Hindawi Publishing Corporation

ISRN Machine Vision

Volume 2013, Article ID 863923, 14 pages
http://dx.doi.org/10.1155/2013/863923

Research Article

Hindawi

Deformable Contour-Based Maneuvering Flying Vehicle
Tracking in Color Video Sequences

Samira Sabouri,' Alireza Behrad,”> and Hassan Ghassemian®

! Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran
2 Faculty of Engineering, Shahed University, Tehran 18651-33191, Iran
? School of Electrical and Computer Engineering, Tarbiat Modares University, Tehran 14115-143, Iran

Correspondence should be addressed to Alireza Behrad; behrad@shahed.ac.ir

Received 23 October 2012; Accepted 11 December 2012

Academic Editors: A. Gasteratos, C.-C. Han, D. P. Mukherjee, A. Prati, and J. M. Tavares

Copyright © 2013 Samira Sabouri et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a new method for the tracking of maneuvering flying vehicles using a deformable contour model in color video
sequences. The proposed approach concentrates on targets with maneuvering motion in sky, which involves fundamental aspect
change stemmed from 3D rotation of the target or video camera. In order to segment and track the aircraft in a video, at first, the
target contour is initialized manually in a key frame, and then it is matched and tracked automatically in the subsequent frames.
Generally active contour models employ a set of energy functions based on edge, texture, color, and shape features. Afterwards,
objective function is minimized iteratively to track the target contour. In the proposed algorithm, we employ game of life cellular
automaton to manage snake pixels’ (snaxels’) deformation in each epoch of minimization procedure. Furthermore, to cope with
the large aspect change of aircraft, a Gaussian model has been taken into account to represent the target color in RGB space. To
compensate for changes in luminance and chrominance ingredients of the target, the prior distribution function is dynamically
updated during tracking. The proposed algorithm is evaluated using the collected dataset, and the expected probability of tracking

error is calculated. Experimental results show positive results for the proposed algorithm.

1. Introduction

The video-based locating and tracking of flying vehicles is
an interesting issue in the visual control of aerial systems,
which may be employed in aerial surveillance, the navigation
of flying robot, missile, microflying, unmanned aircraft, and
so forth. In order to localize, track, and recognize flying vehi-
cles, some approaches have been presented recently. In this
context, four main state-of-the-art methodologies are well
known and applicable including (1) invisible spectrum-based
methods like radio detection and ranging (RADAR) or light
detection and ranging (LIDAR); (2) visible spectrum-based
approaches [1-8] such as existing algorithms in infrared and
thermal imaging systems in the wavelength range of 380 nm
to 780 nm and even more in far infrared case; (3) global posi-
tioning system (GPS-) based methods; and (4) combination
of visible and invisible spectrum-based methods. Feasibility
of these categories is mostly dependent upon the distance
of the imaging system to the target of interest. Furthermore,

each flying vehicle has a set of flight specifications such as
the minimum and maximum speed, maneuvering capability,
flight board, and so on, whose data may help to estimate the
position of the target accurately.

Irrespective of available information, the paper empha-
sizes on flying vehicle tracking (FVT) in color video
sequences. In this domain, we concentrate especially on
maneuvering aircraft with large aspect change, which is
considered to be a challenging issue. Considering the high
deformation of target contour in this application, utilizing
deformable surfaces such as active contour [9-11] and active
mesh [1, 12] models seems to be a proper choice.

L1 Related Work. In [1], a method for flying vehicle tracking
was introduced in monochrome video sequences. In this
method, the incipient location of the target was determined
manually; then, the target was tracked automatically by
optimizing the mesh energy functions. In [2], a vision-
based scheme for automatic locating of a flying vehicle was



