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We discuss the triviality and spontaneous symmetry breaking scenario where the Higgs
boson without self-interaction coexists with spontaneous symmetry breaking. We argue that
nonperturbative lattice investigations support this scenario. Moreover, from lattice simulations,
we predict that the Higgs boson is rather heavy. We estimate the Higgs boson mass mH = 754 ± 20
(stat) ±20 (syst)GeV and the Higgs total width Γ(H) � 340GeV.

1. Introduction

A cornerstone of the Standard Model is the mechanism of spontaneous symmetry breaking
that, as is well known, is mediated by the Higgs boson. Then, the discovery of the Higgs
boson is the highest priority of the Large Hadron Collider (LHC) [1, 2].

Usually the spontaneous symmetry breaking in the Standard Model is implemented
within the perturbation theory which leads to predict that the Higgs boson mass squared,
m2

H , is proportional to λRv
2
R, where vR is the known weak scale (246GeV) and λR is the

renormalized scalar self-coupling. However, it has been conjectured since long time [3] that
self-interacting four dimensional scalar field theories are trivial, namely, λR → 0 when
Λ → ∞ (Λ ultraviolet cutoff). Even though no rigorous proof of triviality exists, there exist
several results which leave little doubt on the triviality conjecture [4–7]. As a consequence,
within the perturbative approach, these theories represent just an effective description,
valid only up to some cut-off scale Λ, for without a cutoff, there would be no scalar self-
interactions and without them no symmetry breaking. However, within the variational
Gaussian approximation, it has been suggested in [8] that this conclusion could not be true.
The point is that the Higgs condensate and its quantum fluctuations could undergo different
rescalings when changing the ultraviolet cutoff. Therefore, the relation between mH and the
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physical vR is not the same as in perturbation theory. Indeed, according to this picture, one
expects that the condensate rescales as Zϕ ∼ lnΛ in such a way to compensate the 1/ lnΛ
from λR. As a consequence, the ratio mH/vR would be a cutoff-independent constant. In
other words, one should have

mH = ξvR, (1.1)

where ξ is a cutoff-independent constant.
It is noteworthy to point out that (1.1) can be checked by nonperturbative numerical

simulations of self-interacting four dimensional scalar field theories on the lattice. Indeed, in
previous studies [9, 10], we found numerical evidences in support of (1.1). Moreover, our
numerical results showed that the extrapolation to the continuum limit leads to the quite
simple result:

mH � πvR, (1.2)

pointing to a rather massive Higgs boson without self-interactions (triviality).
The plan of the paper is as follows. In Section 2, we illustrate that triviality could

coexist with spontaneous symmetry breaking within the simplest self-interacting scalar field
theory in four dimensions. In Section 3, we briefly review the lattice indications for the
nonperturbative interpretation of triviality in self-interacting four-dimensional scalar field
theories and furnish our best numerical determination of the constant ξ in (1.1). Section 4
is devoted to discuss some experimental signatures of the Higgs boson at LHC. Finally, our
conclusions are drawn in Section 5.

2. Triviality and Spontaneous Symmetry Breaking

In this section, we discuss the triviality and spontaneous symmetry breaking scenario within
the simplest scalar field theory, namely, a massless real scalar field Φ with quartic self-
interaction λΦ4 in four dimensions:

L =
1
2
(
∂μΦ0

)2 − 1
4
λ0Φ4

0, (2.1)

where λ0 andΦ0 are the bare coupling and field, respectively. As it is well known [11, 12], the
one-loop effective potential is given by summing the vacuum diagrams:

V1−loop
(
φ0
)
=

1
4
λ0φ

4
0 −

i

2

∫
d4k

(2π)4
ln
[
−k2

0 + �k2 + 3λ0φ2
0 − iε

]
. (2.2)

Integrating over k0 and discarding a (infinite) constant give

V1−loop
(
φ0
)
=

1
4
λ0φ

4
0 +

1
2

∫
d3k

(2π)3

√
�k2 + 3λ0φ2

0. (2.3)
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This last equation can be interpreted as the vacuum energy of the shifted field:

Φ0 = φ0 + η (2.4)

in the quadratic approximation. Indeed, in this approximation, the hamiltonian of the fluc-
tuation η over the background φ0 is

