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One of the most important issues in human motion analysis is the tracking and 3D reconstruction of human motion, which
utilizes the anatomic points’ positions. These points can uniquely define the position and orientation of all anatomical segments.
In this work, a new method is proposed for tracking and 3D reconstruction of human motion from the image sequence of a
monocular static camera. In this method, 2D tracking is used for 3D reconstruction, which a database of selected frames is used
for the correction of tracking process. The method utilizes a new image descriptor based on discrete cosine transform (DCT),
which is employed in different stages of the algorithm. The advantage of using this descriptor is the capabilities of selecting proper
frequency regions in various tasks, which results in an efficient tracking and pose matching algorithms. The tracking and matching
algorithms are based on reference descriptor matrixes (RDMs), which are updated after each stage based on the frequency regions
in DCT blocks. Finally, 3D reconstruction is performed using Taylor’s method. Experimental results show the promise of the

algorithm.

1. Introduction

One of the challenging issues in machine vision and com-
puter graphic applications is the modeling and animation
of human characters. Especially body modeling using video
sequences is a difficult task that has been investigated a lot in
the last decade. Nowadays, 3D human models are employed
in various applications like movies, video games, ergonomic,
e-commerce, virtual environments, and medicine.

3D scanners [1, 2] and video cameras are two sample
tools that have been presented for 3D human model recon-
struction. 3D scanners have limited flexibility and freedom
constraints. In addition, the higher cost of these devices put
them out of reach for general use.

Video cameras are nonintrusive and flexible devices for
extraction of human motion. However, due to the high
number of degrees of freedom for the human body, human
motion tracking is a difficult task. In addition, self-occlusion
of human segments and their unknown kinematics make the
human tracking algorithm more challenging.

Existing vision-based approaches for human motion
analysis may be divided in two groups, including model-

based and model-free methods [3]. In model-based methods
[4-8], a priori known human model is employed to represent
human joints and segments as well as their kinematics.
Model-free approaches do not employ a predefined human
model for motion analysis; instead, the motion informa-
tion is derived directly from video sequences. Model-free
approaches mostly use a database of exemplars [9] or a
learning machine [10, 11] for motion reconstruction. They
are mostly restricted to known environments or images taken
from a known viewpoint. Model-based approaches are more
general and typically support the viewpoint independent
processing or multiple viewpoints. However, they need
initialization.

Various algorithms may also be divided into different cat-
egories based on the acquisition system. Some approaches are
based on monocular cameras [4-14], while others employ
multicamera video streams [15-20]. Also, some approaches
benefit from calibrated views or cameras [15-20], while
others utilize uncalibrated images [5-14].

Nowadays, monocular uncalibrated video sequences
such as sports video footage are the most common source



of human motions. Generally, 3D pose estimation is not
possible using a monocular camera. Therefore, it is necessary
to employ special assumptions for 3D pose estimation. Fur-
thermore, 3D reconstruction of human motion poses more
additional difficulties like self-occlusion, high-dimensional
representation, lack of calibration, and articulated human
motion to name a few.

To compensate the lack of enough information for
3D reconstruction of human motion using uncalibrated
monocular video sequences, different approaches considered
some restrictive conditions. Some algorithms assumed the
manual specification of key features such as joints positions
or segments length [5, 21]. Furthermore, some algorithms
employed a database of different motions from various
human subjects to facilitate motion reconstruction [9, 13,
14].

Different algorithms for motion reconstruction using
monocular videos are roughly divided into three categories,
including, (i) discriminative methods [9, 13, 14], (ii)
estimating and tracking methods [6-8], and (iii) method
based on learning [4, 11]. In discriminative methods, 3D
joint coordinates are found by using database, motion
libraries and so on. In estimating and tracking methods,
3D information is extracted using a sequence of images and
tracking algorithm. In methods based on learning, a machine
or model is trained with some a priori features and used for
motion reconstruction.