presented by means of extracting fuzzified edges features
and matching edge pyramids as well as a motion flow
vector classifier based on multilayer perceptrons (MLP)
neural network. Ha et al. [3] introduced a method for real
time tracking of flying targets via the combination of the
geometric active contour model and optical flow algorithm.
Haker et al. [4] used a segmentation method based on
the adaptive thresholding and Bayesian statistic approach to
identify and track target location. In [10], an active contour
model for vehicle target tracking was utilized. To deal with
the high aspect change problem, they handled the motion
model around the vehicle to reduce the tracking error in
monochrome video frames. Yilmaz [13] suggested an object
tracking method based on an asymmetric kernel and mean
shift approach in which the scale and the orientation of the
kernel were changed adaptively. Molloy and Whelan [14]
introduced an active mesh system for the motion tracking
of rigid objects to alleviate one of the main problems in
active contour models, that is, the snake initialization. Jian
and Jie [15] proposed an approach to track small objects in
infrared streams using the mean shift estimator algorithm.
In [16], a method based on edge features extraction and
matching as well as Kalman filter was suggested to detect
and track mostly rigid objects like the land vehicles in video
sequences grabbed by moving video cameras. Their method
determined camcorder motion model by using the planar
affine transformation. Lee et al. [17] suggested a deformable
contour model based on frames difference map. In [18, 19],
an approach for flying vehicle tracking based on the snake
model was proposed. They utilized Kalman filter and an
energy function the so-called electric fields, to handle large
displacement of the target during tracking.

1.2. Motivation. Basically, target rotation around three roll,
yaw, and pitch axes results in maneuvering motion of flying
vehicle in sky. Additionally, the 3D rotation of aircraft or
camera causes aspect change of the target during tracking
process. Figure 1 shows aspect change problem in a typical
video sequence. In the targets with aspect change some parts
of the target appear during the video frames and some other
parts disappear. The aspect change may create changes in
the luminance and chrominance components of the target.
Therefore, traditional optical flow approaches [20] or method
based on feature matching [21] and model based approaches
[16] fail in tracking targets with large aspect changes. Further-
more, because of maneuvering characteristics of the target,
the path of target cannot be determined using algorithms
based on estimation or data association [22]. In the paper, we
focus on tracking aircraft targets with maneuvering motion
and full aspect change and design a new scheme to alleviate
general problems in this area.

Among different methods in literature for visual maneu-
vering aircraft locating and tracking, the approaches such as
[10, 16] take into account partial aspect change. However,
their efficiency was not proven for target with full aspect
change where the target shape and view completely change.
In this context, other issues such as different atmospheric
conditions, change in luminance and chrominance, image
noise, dynamic scene due to the motion of the camera,
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FIGURE 1: Video streams of a typical aircraft with aspect change due
to maneuvering motion of the target.

dwindling the size of target, and visibility reduction of the
scene are challenging. Some of these problems like the
change in luminance and chrominance and the size of the
target are substantially originated due to the aspect change
phenomenon.

To test the algorithm with video files in the mentioned
situations and provide a standard and informative dataset, the
collected dataset includes videos with various conditions in
addition to the aspect change phenomenon.

To cope with these problems, we propose an algorithm
based on the active contour model for tracking maneuvering
target with full aspect change. The algorithm includes the
following structural features.

(i) A deformable active contour model is designed to
track maneuvering aircraft target with full aspect
change.

(ii) A new set of external energy functions are defined in
RGB color space to enhance tracking efficiency.

(iii) Game of life (GoL) cellular automaton is proposed to
manage, arrange, and smooth snake pixels (snaxels)
deformation in each epoch of minimization.

(iv) A parametric, multivariate, and unimodal Gaussian
model is utilized to dynamically update color distri-
bution of the target of interest in color video frames.

The rest of the paper is organized as follows: Section 2
summarizes the suggested method, and in its subsections, we
discuss the deformable contour model, energy minimization
and GoL-based contour updating, respectively. Experimental
results appear in Section 3, and we conclude the paper in
Section 4.