H0 =
1
2
(
Πη

)2 +
1
2

(
�∇η
)2

+
1
2

(
3λ0φ2

0

)
η2 +

1
4
λ0φ

4
0. (2.5)

Introducing an ultraviolet cutoff Λ, we obtain, from(2.3)

V1−loop
(
φ0
)
=

1
4
λ0φ

4
0 +

ω4

64π2
ln

(
ω2

Λ2

)

, ω2 = 3λ0φ2
0. (2.6)

It is easy to see that the one-loop effective potential displays a minimum at

3λ0v2
0 =

Λ2

√
e
exp

[

−16π
2

9λ0

]

. (2.7)

Moreover,

V1−loop(v0) = − ω4

128π2
, (2.8)

so that

V1−loop
(
φ0
)
=

ω4

64π2

[

ln

(
φ2
0

v2
0

)

− 1
2

]

. (2.9)

According to the renormalization group invariance, we impose that, for Λ → ∞,

[
Λ

∂

∂Λ
+ β

∂

∂λ0
+ γφ0

∂

∂φ0

]
V1−loop

(
φ0
)
= 0. (2.10)

Within perturbation theory, one finds

γ = 0, β =
9

8π2
λ20. (2.11)

Thus, the one-loop corrections have generated spontaneous symmetry breaking. However,
the minimum of the effective potential lies outside the expected range of validity of the one-
loop approximation, and it must be rejected as an artefact of the approximation. On the
other hand, as discussed in Section 1, there is no doubt on the triviality of the theory. As
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a consequence, within perturbation theory, there is no room for symmetry breaking.
However, following the suggestion of [8], we argue below that spontaneous symmetry
breaking could be compatible with triviality. The arguments go as follows. Write

Φ0 = φ0 + η, (2.12)

where φ0 is the bare uniform scalar condensate; thus, triviality implies that the fluctuation
field η is a free field with mass ω(φ0). This means that the exact effective potential is

Veff
(
φ0
)
=

1
4
λ0φ

4
0 +

1
2

∫
d3k

(2π)3

√
�k2 +ω2

(
φ0
)
=

1
4
λ0φ

4
0 +

ω4(φ0
)

64π2
ln

(
ω2(φ0

)

Λ2

)

. (2.13)

Moreover, the mechanism of spontaneous symmetry breaking implies that the mass of the
fluctuation is related to the scalar condensate as

ω2(φ0
)
= 3λ̃φ2

0, λ̃ = a1λ0, (2.14)

where a1 is some numerical constant.
Now, the problem is to see if it exists the continuum limitΛ → ∞. Obviously, we must

have

[
Λ

∂

∂Λ
+ β(λ0)

∂

∂λ0
+ γ(λ0)φ0

∂

∂φ0

]
Veff
(
φ0
)
= 0. (2.15)

Note that now we cannot use perturbation theory to determine β(λ0) and γ(λ0). As in the
previous case, the effective potential displays a minimum at

3λ̃v2
0 =

Λ2

√
e
exp

[

−16π
2

9λ̃

]

,

Veff(v0) = − m4
H

128π2
, m2

H = ω2(v0).

(2.16)

Using (2.15) at the minimum v0, we get

[
Λ

∂

∂Λ
+ β(λ0)

∂

∂λ0

]
m2

H = 0, (2.17)

which in turn gives

β(λ0) = −a1
9

8π2
λ̃2. (2.18)
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This last equation implies that the theory is free asymptotically for Λ → ∞ in agreement
with triviality:

λ̃ ∼ 16π2

9a1

1
ln
(
Λ2/m2

H

) . (2.19)

Inserting now (2.18) into (2.15), we obtain

γ(λ0) = a2
1

9
16π2

λ̃. (2.20)

This last equation assures that λ̃φ2
0 is a renormalization group invariant. Rewriting the

effective potential as

Veff
(
φ0
)
=

(
3λ̃φ2

0

)2

64π2

[

ln

(
3λ̃φ2

0

m2
H

)

− 1
2

]

, (2.21)

we see that Veff is manifestly renormalization group invariant.
Let us introduce the renormalized field ηR and condensate φR. Since the fluctuation η

is a free field, we have ηR = η, namely

Zη = 1. (2.22)