Various algorithms for human motion reconstruction
may utilize different image descriptors for tracking, match-
ing, or model extraction. In [9, 13], shape context descriptor
was used for matching key points. A shape context is a
representation of shape by a discrete set of points sampled
from the internal or external contours on the shape. The
contour can be obtained as the locations of edge pixels as
found by an edge detector. Some image-matching algorithms
employed scale invariant feature transform (SIFT) [22], to
detect and describe local features in images. SIFT features are
scale and rotation invariant, but computationally expensive.
In [7, 23], silhouette and contour of the human body were
extracted for human model reconstruction. Silhouette and
contour can be easily extracted in static cameras. However,
in mobile camera and cluttered background, it is difficult to
extract silhouette robustly. Edge or edge lines [24] and point
features [12] were also used in some algorithms as image
descriptors.

In this article, we introduce a new method for 3D
reconstruction of human motion in uncalibrated monocular
video streams, which is based on our previous work [25]. The
method utilizes a combination of discriminative and tracking
algorithm. In this algorithm, the information of database is
utilized to increase tracking accuracy. The method utilizes a
new descriptor based on discrete cosine transform (DCT).
The advantage of using this descriptor is the capability
of selecting proper frequency regions in various tasks,
which results in better tracking and poses matching. For
example, we use low and middle frequency in tracking for
intensity as well as edge tracking. Also, we pass up color
of clothes in database matching by avoiding low-frequency
information.
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FIGURE 1: Human body model which is utilized in the proposed
algorithm.

The paper is organized as follows. In the next section, we
review the human model utilized in the proposed algorithm.
Section 3 discusses the proposed algorithm for tracking and
3D reconstruction of human motion using sequences of
images acquired by a single video camera. Experimental
results appear in Section 4, and we conclude the paper in
Section 5.

2. Human Body Model

Human skeleton system is treated as a series of jointed
links (segments), which can be modeled as rigid bodies. In
the motion reconstruction applications, it is common to
use a simple skeleton system for modeling the important
segments. We describe the body as a stick model consisting of
a set of thirteen joints (plus the head), which are connected
by thirteen segments as shown in Figure 1.

The algorithm needs the knowledge of relative lengths of
the segments for the 3D reconstruction purpose, which can
be obtained from anthropometric data, which is shown in
Table 1.

With known 2D position and using the knowledge of
length of the segments and enforcing some constraints
such as dynamic smoothing, we can reconstruct 3D human
model.

3. Proposed Algorithm

Figure 2 shows the block scheme of the proposed algorithm.
In the proposed method, we track 2D joints position using
a static and uncalibrated monocular video and use them
to estimate 3D skeletal configuration. Since not enough
information is available from monocular video for 3D
reconstruction; we save several 2D exemplars of various
body poses in the database and use them to correct tracked
points. In this algorithm, joint tracking is based on the nxn
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FIGURE 2: Block scheme of the proposed algorithm.

F1GURE 3: DCT coefficients and different frequency regions for an
858 DCT block.

TaBLE 1: Relative lengths of the human body segments [27].

Segment Relative Length Relative Le.ngth
(MC) (cm) (L) (unit)

Height 175 8i
Lower Arm 35 2i
Upper Arm 25 1.51
Neck-Head 25 1.25i
Shoulder Girdle 44 2i
Torso 53 2.51
Pelvic Girdle 30 1.51
Upper leg 46 2i
Lower leg 52 2i
Foot 22 1i

block of DCT coefficients (descriptor matrix). Algorithm
starts by background subtraction and 2D joints’ positions
are initialized by the user in the first frame. Then, the
descriptor matrix is calculated and saved as “reference
descriptor matrix” for each joint. In the next stage, all
joints are tracked using their own RDMs. After finding

TaBLE 2: The required frequency regions for different tasks in the
proposed algorithm.