2. Proposed Method

Figure 2 depicts the block scheme of the proposed aircraft
tracking algorithm. In the proposed algorithm, firstly the
outer contour of the target is localized manually in the initial
key frame. Then, a parametric, multivariate, and unimodal
Gaussian model is calculated based on the central limit
theorem (CLT) to represent target color distribution in RGB
space. After contour initialization, the tracking algorithm
starts by employing the parameters of the single gaussian
model (SGM), that is, mean vector and covariance matrix, to
find the location of the target contour in the current frame.
Thereafter, the objective energy function is defined and
optimized by means of a constrained greedy minimization
procedure. To manage snaxels’ deformation, we introduce a
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FIGURE 2: Block scheme of the proposed FVT in color video sequences.

GoL cellular automaton which is utilized in each epoch of
the optimization routine. In order to deal with the aspect
change phenomenon appropriately, the dynamic parametric
model is updated after fixing control points and/or reaching
the maximum number of iterations in each frame.

2.1. Determining Target Boundaries Using Color Matching
Algorithm. In the proposed method, a 2D active contour
model is utilized to represent the outer boundary of the
target during tracking algorithm. The structure of deformable
contour is organized by superposition of predefined energy
functions. These functions are minimized using an optimiza-
tion algorithm.

One of the difficulties in tracking targets with high speed
using active contour is the problem of local minimums in the
energy minimization algorithm. Therefore, we utilize color
distribution of the target to find the initial position of the
target. For the first frame of the video, we localize the contour
of the target manually. This leads to identify the region of
interest (ROI) of the target. Figure 3 shows the ROI of a target
and the histograms of color channels.

To determine the initial position of the contour in
subsequent frames, a search region (SR) is defined to track the
flying vehicle by matching and deforming the contour model.

We consider the coordinates of SR as (x,,;, — dx, Ypmin — d¥)
and (X, + dX, Yoy + dy), where
o = S O s = GO0
. M
Ymin = 10 (¥)> Ymax = max ().

The vector (dx,dy)” is a confident margin for the target
displacement. This margin may be estimated based on the
interframe motion of the target. It can be assumed constant,
if the speed of aircraft is approximately uniform. In our
simulations, we consider the confident margin as (20, 20).

To determine the initial location of the contour in frame
t, a parametric, unimodal Gaussian model is considered to
represent color distribution of the target in RGB space. The
color distribution of the target is represented by a multivariate
SGM as

PF®)=NF@:" ®:2"'®), @

where Fi(x) = [F%(x),Ftc(x),F%(x)]T is the color vector,
t is the frame index, x defines pixels coordinates, and the
N function represents a multivariate normal distribution as
follows:

N(F @:p™ x);27 (x)

(F o -u )

= cexp (_E

X(ZH (x))_l (Ft (x) — ! (x)) ) ) (3)

1
((271)‘”2 |Et—l (x) | 1/2> ’

Here d is the dimension of the color space, which is assumed
to be 3 for RGB color space. The mean vector u''(x)
and covariance matrix 2! (x) are determined by the color
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FIGURE 3: Determining initial target contour manually: (a) an
initial key frame, (b) target contour determined manually, and (c)
histograms of color channels for ROL

FIGURE 4: Moore 9-neighborhood for a typical snaxel.
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The initial location of the target contour in the current
frame is determined using a color matching algorithm. The
algorithm includes the following stages.

(1) Determine the color matching threshold, T, by
means of prior color distribution as

& . t—
Te = 75 [255 max (Al/z)] , A = diag (E ! (X)) )

where the parameter & is a constant number in the
range of [0, 1], and the vector A includes the diagonal
elements of matrix £ (x). The notation [-] denotes
the ceiling function.

(2) Determine pixel color consistency for all pixels in SR
in the current frame by measuring the Mahalanobis
distance:

Dy (x) = ((Ft (x) - ‘ut_l)T(Zt_l)_l (Ft (x) - ‘ut—l))l/z’

x € SR.

(6)

(3) Constitute binary color consistency image I, by
applying a threshold on D,,(x):

1, Dy (x)<Tg,
0, ow.,

I (x) = { (7)

where “1” values show image pixels, which are consis-
tent with target color distribution.

(4) Suppress small regions in I~ by applying a size-
filtering algorithm. In the size filtering, distinct
patches that have an area less than the threshold, T,
are omitted:

Ty =[6-(hxw)], (8)

in which the factor § is equal to 0.01, and the
parameters i and w denote the height and width of
SR, respectively.