On the other hand, for the scalar condensate, according to (2.20)we have

φR = Z−1/2
φ φ0, Zφ ∼ λ−10 ∼ ln

(
Λ
mH

)
. (2.23)

As a consequence, we get that the physical mass mH is finitely related to the renormalized
vacuum expectation scalar field value vR:

mH = ξvR. (2.24)

It should be clear that the physical mass mH is an arbitrary parameter of the theory
(dimensional transmutation). On the other hand, the parameter ξ being a pure number can
be determined in the nonperturbative lattice approach.
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3. The Higgs Boson Mass

The lattice approach to quantum field theories offers us the unique opportunity to study
a quantum field theory by means of nonperturbative methods. Starting from the classical
Lagrangian (2.1), one obtains the lattice theory defined by the Euclidean action:

S =
∑

x

⎡

⎣1
2

∑

μ̂

(
Φ
(
x + μ̂

) −Φ(x)
)2 +

r0
2
Φ2(x) +

λ0
4
Φ4(x)

⎤

⎦, (3.1)

where x denotes a generic lattice site and, unless otherwise stated, lattice units are
understood. It is customary to perform numerical simulations in the so-called Ising limit.
The Ising limit corresponds to λ0 → ∞. In this limit, the one-component scalar field theory
becomes governed by the lattice action

SIsing = −κ
∑

x

∑

μ

[
φ
(
x + êμ

)
φ(x) + φ

(
x − êμ

)
φ(x)

]
(3.2)

with Φ(x) =
√
2κ φ(x) and where φ(x) takes only the values +1 or −1.

It is known that there is a critical coupling [13]:

κc = 0.074834(15), (3.3)

such that for κ > κc the theory is in the broken phase, while, for κ < κc, it is in the symmetric
phase. The continuum limit corresponds to κ → κc where mlatt ≡ amH → 0, a being the
lattice spacing.

As discussed in Section 1, the triviality of the scalar theory means that the
renormalized self-coupling vanishes as 1/ ln(Λ2/m2

H) when Λ → ∞. As a consequence, in
the continuum limit the theory admits a Gaussian fixed point.

On the lattice, the ultraviolet cutoff is Λ = π/a so that we have

λ ∼ 1
ln(Λ/mH)

∼ 1
ln(π/amH)

=
1

ln(π/mlatt)
. (3.4)

The perturbative interpretation of triviality [4, 5] assumes that, in the continuum limit, there
is an infrared Gaussian fixed point where the limit mlatt → 0 corresponds to mH → 0. On
the other hand, according to Section 2, in the triviality and spontaneous symmetry breaking
scenario, the continuum dynamics is governed by an ultraviolet Gaussian fixed point where
mlatt → 0 corresponds to a → 0. As we discuss below, these two different interpretations of
triviality lead to different logarithmic correction to the Gaussian scaling laws which can be
checked with numerical simulations on the lattice.

In [10], extensive numerical lattice simulations of the one-component scalar field
theory in the Ising limit have been performed. In particular, using the Swendsen-Wang [14]
and Wolff [15] cluster algorithms, the bare magnetization (vacuum expectation value):

vlatt =
〈∣∣φ
∣∣〉, φ ≡ 1

L4

∑

x

φ(x), (3.5)
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Figure 1: We show the lattice data for v2
lattχlatt together with the fit (3.9) (solid line) and the two-loop

fit (3.11) (dashed line) where the fit parameters a1 and a2 are allowed to vary inside their theoretical
uncertainties (3.12).

and the bare zero-momentum susceptibility:

χlatt = L4
[〈∣∣φ

∣∣2
〉
− 〈∣∣φ∣∣〉2

]
, (3.6)

have been computed. According to the perturbative scheme of [4, 5], one expects

v2
lattχlatt ∼ |ln(κ − κc)|, κ −→ κ+

c . (3.7)

On the other hand, since, in the triviality and spontaneous symmetry breaking scenario, one
expects that Zϕ ∼ ln(Λ/mH) ∼ | ln(κ − κc)|, we have

v2
lattχlatt ∼ |ln(κ − κc)|2, κ −→ κ+

c . (3.8)

The predictions in (3.8) can be directly compared with the lattice data reported in [10] and
displayed in Figure 1. We fitted the data to the 2-parameter form:

v2
lattχlatt = α|ln(κ − κc)|2. (3.9)

We obtain a rather good fit of the lattice data (full line in Figure 1) with

α = 0.07560(49), κc = 0.074821(12), χ2
dof � 1.5. (3.10)
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Note that our precise determinations of the critical coupling κc in (3.10) are in good
agreement with the value obtained in [13] (see (3.3)).