Low Middle High
Tasks
frequency frequency frequency
Frequency regions for «
matching process
Frequency region for
. X
database matching process
Calculation of tracking «
errors
Updating RDMs for
- X X X
non-occluded joints
Updating RDMs for
L X
occluded joints
Updating RDMs if database y

matching occur

joint positions in the subsequent frames, RDMs are updated
based on DCT block frequency regions considering occlusion
problem and tracking errors. The advantage of using RDMs
is the capabilities of selecting proper frequency regions in
various tasks, which results in an efficient tracking and pose-
matching algorithms. When the human pose is estimated in
the current frame, it is compared with different poses in the
database based on middle-frequency information. In the case
of correspondence, joint positions are corrected and RDMs
are updated. We use the information of middle-frequency
regions for this purpose to remove clothing color (low
frequency) and body deformation details (high frequency).

A major problem that may be encountered in the
algorithm is the occlusion of joints. To handle the problem,
we detect occluded joints and mark them as “occluded.”
When an “occluded” joint appears again, its positions are
corrected by interpolation.

As it is shown in Figure 2, we utilize different frequency
regions for various tasks in the proposed algorithm. Table 2
summarizes various tasks in the proposed algorithm and the
utilized frequency regions.

Given the 2D joint locations, the 3D body configuration
is estimated using Taylor’s algorithm [12].
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FIGURE 4: Reconstruction results for some frames of a typical video with 300 frames. (a) shows the results of the proposed tracking algorithm

before the interpolation of some joints of the video sequence labeled as occluded. (b) shows the results of the proposed tracking algorithm
after the interpolation of occluded joints. (c) shows 3D reconstruction results.
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FIGURE 5: Reconstruction results for some frames of a typical video using the proposed algorithm. (a) shows 2D joint tracking. (b) shows
3D reconstruction results.
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FiGure 6: The tracking result for head and right hand joints. Larger circle is used to show true tracking limb and smaller circle is used to

show occluded limb detected by the algorithm.

0 100 0 100 0100 0 100

0100 0 100 0 100 0 100

Figurg 7: Comparison of the proposed descriptor with the shape context descriptor. (a) Tracking using the shape context descriptor, (b)
Tracking using the proposed descriptor, (c) 3D reconstruction using the proposed descriptor.

3.1. Descriptor Matrix. In this article, we use DCT-based
descriptors for the tracking and matching purposes. Descrip-
tor Matrix (DM) for a point p; is an nxn DCT coefficients
matrix. By utilizing the image window of fixed size (n*mn)
centered on point p;, a descriptor matrix for the point p; is
calculated as follows:

F(u,v)
*=petn/2 y=pyin2 (2x + l)un]

=CwcCl) > > f(x’y)c‘”[ 2n

x=px—n/2 y=p,—n/2

" COS[WI)W],

2n

where (px, py) is the coordinate of central point p;, and C(x)
is calculated using the following equation:

1
—, ifx=0
n
cw=1"0 @
\/;, otherwise.

There are n? coefficients in each DM matrix divided into
three frequency regions according to Figure 3. White region
is the low-frequency region, gray region is the middle-
frequency region, and black region is high-frequency region.
We use these three frequency regions for tracking and
matching joints. We use matrix distance as a method to
measure the similarity between two descriptor matrixes.
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FiGure 8: Tracking of head and hand joints using the proposed algorithm and LK method [26]. (a) Head joint position in x direction, (b)
head joint position in y direction, (c) hand joint position in x direction, (d) hand joint position in y.

Matrix distance for two descriptor matrixes M and N, in the
specified frequency region of R, is calculated as

Mas(M,N) = | > (M - Nf)z.
feRr

3)

3.2. Reference Descriptor Matrix (RDM). RDMs store the
required information for the tracking of joints. To find the
location of a joint in the current frame, RDMs of joints in
the previous frame as well as the information of database
is employed. RDMs are generated for different joints of the
body independently and are specified by RDMj, ..., RDM;s.
Reference descriptor matrix for joint j (RDM;) is loaded
from the descriptor matrix for joint j after the initialization
of joints by the user and updated after finding the location of
joints in the subsequent frames. Updating routine is different
for each frequency region as follows.