(5) Extract the outer boundary of consistent pixel in I~
as the initial contour position in the current frame.
The final contour of the target is determined using 2D
active contour model.

2.2. Active Contour Energy. The active contour model in
the search region is considered as a closed contour with #n-
ordered snaxels, V = [vy,...,Vv,_;], in which v; = (x; y,-)T
denotes the ith control point or snaxel. The contour energy
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FIGURE 5: Edge energy function for different Ti; values. (a) Original frame, (b) edge energy for T;; = 0, (c) edge energy for T; = 0.2, and (d)

edge energy for T; = 0.5.

(a) (b)

FIGURE 6: Color entropy of sample aircraft images. (a) Original
images frames, (b) color entropy images.

in the active contour model is defined as the sum of energy
functions for different snaxels of the contour:

n-1

Econtour = ZEcontour (vi) . (9)

i=0

The snaxel energy consists of two parts including internal
and external energies:

Econtour (vi) = Einternal (Vi) + Eexternal (vi) . (10)

The internal energy function defines shape characteristics of
the contour and is defined using the following [23]:

Einternal (Vi) = Eco (Vi) + Ecu (Vi) > (11)

where E_(v;) and E_,(v;) are the normalized continuity
and curvature energies for the snaxel v;, respectively. The
continuity and curvature energy functions are defined as

Eco (Vi) - minvEM (Eco (V))

Eco (V = max, .y (Eco (V)) - minng (Eco (V)) )
~ _ 2
E L) = ]’l - i~ Vi— >
co (Vl) ( |V1 Vi 1|) (12)
Ecu (vi) = Ecu (vi) - minv€M (Ecu (V))

maXyem (Ecu (V)) - rninVEM (Ecu (V)) ’
Ee, (v) = (Vi = 2v; +vi))[.

Here, the domain M describes Moore 9-neighborhood as
shown in Figure 4, and the parameter /1 is the average distance
between two neighboring snaxels. The parameter is updated
at the beginning of each epoch of energy minimization
routine.

We define the external energy function based on image
features such as edge, color, and texture to cope with the
problem of large aspect change. Therefore, the external
energy function for snaxel v; is defined as

Eexternal (Vi) = Eed (Vi) + Esi (V,-) + Ete (Vi) . (13)

The first term of external energy represents the edge energy.
The edge energy attracts the target contour toward pixels with
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(1) For Iter =1 to Iter_max =5
(2)Fori=0ton-1
(i) Select ith snaxel of the deformable contour.

End for i.
(3) Move snaxels to new locations.

snaxels, 7.
End for Iter.

(ii) Calculate energy function for the ith snaxel and its Moore 9-neighborhood.
(iii) Find location with minimum energy if there is only one local minimum in Moore 9-neighborhood. Otherwise,
find the point with shortest path. The path is measured based on Euclidian distance.

(4) Apply the proposed GoL cellular automaton as it will be explained in the next subsection.
(5) Update characteristics of deformable contour including coordinates of new control points as well as the number of existing

PseupOCODE I: The pseudo code for energy minimization algorithm and the proposed GoL cellular automaton.

TaBLE 1: The probability of tracking error in terms of percent for four different approaches.

Video samples of MAVDB database The proposed method Method of [11] Method of [17] Method of [18]
CM AA CM AA CM AA CM
Video number 2 (Figure 11(f)) 6.42 0.49 12 0.71 10 0.45 7.33 0.42
Video number 16 (Figure 14(d)) 25.07 0.98 5 0.36 6.5 0.16 6 0.22
Video number 33 (Figure 11(k)) 317 0.34 12.65 0.92 33.3 1.4 45 1.56
Video number 46 (Figure 11(i)) 7.26 0.55 30 1.8 23 0.89 16.4 0.77
Total videos 13.37 0.87 31.14 2.72 23.8 1.75 19.1 1.09

strong edges or pixels with large image gradients. In order to
neglect noisy or weak edges, we define edge energy as

