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We employ the bifurcation theory of planar dynamical system to investigate the traveling-wave
solutions of the generalized Zakharov-Kuznetsov equation. Four important types of traveling
wave solutions are obtained, which include the solitary wave solutions, periodic solutions, kink
solutions, and antikink solutions.

1. Introduction

Consider the following generalized Zakharov-Kuznetsov (ZK) equation:

ut + α(un)x +
(
βuxx + γuyy + δuzz

)
x
= 0, (1.1)

where n ≥ 2, α, β, γ , δ are real constants. The ZK equation was first derived for describing
weakly nonlinear ion acoustic waves in a strongly magnetized lossless plasma composed of
cold ions and hot isothermal electrons [1]. The ZK equation is also known as one of the two-
dimensional generalizations of the KdV equation (see [2, 3]), and it is not integrable by the
inverse scattering transform method [4].

When n = 2, α = (1/2)a, β = 1, γ = 1, and δ = 1, (1.1) reduced to the equation

ut + auux +
(
uxx + uyy + uzz

)
x
= 0. (1.2)



2 ISRN Mathematical Analysis

Wazwaz [5] obtained periodic solutions and solitary-wave solutions of (1.2) by using the
sine-cosine algorithm method.

When α = a, β = b, γ = b, and δ = 0, (1.1) reduced to the equation

ut + a(un)x + b
(
uxx + uyy

)
x
= 0. (1.3)

Wazwaz [6] obtained some solitary-wave solutions and periodic structures of (1.2) by using
the extended tanh method.

In this paper, we will employ the dynamical system theory [7] to investigate the
traveling-wave solutions of (1.1). Numbers of smooth solitary-wave solutions, periodic
solutions, kink solutions, and antikink solutions are given for each parameter condition. Here
we note that such a powerful method has been employed by many authors to solve many
partial differential equations [8–12].

2. Plane Phase Analysis

Let ξ = x + y + z − ct, where c is the wave speed. By using the traveling wave transformation
u(x, y, z, t) = φ(x+y+z−ct) = φ(ξ), we can reduce (1.1) to the following ordinary differential
equation:

−aφξ + b
(
φn
)
ξ + φξξξ = 0, (2.1)

where (·)ξ denotes the derivative of the function with respect to ξ, a = c/(β + γ + δ), and
b = α/(β + γ + δ).

Integrating (2.1) once and setting the integration constant as 0, we have

−aφ + bφn + φξξ = 0. (2.2)

Let φ′ = y; then (2.2) can be transformed into the following planar dynamical system:

dφ

dξ
= y,

dy

dξ
= aφ − bφn.

(2.3)

We call it the traveling-wave system of (1.1). It is a planar dynamical system with
Hamiltonian function

H
(
φ, y
)
=

1
2
y2 − a

2
φ2 +

b

n + 1
φ(n+1) = h, (2.4)

where h is a constant.
According to the theory of dynamical systems [7], we can obtain the properties of

singular points as follows.
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Proposition 2.1. When n = 2k is even, system (2.3) has two singular points o(0, 0) and A(φ1, 0),
where φ1 = (a/b)1/(2k−1).

(i) When a > 0, o(0, 0) is a saddle point and A(φ1, 0) is a center point.

(ii) When a = 0, there is only one degenerate saddle point o(0, 0).

(iii) When a < 0, o(0, 0) is a center point and A(φ1, 0) is a saddle point.

Proposition 2.2. (1) When n = 2k + 1 is odd and ab > 0, system (2.3) has three singular points
o(0, 0) and B(±φ2, 0), where φ2 = (a/b)1/2k.

(i) When a > 0, o(0, 0) is a saddle point and B(±φ2, 0) are center points.

(ii) When a = 0, there is only one degenerate saddle point o(0, 0).

(iii) When a < 0, o(0, 0) is a center point and B(±φ2, 0) are saddle points.

(2)When n = 2k + 1 is odd and ac ≤ 0, system (2.3) only has one singular point o(0, 0).