Low-Frequency Region. This region consists of general shape
and intensity information of the tracked joint, so it changes
gradually in successive frames. Tracking process may lose the

tracked joint for several reasons such as occlusion problem
or large distortion. Therefore, the tracked joint information
may be incorrect in the current frame. For safekeeping of
the general joint information, we leave the low frequency
coefficients unchanged during the tracking. This region
is updated only when a correspondence is found in the
database.

Middle-Frequency Region. This region consists of gen-
eral edge information. Because the individual limbs are
deformable due to moving muscle and clothing, we update
middle frequency coefficients during tracking only if the
tracked joint is not occluded. Furthermore, this region is
updated when a correspondence is found in the database.

High-Frequency Region. This region consists of joints’
details. The region is updated frame by frame without any
restriction.

3.3. Tracking. The tracking process is based on the matching
techniques in the frequency domains. Tracking process aims
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FIGURE 9: Tracking results of the proposed algorithm in the noisy environments. (a) Noisy image with 10 percent salt and pepper noise, (b)

images with Gaussian noise of SNR = 10 dB.

to find body joints in successive frames. Because of temporal
correspondences between subsequent frames, search for the
corresponding joint is local. In two successive frames, limbs
and joints have the same intensity and general shape, but they
are different in details. So, we use low- and middle-frequency
regions in tracking process.

The tracking process is based on DCT matching tech-
niques. Its basic idea is to track joints through the sequence
of frames by utilizing RDMs. For this purpose, descriptor
matrices are computed for each pixel in the search window.
The best match is found by selecting minimum matrix
distance between low and middle frequencies of RDM; and
search window descriptor matrixes (SWDMs).

Assuming that the initial estimate of the pose has been
given, the tracking algorithm can be summarized in two steps
as follows.

(1) Generate descriptor matrices for all pixels in the
search window at frame t (SWDMs).

(2) Determine best matching point in the search window
by computing matrix distance between RDM; and
SWDMs.

As mentioned before, a major problem that may be
encountered in the algorithm is the occlusion of joints. To
handle the problem, we detect occluded joints and mark
them as “occluded.” In order to detect the occlusion of the
tracked joint j at frame f, we calculate matrix distance in
the middle-frequency region between descriptor matrix of
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FiGure 10: Tracking of left hand joint in noisy environment using the proposed algorithm and LK method [26]. (a) Hand joint position in
x direction in images with Gaussian noise of SNR = 10 dB, (b) hand joint position in y direction in images with Gaussian noise of SNR =
10dB, (c) hand joint position in x direction in images with salt and pepper noise with density of 10 percent, (d) hand joint position in y in

images with salt and pepper noise with density of 10 percent.

tracked point (DM;(¢)) and RDM;. Then, we determine the
occlusion of the joints based on the following equation:

<A,
> A,

Mdis... (RDM' DM<(t)> joint is not occluded,
middle P joint is occluded.

(4)

When an occluded joint appears again, its positions during
the period of occlusion are estimated by linear interpolation
using the positions of the joint before and after the occlusion.

3.4. Database Matching Process. The database consists of
required information of different poses for video sequences
of a number of subjects. This information includes body
joints’ positions and their descriptor matrixes in the middle
frequency region as well as necessary labels for 3D recon-
struction. Head position is used as the reference joint to
calculate joints” positions. In other words, joints’ positions
are determined with respect to head.

To measure similarity between human pose in the current
frame (py) and human pose in the database (p4), we employ
two kinds of the descriptor matrix: DDMs and FDMs, which
will be defined later. If pose distance is smaller than a
predefined threshold, correspondence occurs. In this case,

joints” positions and middle frequency region of RDM are
corrected. Human pose distance is defined by

13
Pdis, (pf, pa) = > Mdisiowmia (DDM;, FDM;) ,  (5)
j=1

where database descriptor matrix (DDM) is generated
using the low-frequency information of RDM (for intensity
similarity of joints) and middle-frequency information of
database (for edge similarity). DDM descriptor is defined as
follows:

RDM/ f :low frequency,
DDMy = 1 Database f : middle frequency, (6)

0 f : high frequency.