(vi) > Tg,

-E,(v,), E
gr \ Vi —gr (14)
Egr (Vi) < TG>

OB

>

where E,,(v;) defines the color gradient at the snaxel v; and
the gradient threshold Ti; = 0.2 is employed to remove weak
edges. To calculate color gradient, different color channels,
FtL(x), forall L € {R,G, B}, are smoothed using 2D Gaussian
kernel, and image derivatives in x and y directions are
calculated using Sobel operators. Then, we calculate the
parameters of the color gradient as follows [24]:

2

_|oF®) 2+ JF., (x) 2+ JF, (x)
x> 0x 0x ox |’
- OF, ()| |9FG ()| |9F, (0|
o] oy oy au |’
g = aFi2 (x) . aF; (x) . aFtG (x) . aFtG (x) (15)
= 0x oy 0x oy
aFj3 (x) _ E)F;3 (x)
0x ay
1 -1 zgxy T
= —t ), = -,
¢, > an (gxx ~ gyy) ¢ =¢ + 5

where aFtL(x) /0x and E)FtL(x) [0y, for allL € {R,G, B} define
the derivatives of color components and ¢, for allk € {1,2}
represents gradients directions.

We define normalized gradient energy, Egr(vi), as

EI,< = (0'5 ((gxx + gyy) + (gxx - gyy) cos (2¢k)
+2‘gxy sin (2¢k)))’ Vk € {1) 2}:
E;r = max {E’pE,z} , (16)
Egr (Vi) _ Egr (Vi) - n'linveM (Egr (V))

s (Epy 1)~ min ey (B )

Figure 5 illustrates the results of the calculated edge energy
image for different T; values.

The second term of the external energy is the similarity
energy, E ;. We define the similarity energy to attract a snaxel
toward an image location with the same color distribution of
the snaxel in the previous frame. To measure the similarity,
the Mahalanobis distance in RGB color space is employed.
We utilize the snaxel v; and its Moore 9-neighborhood to
calculate the color distribution of the snaxel. For the control
point v;, the normalized similarity energy is obtained as

Eg (v;) — minyey (Esi (V))
(Esi (V)) - 1’ninveM (Esi (V)) )

maXyepm

E; (v;) (17)
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FIGURE 7: The state diagram of the proposed GoL cellular automa-
ton.

where E;(v;) is defined as

By (v) = ((F () - (&) (F (o) - )

(18)

The third term of external energy, which is called texture
energy, employs image texture to define energy function. This
energy is based on the entropy of color channels. The entropy
is a method to measure the content of information. Pixels
in the target boundary have higher information content or
entropy in comparison with pixels located inside the target
or sky background in SR. Therefore, by utilizing the texture
energy we aim at attracting contour snaxels toward points
with higher information content.

To measure texture energy, we first calculate the entropy
for each individual color channel using the following equa-
tion:

k-1

i 1

HL = ZPL (IL) log2 (m) , VL e{R,G,B}, 19)
i=0 L\'L

where I, is a random variable representing ith intensity
level in color channel L, and P; denotes its probability mass
function for color channel L which is determined using image
histogram in Moore 9- neighborhood.

The normalized texture energy based on the entropy of
color channels, for the snaxel v;, is defined as

Ete (Vi) - rrlinveM (Ete (V))
maXyeym (Ete (V)) - IninVGM (Ete (V)) ’

E. (vi) = (20)

where color entropy image E,.(v,) is obtained as
E (v;) = - (Hg (v;) + Hg (v;) + Hp (v)). (1)

Here Hy(v;), H(v;), and Hg(v;) denote the entropy of R, G,
and B color channels, respectively. The minus sign in (21) is
used to minimize the texture energy in the areas with high
information content.

Figure 6 illustrates two typical aircraft images and their
color entropy images. As it is shown in the figure, the target
area and its boundary reveal higher entropy values.
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FIGURE 8: Defined structures and rules for the proposed GOL. (a)
Continuance of life structures, (b) death and birth rules, and (c)
death structures. Symbols v and X represent life and death at the
next generation.