On the other hand, the prediction based on 2-loop renormalized perturbation theory
is [5, 16] (l = | ln(κ − κc)|):

[
v2
lattχlatt

]

2-loop
= a1

(
l − 25

27
ln l
)
+ a2 (3.11)

together with the theoretical relations:

a1 = 1.20(3), a2 = −1.6(5). (3.12)

We fitted the lattice data to (3.11) by allowing the fit parameters a1 and a2 to vary inside their
theoretical uncertainties (3.12). The fit resulted in (dashed line in Figure 1)

a1 = 1.17, a2 = −2.10, κc = 0.074800(1), χ2
dof � 132. (3.13)

It is evident from Figure 1 that the quality of the 2-loop fit is poor. However, these results
have been criticized by the authors of [16] and have given rise to an intense debate in the
recent literature [17–21].

Additional numerical evidences would come from the direct detection of the con-
densate rescaling Zφ ∼ | ln(κ − κc)| on the lattice. To this end, we note that

Zφ ≡ 2κm2
lattχlatt. (3.14)

In Figure 2 we display the lattice data obtained in [10] for Zφ, as defined in (3.14) versusmlatt

reported in [5] at the various values of κ. For comparison, we also report the perturbative
prediction of Zη taken from [5]. We try to fit the lattice data with

Zφ = A ln
(

π

mlatt

)
. (3.15)

Indeed, we obtain a satisfying fit to the lattice data (solid line in Figure 2):

A = 0.498(5), χ2
dof � 4.1. (3.16)

By adopting this alternative interpretation of triviality, there are important phenom-
enological implications. In fact, assuming to know the value of vR, the ratio ξ = mH/vR is
now a cutoff-independent quantity. Indeed, the physical vR has to be computed from the bare
vB through Z = Zϕ rather than through the perturbative Z = Zη. In this case, the perturbative
relation [5]:

mH

vR
≡
√

λR
3
, (3.17)
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Figure 2: The lattice data for Zφ, as defined in (3.14), and the perturbative prediction Zη versus mlatt. The
solid line is the fit to (3.15).

becomes

mH

vR
=

√
λR
3

Zϕ

Zη
≡ ξ (3.18)

obtained by replacing Zη with Zϕ in [5] and correcting for the perturbative Zη. Using the
values of λR reported in [5] and our values of Zϕ, we display, in Figure 3, the values ofmH as
defined through (3.18) versus mlatt for vR = 246GeV. The error band corresponds to a one
standard deviation error in the determination of mH through a fit with a constant function.
As one can see, the Zϕ ∼ lnΛ trend observed in Figure 2 compensates the 1/ lnΛ from λR so
that ξ turns out to be a cutoff-independent constant:

ξ = 3.065(80), χ2
dof � 3.0, (3.19)

which corresponds to

mH = 754 ± 20 ± 20GeV, (3.20)

where the last error is our estimate of systematic effects.
One could object that our lattice estimate of the Higgs mass (3.20) is not relevant

for the physical Higgs boson. Indeed, the scalar theory relevant for the Standard Model is
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Figure 3: The values of mH as defined through (3.18) versus mlatt assuming vR = 246GeV. The error
band corresponds to one standard deviation error in the determination ofmH through a fit with a constant
function.

the O(4)-symmetric self-interacting theory. However, the Higgs mechanism eliminates three
scalar fields leaving as physical Higgs field the radial excitation whose dynamics is described
by the one-component self-interacting scalar field theory. Therefore, we are confident that our
determination of the Higgs mass applies also to the Standard Model Higgs boson.