Frame descriptor matrix (FDM) is also generated using
the following algorithm.

(i) Search locally around the previous head position
to find correspondence for RDMpeq point in the
current frame.

(ii) Determine other joints in the current frame by
adjusting the head position.

(iii) Generate descriptor matrices for each joint and save
them as FDMs.
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The algorithm to measure the similarity between human
pose in the current frame (ps) and human pose in the
database (p4) can be summarized as follows.

(1) Generate DDMs.

(2) Search locally to find the head position in the current
frame.

(3) Determine other joints’ positions in the current
frame.

(4) Compute matrix distance for DDM and FDM in low
and middle frequency regions.

(5) In the case of correspondence, correct joints’ posi-
tions.

(6) Update RDMs.

As in the constant descriptor size, the descriptor matrices
are not scale invariant. In the absence of substantial back-
ground clutter, scale invariance can be achieved by setting
descriptor matrix size as a function of length for the body
segments.

3.5. 3D Reconstruction. We use Taylor’s method [12] to
estimate the 3D configuration of the human body given the
joints’ positions. Taylor’s method operates on a single 2D
image, taken by an uncalibrated camera. It assumes a scaled
orthographic projection model for the camera and need the
following information.

(i) The image coordinates of joints (u, v).
(ii) The relative lengths of body segments connecting the
joints.
(iii) The “closer endpoints” for body segments and joints.

In this paper, the image coordinates of joints are obtained
using the proposed tracking and matching algorithms. The
closer endpoints for segments are supplied by exemplars
in the database, and automatically transferred to the input
image after the matching process. The relative lengths
of body segments are fixed in advance but can also be
transferred from exemplars.

We use the same 3D kinematics model defined over
joints as that in Taylor’s work. We can solve for the 3D
configuration of the body {(Xj, Y, Z;)) : i € joints}
up to some ambiguity in scale s. The method considers
the foreshortening of each body segment to construct the
estimate of body configuration. For each pair of body
segment’s joints, we have the following equations:

P =X —-X)+ (Y, - V2)’ +(Z - 2,7,
(w1 — up) = s(X; — Xa),
(v1 —12) = s(Y1 — Y2),

Az = (2, - ), )
((ul - u2)2 +(v1 — Vz)z)
az = le - . )

To estimate the configuration of a body, we first fix one joint
as the reference point and then compute the positions of

the others with respect to the reference point. Since we are
using a scaled orthographic projection model, the X and
Y coordinates are known up to the scale factor s. All that
remains to compute relative depths of endpoints dZ. We
compute the amount of foreshortening and use the user-
supplied “closer endpoint” labels from the closest matching
exemplar to solve for the relative depths.

Moreover, Taylor notes that the minimum scale s can be
estimated from the fact that dZ cannot be complex:

(= u2)” + (v — o)’
s > \/ . (8)
2
This minimum value is a good estimate for the scale
since one of the body segments is often perpendicular to the
viewing direction.

4. Experimental Results

The proposed algorithm was applied for the reconstruction
of human subjects from single-camera videos. The database
consists of some poses of a number of subjects, performing
different types of motions from the CMU MoCap database
[28]. On this collection of poses, we manually determined
joint locations of each pose and “closer endpoint” labels for
each body segment, which are used in 3D reconstruction.
Also, we save middle frequency of the descriptor matrix for
each labeled joint.

Our experiments are divided into two parts: (i) recon-
struction results for the sequences of real people with
different motions in CMU MoCap database, and (ii) 2D
tracking results in different video sequences.

4.1. Reconstruction Results. We tested the proposed algo-
rithm on a variety of sequences of real human subjects per-
forming various motions. To facilitate the tracking process,
we utilized a background estimation algorithm based on
temporal median filter. To make the proposed descriptor
matrixes scale invariant, we set descriptor matrix size as a
function of length of the body segments.