(c)

2.3. Energy Minimization. After defining energy function for
the active contour, the objective energy function defined
in (9) is minimized iteratively by means of a constrained
greedy optimization routine in order to fit the deformable
contour on the target precisely. Here, the constrained term
denotes a set of conditions, which are applied during the
minimization algorithm. The pseudocode of energy mini-
mization procedure is given in Pseudocodel in which we
apply the proposed GoL cellular automaton after each epoch
of energy minimization algorithm.

2.4. Game-of-Life-Based Snaxel Updating. Both target and
camera motion like 3D rotation and translation and zooming
by the video camera result in changing shape and outer
boundary of the aircraft. It is obvious that dynamic motion of
snaxels toward the outer boundary of aircraft due to energy
minimization routine causes some irregular deformation in
the contour. Consequently, the number of control points
should be changed. To regularize and smooth snaxels of the
contour after energy minimization, we propose a GoL cellular
automaton.

GoL cellular automata are substantially a type of
two dimensional cellular automata [25]. Fundamentally,
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FIGURE 9: The rule of birth in the proposed GoL cellular automaton.
The symbol o denotes cell that should be checked independently.

automata are simple agents with three main features includ-
ing uniformity, synchronicity, and locality. Different cellular
automata follow special rules to gain a distinct goal. Here, we
design a set of rules for GoL to handle changes in snaxels of
active contour model. According to the defined rules in the
proposed automaton, some of snaxels, that is, alive cells, may
be dead or remain without any change during evolution. It is
also possible to create some new snaxels in the next genera-
tion. In the proposed cellular automaton, the neighborhood
radius, r, is set to 1 with the 8-cell Moore neighborhood,
and the number of generations, g, is considered to be 7. We
consider two states, N, = 2, with the set of states Q = {S, S},
in which the states S, and S, represent dead and alive cells,
respectively. Figure 7 shows the state diagram of the proposed
cellular automaton. In the proposed GoL cellular automaton,
the next state of a snaxel is determined based on the following
rules.

(i) The rule of continuance of life: a live central cell will
survive if its Moore 8-neighborhood is matched with
one of the states in Figure 8(a).

(ii) The rule of death and birth: a live central cell dies,
and its adjacent dead cell that is located between two
alive cells becomes alive at the next generation when
a correspondence to one of the states in Figure 8(b) is
found.

ISRN Machine Vision

(iii) The rule of death: a live central cell becomes dead if
its Moore 8-neighborhood is matched with one of the
states in Figure 8(c).

(iv) The rule of birth: a boundary dead cell with a live
central cell that itself has one alive cell in its Moore
8-neighborhood will be checked for alive state. In this
case, we check Moore 8-neighborhood of the dead
cell; in the case of a match with one of the structures
in Figure 9, the central dead cell is marked as alive in
the next generation.

It is important to note that the total number of possible

structure, N, for N = 2, r = 1, and the Moore 9-
neighborhood is determined as
9 /9 ,
N, =) (l) =Ny =512, (22)
i=0

In 2D active contour domain, it is not necessary to consider
all the structure. Therefore, we define rules for only necessary
structures.

Figure 10 shows simulation results for five initial states up
to 6 generations. The results demonstrate that after maximum
4 generations, snaxels are stable. The cellular automaton in
the first row of Figure 10 represents an ideal case for a contour
whose shape is preserved during evolution; whereas other
cellular automata have some irregularity and discontinuity
because of the energy minimization algorithm. These con-
tours are smoothed and regularized using the proposed GoL
cellular automaton.

3. Experimental Results

The proposed FVT algorithm was implemented using a MAT-
LAB program and tested using a Pentium-IV desktop Per-
sonal Computer (PC) with 2.8 GHz CPU and 512 MB RAM.
For maneuvering aircraft tracking purposes, we provided
an informative dataset called Maneuvering Aircraft Video
DataBase (MAVDB). The database includes 72 video clips
captured by diverse monocular, moving CCD camcorders.
The dataset is freely available for academic application. Time
duration of different videos in MAVDB varies from 1.2s to
51.64 s with the frame rate of 15 Hz or 30 Hz. MAVDB include
maneuvering targets in different conditions such as large
aspect change, 3D rotation around different axis, targets with
change in size, rigid or piecewise rigid flying vehicles, smoky
aircrafts, cloudy atmospheric conditions, and illumination
change.