4. The Higgs Physics at LHC

Recently, both the ATLAS and CMS collaborations [22, 23] reported the experimental results
for the search of the Higgs boson at the Large Hadron Collider running at

√
s = 7TeV, based

on a total integrated luminosity between 1 fb−1 and 2.3 fb−1.
It is worthwhile to briefly discuss the main physical properties of our proposal for

the trivial Higgs boson. For Higgs mass in the range 700 − 800GeV, the main production
mechanism at LHC is the gluon fusion gg → H. The theoretical estimate of the production
cross-section at LHC for centre of mass energy

√
s = 7TeV is [24]

σ
(
gg −→ H

) � 0.06 − 0.14 pb, 700GeV < mH < 800GeV. (4.1)

The gluon coupling to the Higgs boson in the StandardModel is mediated by triangular loops
of top and bottom quarks. Since the Yukawa coupling of the Higgs particle to heavy quarks
grows with quark mass, thus, balancing the decrease of the triangle amplitude, the effective
gluon coupling approaches a nonzero value for large loop-quark masses. On the other hand,
we argued that the Higgs condensate rescales withZφ. This means that if the fermions acquire
a finite mass through the Yukawa couplings, then we are led to conclude that the coupling
of the physical Higgs field to the fermions could be very different from the Standard Model
Higgs boson. On the other hand, the coupling of the Higgs field to the gauge vector bosons is
fixed by the gauge symmetries. So the coupling of our Higgs boson to the gauge vector bosons



ISRN High Energy Physics 11

is the same as for the Standard Model Higgs boson. For large Higgs masses, the vector-boson
fusion mechanism becomes competitive to gluon fusion Higgs production [24]:

σ
(
W+W− −→ H

) � 0.02 − 0.03 pb, 700GeV < mH < 800GeV. (4.2)

The main difficulty in the experimental identification of a very heavy Standard Model
Higgs (mH > 650GeV) resides in the large width which makes impossible to observe a mass
peak. However, in the triviality and spontaneous symmetry breaking scenario, the Higgs self-
coupling vanishes so that the decay width is mainly given by the decays into pairs of massive
gauge bosons. Since the Higgs is trivial, there are no loop corrections due to the Higgs self-
coupling and we obtain, for the Higgs total width

Γ(H) � Γ
(
H −→ W+W−) + Γ

(
H −→ Z0Z0

)
, (4.3)

where [1, 2]

Γ
(
H −→ W+W−) � GFm

3
H

8
√
2π

√
1 − 4xW

(
1 − 4xW + 12x2

W

)
, xW =

m2
W

m2
H

,

Γ
(
H −→ Z0Z0

)
� GFm

3
H

16
√
2π

√
1 − 4xZ

(
1 − 4xZ + 12x2

Z

)
, xZ =

m2
Z

m2
H

.

(4.4)

Assuming mH � 750GeV,mW � 80GeV, andmZ � 91GeV, we obtain

Γ(H) � 340GeV. (4.5)

A thorough discussion of the experimental signatures of our trivial Higgs is presented
in [25] where we compare our proposal with the recent data from ATLAS and CMS
collaborations based on a total integrated luminosity between 1 fb−1 and 2.3 fb−1. In fact, we
argue that the available experimental data seem to be consistent with our scenario.

5. Conclusions

The Standard Model requires the existence of a scalar Higgs boson to break electroweak
symmetry and provide mass terms to gauge bosons and fermion fields. Usually the
spontaneous symmetry breaking in the Standard Model is implemented within the
perturbation theory which leads to predict that the Higgs bosonmass squared is proportional
to the self-coupling. However, there exist several results which point to vanishing scalar
self-coupling. Therefore, within the perturbative approach, scalar field theories represent
just an effective description valid only up to some cutoff scale, for without a cutoff, there
would be no scalar self-interactions and without them no symmetry breaking. In other
words, spontaneous symmetry breaking is incompatible with strictly local scalar fields in
the perturbative approach.

In this paper, we have shown that local scalar fields are compatible with spontaneous
symmetry breaking. In this case, the continuum dynamics is governed by an ultraviolet
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Gaussian fixed point (triviality) and a nontrivial rescaling of the scalar condensate. We
argued that nonperturbative lattice simulations are consistent with this scenario. Moreover,
we find that the Higgs boson is rather heavy. Finally, the nontrivial rescaling of the Higgs
condensate suggests that the whole issue of generation of fermion masses through the
Yukawa couplings must be reconsidered.
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