Figure 4 shows sample results of 2D body joint localiza-
tion before and after interpolation and finally 3D reconstruc-
tion on the CMU dataset. Note that some joints are occluded
or failed in 2D tracking. These joints are reconstructed
by interpolation. Figure 5 shows sample results of another
video, which its 3D reconstruction performed successfully.

4.2. Tracking Results. In this section, we investigate the
robustness of the tracking algorithm in some video sequences
consisting of occluded limbs and noise.

Figure 6 shows the robustness of the proposed algorithm
for limb tracking and distinguishing the occluded limbs.
We tracked head and right hand joints using the proposed
algorithm. Bigger circles show the nonoccluded tracked
joints. The occluded or falsely tracked joints, which are
detected by (4), are shown by smaller circles. It is obvious
that our tracking algorithm performs very well in tracking
and detecting occluded limbs.
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FIGURE 11: Average tracking errors of joints versus DCT block size
for a typical video.

To show the efficiency of the proposed image descriptor,
we compared the proposed descriptor with shape context
descriptor [13, 29]. Figure 7 shows the results of joints
tracking using the proposed descriptor as well as the shape
context descriptor. The results of Figure 7 reveal that the
proposed algorithm has tracked the joints more efficiently.

We also compared the proposed algorithm with a well-
known tracking algorithm which tracks the feature points
by optical flow and iterative Lucas-Kanade (LK) method in
pyramids [26]. Figure 8 illustrates the true position of the
head and hand joints as well as their positions tracked by
the proposed algorithm and LK method. The figure shows
that the LK method has lost the head and hand positions;
however, the proposed algorithm successfully tracked it.

To show the efficiency of the proposed algorithm in the
noisy environment, we tested the proposed algorithm with
noisy images. Figure 9(a) shows the tracking results for the
video sequence of Figure 7 corrupted with 10 percent salt
and pepper noise. In Figure 9(b), the results of the proposed
tracking algorithm are shown for the same video sequence
corrupted with Gaussian noise of SNR = 10 dB. Solid circles
in the figure are the joints that are tracked normally, and
empty circles show the joints labeled as “occluded.” Figure 10
shows the true position of the left-hand joint as well as its
position tracked by the proposed algorithm and LK method
for the noisy images of Figure 9. Figures 9 and 10 show the
efficiency of the proposed algorithm in tracking videos in
noisy environments.

We also investigated the effect of DCT block size on
the efficiency of the tracking algorithm. Figure 11 shows the
average tracking error for a typical video. As the figure show,
the algorithm has the best output at the DCT block size of
10 10. However, the efficiency of the algorithm does not
change considerably for DCT block size of 8 to 14. Our
experiments show that the optimal DCT block size depends
on the height of the human body in pixels. For example, for
human height of 130 pixels, the optimal block size is 8. By
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the increase of human height, the optimal block size linearly
increases with the rate of 0.1 per pixel.

5. Conclusion

In this paper, a new method for 3D reconstruction of
human motion from the image sequence of a single static
and uncalibrated camera is described. In this method, 2D
tracking is used for 3D reconstruction, which a database of
selected frames is used for the correction of tracking process.
We used DCT blocks as matrix descriptors, which are used
in the matching process for finding appropriate pose in
the database and tracking process. We used three frequency
regions for different tasks to enhance the accuracy of the
proposed algorithm. The algorithm can detect occluded
joints and recover their positions by interpolation. The
proposed algorithm was tested with several video sequences
in noisy and noiseless environments, and experimental
results showed the reliability of the algorithm. This method
is robust in 2D tracking and holding the properties of each
joint along tracking process.

We also investigated the effect of DCT block size on the
efficiency of the tracking algorithm. To make the tracking
system scale invariant, it is possible to use an adaptive block
size based on the height of human in pixels.
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