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In view of the new data from the Daya Bay and RENO collaborations, King has presented a very
natural deformation of tri-bimaximal mixing. Here, we show that L/E flatness of the e-like event
ratio in the atmospheric neutrino data, when coupled with King’s observation that the smallest
neutrino mixing angle, θ13, seems to be related to the largest quark mixing angle (the Cabibbo
angle θC), leading to a CP violating tri-bimaximal-Cabibbo mixing. King’s tri-bimaximal-Cabibbo
mixing follows as a leading order approximation from our result.

The precise form of the neutrino mixing matrix, U, that defines the relationship between the
flavour and mass eigenstates, |ν�〉 and |νj〉, respectively [1, 2], reads

|ν�〉 =
∑

j

U∗
�j

∣∣νj
〉
, � = e, μ, τ, j = 1, 2, 3, (1)

and the knowledge of the masses for the underlying mass eigenstates arises from yet
unknown physics. Nevertheless, once the parameters that determine the mixing matrix
and the mass-squared differences are deciphered from the data, one can derive their
phenomenological consequences on supernova explosions [3–6], on the synthesis of elements
[7], on the cosmic microwave background, and, the distribution of large-scale structure [8].
In particular, if the neutrino mixing angle θ13 /= 0, then one can obtain CP violation in the
neutrino sector with many interesting physical consequences [9–11].

The T2K, MINOS, and Double Chooz indications that the smallest neutrino mixing
angle θ13 may be nonzero [12–14] has now been confirmed by the results of the Daya Bay
and RENO collaborations [15, 16]. King has made the observation [17] that the smallest
neutrino mixing angle θ13 seems to be related to the largest quark mixing angle, the Cabibbo
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angle θC [18], or equivalently to the Wolfenstein parameter, λ = 0.2253 ± 0.0007 [2, 19]: (It
is worth noting that Mohapatra and Smirnov had earlier conjectured King’s observation [20,
Section 3.1].)

θ13(or, θreac) = arcsin
(
sin θC√

2

)
= arcsin

(
λ√
2

)
. (2)

To this observation, we now add that the L/E, where L is the neutrino source-detector
distance and E is the neutrino energy, flatness of the e-like event ratio observed for
atmospheric neutrinos [21] requires that

θ23(or, θatm) =
π

4
, δ = ±π

2
. (3)

This observation was first made in reference [22]. The value of δ obtained in [22] was also
introduced recently as an Ansatz in [23].

Global analysis of neutrino oscillation data by two independent groups shows: (a) δ to
be (0.83+0.54−0.64)π for the normal mass hierarchy while allowing for the full [0, 2π] range for the
invertedmass hierarchy [24], (b) δ ≈ π with no significant difference between the normal and
inverted mass hierarchies [25]. A detailed study of these two papers reveals that there is no
statistically significant indication which disfavours δ = ±π/2. Regarding θ23: (a) the first of
the mentioned groups obtains sin2θ23 = 0.49+0.08−0.05 for the normal mass hierarchy and sin2θ23 =
0.53+0.05−0.07 for the inverted mass hierarchy (these values are consistent with θ23 = π/4), while
(b) the second group finds a slight preference for θ23 < π/4.

Both groups agree with the tri-bimaximal mixing value for the remaining angle [24, 25]

θ12
(
or, θ⊙

)
= arcsin

(
1√
3

)
. (4)

With all the angles and phases thus fixed, the neutrino mixing matrix for the choice δ = π/2
in (3) takes the form
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
3

(
1 − λ2

2

)1/2 √
1
3

(
1 − λ2

2

)1/2

i
1√
2
λ

− 1√
6
(1 − iλ)

1√
3

(
1 + i

1
2
λ

)
1√
2

(
1 − λ2

2

)1/2

1√
6
(1 + iλ) − 1√

3

(
1 − i

1
2
λ

)
1√
2

(
1 − λ2

2

)1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Its counterpart, U−, for δ = −π/2 is obtained by letting i → −i in U+. As a measure of CP
violation, following [2], we define the asymmetries

A
(�′�)
CP := P(ν� −→ ν�′) − P(ν� −→ ν�′) (6)
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and find

A
(μe)
CP = −A(τe)

CP = A
(τμ)
CP

= ∓1
3
λ
(
2 − λ2

)(
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L + sin
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13
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L + sin
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)
,

(7)

where all symbols have their usual meaning. The ∓ sign holds for δ = ± π/2. For λ = 0, or
equivalently θ13 = 0, theU± matrix reduces to the standard tri-bimaximal mixing matrix [26].
(This may be compared with [27, equation (26)] that gives an interpolating matrix with θ⊙

as a variable. In one limit the interpolating matrix gives the bimaximal mixing [28–30] and in
another it yields tri-bimaximal mixing [26].)

The result (7) is modified by matter effects [31, 32]. Its general features are studied in
detail by various authors [11, 33–35]. In gravitational environment, the following argument
suggests that onemust expect a significant modification to the result (7). Neutrino oscillations
provide us with a set of flavour oscillation clocks. These clocks must redshift according to
the general expectations of the theory of general relativity. In gravitational environments of
neutron stars, the dimensionless gravitational potential is ΦNS

grav ≈ 0.2 (cf. for Earth, Φ⊕
grav ≈

6.95×10−10). For a given source-detector distance and a given energy, the asymmetriesACP for
supernovae modeling must be accordingly modified [36–41] at the 20% level, or thereabouts.

An examination of theU± matrix immediately shows that the expectation values of the
νμ and ντ masses are identical. To O(λ2) the U− obtained above reproduces King’s result [17,
equation (8)] for δ = π/2. The presentedU± matrix not only accommodates the implications
of the Daya Bay and RENO collaborations, but also the L/E flatness of the e-like event ratio
seen in the atmospheric neutrino data while respecting all other known data on neutrino
oscillations.
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