these maxima are well separated then they designate the case of two

separate domain walls. In this work, all of the figures are drawn for the case b = 2, c = 1,
and we only consider the effect of variation of the mass parameter a on physical quantities.
Figure 1 shows the separation between two maxima L versus a for 0.001 < a < 0.999. We
see that close to the critical point ac = 1, the separation between domain walls is increased.
To investigate this region, we assume a = 1 − ε with small positive ε. Figure 2 shows this
phenomena of domain wall splitting when 10−12 < ε < 10−11.

Figure 3 shows the scalar field for ε = 10−8 (solid curve), ε = 10−10 (dashed curve),
and ε = 10−12 (dotted curve). Our analytical results confirm the previous result that near
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Figure 5: The profile of a nontopological solution (3.8). The mass parameter is a = 1.2.

the phase transition the domain wall splits to two domain walls, and each of these domain
walls connects an ordered phase to a common disordered phase [6].

3.2. At Critical Temperature Tc

The case of critical temperature corresponds to ac = (b2/(4c)). From (3.4), the value of D
becomes unity, and hence from (3.3) the coefficient A is identically zero. Therefore, the
solution as described by (3.2) does not exist at critical temperature. The treatment of [6] is
numerical and its discussion in the case of a = ac is incorrect. Namely its discussion is valid
only for a < ac. The scalar field in this case is given by

ϕ =
√

a

b

[
1 + tanh

(√
2aw

)]
. (3.7)

Figure 4 shows the shape of the scalar field (dashed curve), and the associated energy density
(solid curve) is shown. The splitting of the domain walls disappears at this temperature and
we have a scalar field which connects an ordered phase to a disordered phase.

3.3. The Region above Critical Temperature Tc

Here we will discuss the region T > Tc. The scalar field in this case is given by

ϕ =
A1√

1 −D1tanh
2(B1w)

, (3.8)
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Figure 6: The profile of energy density of the nontopological solution of previous figure as a function of
extra dimension coordinate w. This profile also has two maxima.

where

D1 =
ξ

ac
(b − ξ), B1 =

√
2aD1

3 − 2D1
, A1 =

√
a(1 −D1)(3 −D1)

b(3 − 2D1)
(3.9)

and again ξ =
√
b2 − 3ac.

Figure 5 shows the scalar field for the case a = 1.2. This kink does not connect two
different minima and hence is a nontopological solution. Figure 6 shows the energy density
for this case.

The distance between the two maxima of the energy density in this region is

L1 =
1
B1

Ln
[
b − ξ +

√
ac

b − ξ − √
ac

]
. (3.10)

The structure of critical points of the potential as stated in Section 2 holds if 3ac < b2.
Therefore, themass parameter is bounded from above. Hence in this situation, 3ac < b2 < 4ac.
Figure 7 shows the the variation of L1 versus a. We see that away from the boundaries we
have two maxima but the distance between these maxima is such that we do not have two
separate kinks. However, again we see that close to the boundaries we have an enhancement
in the distance between the two kinks. To study this effect, we assume a = 1 + ε. Figure 8
represents this effect.

With b = 2 and c = 1 we will have a < (4/3). By choosing a = (4/3)−ε, we can have an
estimate of splitting of domain wall near the inflection point (b2 = 3ac). Figure 9 shows this
result.
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Figure 7: The distance between two maxima of the energy density of the nontopological solution (3.10)
versus a. We see that the phenomena of splitting of domain walls occurs near the boundaries.
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Figure 8: The distance between the two maxima of the energy density of the nontopological solution (3.10)
versus ε. Here the mass parameter is parameterized by a = 1 + ε. Large values of L1 corresponds to the
existence of two separate domain walls.
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Figure 9: The distance between the two maxima of the energy density of the nontopological solution (3.10)
versus ε, where the mass parameter is parameterized by a = (4/3) − ε. We see that the phenomena of
splitting of domain walls occurs near this boundary as well.

4. Conclusions

In this paper, we have provided an analytical treatment of the phenomena of domain wall
splitting. For simplicity, we have neglected gravity in this paper. In the case of gravity, the
expression for the matter energy density is

T00 =

(
1
2

(
dϕ

dw

)2

+ V

)
e2A, (4.1)

where A(w) is the warp factor and it is found from the solution of the Einstein equations.
In general, it is not easy to obtain an analytical expression for the warp factor for the ϕ6

potential. For A(w), we suppose that an analytical treatment presented here, with inclusion
of gravity, is not possible due to the complicated nature of T00. However the numerical work
on this subject [5, 6] demonstrates that this phenomena occurs with inclusion of gravity as
well. But these studies do not address the case of critical temperature or beyond the critical
temperature.

We only considered the static case in this work. It will be of interest to consider the
time-dependent solutions and its implications.We hope to report on these issues in the future.



10 ISRN High Energy Physics

Appendix

Profile of the Energy Density of the Scalar Field

From (3.5), we can obtain

dρ

dw
= 2

dV

dϕ

dϕ

dw
. (A.1)

At points w1 = −∞, w2 = ∞, we have dϕ/dw = 0. Therefore, they are the extremal points of
the function ρ(w). To see the nature of these extremal points we take derivative of (A.1)with
respect to w, and we have

d2ρ

dw2
= 2

[
d2V

dϕ2

(
dϕ

dw

)2

+
(
dV

dϕ

)2
]
. (A.2)

But for w1 and w2, the first term in the right-hand side of (A.2) vanishes. So for these points
d2ρ/dw2 > 0, and they are the two minima for the function ρ(w). A well-known result
that a topological kink connects two distinct minima of the potential [9]. We can repeat the
argument for w3 = 0 and show that this point is also a minima of the energy density profile.
The energy density of the scalar field versus w has three minima: w1 = −∞, w2 = ∞, and
w3 = 0. These are associated to the three minima of the V (ϕ). So from (3.2), we have

v =
A√
1 −D

. (A.3)

The energy density has two maxima, wm+ and wm−, for the case of a < ac, their values are
obtained from

±v1 =
A tanh(Bw)√

1 −D tanh2(Bw)
. (A.4)

We can see that at these points dρ/dw = 0 as dV/dϕ = 0 at ϕ = v1. And d2ρ/dw2 < 0 as
d2V/dϕ2 is negative for ϕ = ±v1. Therefore wm+ and wm− are indeed the two maxima for
the energy density. So we have managed to map out the structure of the critical point of the
function ρ(w). Now utilizing (A.3) and (A.4), we find the separation of the two maxima L as
L = wm+ −wm− and the result is

L =

√
3c

2ξ(b + ξ)
Ln

[√
ac + b − ξ√
ac − b − ξ

]
. (A.5)

But when a > ac, the values of wm+ and wm− are determined from

v1 =
A1√

1 −D1tanh
2(B1w)

. (A.6)
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And by repeating the same procedure, we find the distance between the two maxima of the
energy density for the nontopological solution is

L1 =

√
3 − 2D1

2aD1
Ln

[√
ac + b − ξ

b − √
ac − ξ

]
. (A.7)
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