Due to the presence of a relative similarity between noise
and rain drops and/or ice crystals, we added Gaussian as well
as salt and pepper noises to some video streams to simulate
different atmospheric conditions especially rainy and snowy
situations.

In Figure 11, the results of the proposed FVT algorithm
on eleven sample video clips of MAVDB are shown.

Figure 12 depicts results of the proposed method on
three noisy video clips. In Figures 12(a) and 12(b), we test
our FVT under additive white Gaussian noise (AWGN)
with normal distributions of N(0,0.01) and N(0,0.001),
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FIGURE 10: Simulation results of applying the proposed GoL cellular automaton on five initial states, (a) initial state which is obtained from
energy minimization step, (b) the result of the first generation, (c) the result of the second generation, (d) the result of the third generation,
(e) the result of the fourth generation, (f) the result of the fifth generation, and (g) the result of the sixth generation.

respectively. Figure 12(c) shows the results of the proposed
tracking algorithm for video sequence with 12.5% additive salt
and pepper noise (ASPN). The video sequence of Figure 12(a)
shows a smoky fighter jet with maneuvering motion, and
Figure 12(b) is a synthetic airplane video with large aspect
change. In Figure 13, we have also plotted the trajectory for
the true centroid (center of gravity (CoG)) and the tracked
CoG of the target in Figure 12(a). These results demonstrate
the robustness of our method in noisy video sequences.

Figure 14 depicts the results of the proposed FVT
approach on four videos of MAVDB that seem to be more
challenging than other videos. In the video sequences of
Figure 14(a), a relatively abrupt change in statistical charac-
teristics of color distribution exists. Figure 14(b) shows video
sequence of a helicopter with two dominant red and black
colors. In video sequence of Figure 14(c), the direct sunlight
changes and saturates the intensity values for some parts of
the target. The background of the video is also changed to be
cloudy in some frames. Figure 14(d) shows the video sequence
of an aircraft with textured surface. Obviously, in such
situations, the probability of the tracking error increases and
target contour fluctuates during tracking process. However
instabilities are controlled and compensated because of the
dynamic structure of the proposed tracking method as it is
shown in Figure 14(d).

In order to measure the performance of the proposed
FVT algorithm, we have measured the expected probability
of the tracking error using two different methods based on

pixel-based performance evaluation (PE) algorithm. For this
purpose, two criteria are considered and measured including
alignment amount (AA) and confusion matrix (CM).

In order to measure the performance based on the AA
criterion, we have defined the probability of error for a video
frame as

2
Mo Fi

2 b
Ui Ei
where F, and F, are ground truth (GT) and predicted

result (PR) frames, respectively. Therefore, in a video clip
containing N § frames, the mean error is calculated as follows:

P(error)=1- (23)

U, = E{P (error)}

] i P(GT,,PR)) (24)
Ny ; P(GT,) + P(PR,) - P(GT,,PR,)’

where the operator E{-} denotes the mathematical expecta-
tion.

The second performance evaluation method is based on a
2x2 confusion matrix, C. To evaluate performance in a frame
in this method, we construct the confusion matrix as follows:

C=<P(OB|OB) P(NO|OB)>_<TP FN)) 25)

P(OB|NO) P(NO|NO))~\FP TN

where the notations OB and NO stand for object and non-
object, respectively, and the elements TP, FP, FN, and TN
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(d)

(h)

F1GURE 11: Continued.
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()

(c)

FIGURE 12: The efficiency of the proposed algorithm for noisy video
sequences, (a) video clip with AWGN of N(0, 0.01), (b) video clip
with AWGN of N(0, 0.001), and (c) video clip with ASPN and the
density of 12.5%.