(i) When a < 0, o(0, 0) is a saddle point or a high-order saddle point for a = 0.

(ii) When a > 0, o(0, 0) is a center point or a high-order center point for a = 0.

From the above analysis, we can obtain the bifurcations of phase portraits of system
(2.3) in Figures 1 and 2.

3. Traveling Wave Solutions of (1.1)

Suppose that φ(ξ) is a continuous solution of (1.1) for ξ ∈ (−∞,+∞) and limξ→∞φ(ξ) =
A, limξ→−∞φ(ξ) = B. Recall that (i) φ(ξ) is called a solitary wave solution if A = B and
(ii) φ(ξ) is called a kink solutions, or antikink solution if A/=B. Usually, a solitary wave
solution of (1.1) corresponds to a homoclinic orbit of its traveling wave system (2.3), a
kink (or antikink) wave solution of (1.1) corresponds to a heteroclinic orbit (or the so-called
connecting orbit) of system (2.3), and a periodic solution of (1.1) corresponds to a periodic
orbit of system (2.3).

The case n = 2. As a example, we discuss the parameter region a > 0, b > 0 (see
Figure 1(a)). In this case, system (2.4) has the form

H2
(
φ, y
)
=

1
2
y2 − a

2
φ2 +

b

3
φ3 = h. (3.1)

From Figure 1(a) we can see that system (2.4) has a homoclinic orbit and a family of
periodic orbits.

Corresponding to the homoclinic orbit defined byH2(φ, y) = H2(0, 0) = 0, we have

y2 = aφ2 − 2b
3
φ3. (3.2)

Substituting (3.2) into the first equation of system (2.3) and integrating along the
corresponding homoclinic orbit, we obtain a smooth solitary wave solution:

u1(ξ) =
3a
2b

sech2
(√

a

2
ξ

)
. (3.3)
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Figure 1: The phase portraits of system (2.3) for n = 2k. (a) a > 0, b > 0; (b) a = 0, b > 0; (c) a = 0, b < 0;
(d) a < 0, b > 0; (e) a < 0, b < 0; (f) a > 0, b < 0.

Corresponding to the family of periodic orbits defined by H2(φ, y) = h, h(h1, 0), we
have

y2 =
2b
3
(
φ − r1

)(
φ − r2

)(
r3 − φ

)
, (3.4)
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Figure 2: The phase portraits of system (2.3) for n = 2k + 1. (a) a > 0, b > 0; (b) a ≤ 0, b > 0; (c) a < 0, b < 0;
(d) a ≥ 0, b < 0.

where r1, r2, r3 are three real roots of the equation aφ2−(2b/3)φ3+2h = 0 and h1 = H2(φ1, 0) =
−a3/6b2. Thus, we obtain a periodic solution:

u2(ξ) = r3 − (r3 − r2)sn2
⎛

⎝

√
b(r3 − r1)

6
ξ,

√
r3 − r2
r3 − r1

⎞

⎠. (3.5)

The case n = 3. In this case, system (2.4) has the form

H3
(
φ, y
)
=

1
2
y2 − a

2
φ2 +

b

4
φ4 = h. (3.6)

(1) From Figure 2(a) we can see that system (2.4) has two homoclinic orbits and three
families of periodic orbits.
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Corresponding to the two homoclinic orbits defined by H3(φ, y) = H3(0, 0) = 0, we
have

y2 = aφ2 − b

2
φ4. (3.7)

Substituting (3.7) into the first equation of system (2.3), and integrating along the
corresponding homoclinic orbits, we obtain two smooth solitary wave solutions:

u3,4(ξ) = ±2a
b
sech

(√
aξ
)
. (3.8)

Corresponding to the two families of periodic orbits defined byH3(φ, y) = h, h(h2, 0),
we have

y2 = aφ2 − b

2
φ4 + 2h, (3.9)

where h2 = H3(±φ2, 0) = −a2/4b.
Substituting (3.9) into the first equation of system (2.3) and integrating along the

corresponding periodic orbit, we obtain two periodic solutions:

u5,6(ξ) = ±
√
a + k
b

dn

⎛

⎝

√
a + k
2

ξ,

√
2k
a + k

⎞

⎠, (3.10)

where k =
√
a2 + 4bh.