stand for true positive, false positive, false negative and true
negative, respectively. In performance evaluation based on
the confusion matrix, the expected probability of error for a
video clip including N frames is determined as

Y71 C (i)

u, = E{P(error)} = 1 - ——"————,
Ziz=1 Z§=1 C; (i. j)

(26)

120 _

< 100

o)

2 80

2 60

£ 40

it

=20
ol -
220

— Tracked CoG
- -~ True CoG

FIGURE 13: The trajectory for the true and tracked centroid of the
video clip in Figure 12(a).

where the total confusion matrix, C,, is calculated by using
the following equation:

Ny Ny
TP, YEN,
n=1 n=1
Ny Ny
Y FP, YN,
n=1 n=1

In the above equation 4, and w, are the height and width of
the video frames.

Figure 15 exemplifies the method to determine GT and PR
in a typical video frame in order to measure the performance

1

cC=-— .
¢ N;-(h,xw,)

27)
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FIGURE 14: The results of the proposed FVT on four challenging video streams. (a) Video with relatively abrupt change in statistical
characteristics of color distribution, (b) video sequence of a helicopter with two dominant red and black colors, (c) video with the direct
sunlight which changes and saturates the intensity values for some parts of the target, and (d) video sequences of an aircraft with textured

surface.

for both AA and CM methods. Considering high volume
of frames in database, we calculate GT and PR with the
interval of 10 frames in our experiments. Figure 16 illustrates
the probability of error in terms of frame number for video
streams shown in Figure 14(d) for £ = 0.13. As it is shown
in this figure, both curves show that the probability of error
is not accumulative and is controlled during the tracking
process. Figure 17 shows the expected probability of error in
terms of & for video sequences shown in Figure 14(d).

To compare the results of the proposed algorithm with
those of other methods, we also implemented the active
contour method by Williams and Shah [11], parametric active
contour method by Lee et al. [17], and the method presented
by Torkan and Behrad [18, 19]. We implemented and tested
different methods using the collected MAVDB dataset. Table 1
shows the expected probability of tracking error for different
implemented algorithms using AA and CM methods. Table 1
shows that the expected probability of errors for the proposed
algorithm using all videos in database are 13.37% and 0.87%,
based on AA and CM methods, respectively. The table shows
that the proposed algorithm has enhanced the accuracy up to
17.77% and 1.85% based on AA and CM methods, respectively.

4. Conclusions

In this paper, we presented a new algorithm for visual
maneuvering aircraft tracking in sky based on the deformable
contour model in color video sequences. The main aim of the
algorithm is to cope with the maneuvering motion and large
aspect change of targets stemmed from 3-D rotation of targets
in sky or camera. Furthermore, we examined other challeng-
ing issues like noisy streams, different atmospheric condi-
tions, and smoky aircraft. To test the proposed algorithm, we
collected different video clips in a dataset called MAVDB. We
implemented some existing method and tested the algorithm
with the collected dataset. To evaluate performance of the
proposed method, we measured the probability of tracking
error based on two AA and CM criteria. The experimen-
tal results demonstrated that the proposed algorithm has
reduced the probability of tracking error considerably. In
error analysis for the proposed method, we perceived that,
during tracking, most of the errors originated from changing
the texture of target and its background. Fortunately, the
dynamic update strategy in the proposed tracking method
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FIGURE 15: Calculation of PR and GT images. (a) Original frame, (b) GT of the original frame, (c) the contour obtained using the proposed

FVT algorithm, and (d) the calculated PR image.

0.6

P(error)

0.1
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FIGURE 16: The plot of the probability of error in terms of frame
number for video streams shown in Figure 14(d).

controls errors and prevent error accumulation as shown
in Figure 14. For future works, we are going to focus on
some other challenging issues such as occlusion, complex,
and cluttered background, which may occur during take-oft
and landing.

Mean of P(error)

—e— PE based on alignment amount

-A- PE based on confusion matrix

FIGURE 17: The plot of the expected probability of error in terms of
& for video sequences shown in Figure 14(d).
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