Corresponding to the family of periodic orbits defined byH3(φ, y) = h, h ∈ (0,∞), we
have

y2 = aφ2 − b

2
φ4 + 2h. (3.11)

Substituting (3.11) into the first equation of system (2.3) and integrating along the
corresponding periodic orbit, we obtain a periodic solution:

u7(ξ) =

√
a + k
b

dn

⎛

⎝
√
kξ,

√
a + k
2k

⎞

⎠. (3.12)

(2) From Figure 2(c) we can see that system (2.4) has two heteroclinic orbits and a
family of periodic orbits.

Corresponding to the two heteroclinic orbits defined byH3(φ, y) = h2, we have

y2 = aφ2 − b

2
φ4 − a2

2b
. (3.13)
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Substituting (3.13) into the first equation of system (2.3) and integrating along the
corresponding heteroclinic orbits, we obtain kink solutions, and antikink solutions:

u8,9(ξ) = ±
√
a

b
tanh

(√−a
2
ξ

)

. (3.14)

Corresponding to the family of periodic orbits defined byH3(φ, y) = h, h ∈ (0, h2), we
have

y2 = aφ2 − b

2
φ4 + 2h. (3.15)

Substituting (3.15) into the first equation of system (2.3) and integrating along the
corresponding periodic orbits, we obtain a periodic solution:

u10(ξ) =

√
a + k
b

sn

⎛

⎝√−aξ,
√
a − k
2a

⎞

⎠. (3.16)

(3) From Figure 2(b) we can see that system (2.4) has a family of periodic orbits.

Corresponding to the family of periodic orbits defined by H3(φ, y) = h, h ∈ (0,∞), we have
the same periodic solution of u(ξ) as (3.12).

Specifically, when c = 0, (3.12) has the form

y2 = −b
2
φ4 + 2h, h ∈ (0,∞). (3.17)

Substituting (3.17) into the first equation of system (2.3) and integrating along the
corresponding periodic orbits, we obtain a periodic solution:

u11(ξ) = 2

√
h

b
cn

(

2
√
hξ,

√
2
2

)

. (3.18)

The case n > 3.

(1) When n = 2k is even, from Figure 1(a)we can see that system (2.4) has a homoclinic
orbit.

Corresponding to the homoclinic orbit defined byH(φ, y) = H(0, 0) = 0, we have

y2 = aφ2 − 2b
(2k + 1)

φ2k+1. (3.19)
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Substituting (3.19) into the first equation of system (2.3), we have

∫φ

0

1

s
√
a − (2b/(2k + 1))s(2k−1)

ds = ±
∫ ξ

0
ds. (3.20)

Let

ϕ = s2k−1, ϕ1 = φ2k−1. (3.21)

Thus, (3.20) and (3.21) merge into

∫ϕ1

0

1
ϕ
√
a − (2b/(2k + 1))ϕ

dϕ = (2k − 1)|ξ|. (3.22)

Completing the integral in (3.22), we obtain

ϕ(ξ) =
(2k + 1)a

2b
sech2

(
(2k − 1)

√
a

2
ξ

)
. (3.23)

From (3.21) and (3.23), we have

u12(ξ) =
[
(2k + 1)a

2b
sech2

(
(2k − 1)

√
a

2
ξ

)]1/(2k−1)
. (3.24)

(2) When n = 2k + 1 is odd, from Figure 2(a) we can see that system (2.4) has two
homoclinic orbits. Corresponding to the homoclinic orbits defined by H(φ, y) =
H(0, 0) = 0, we have

y2 = aφ2 − b

(k + 1)
φ2k+2. (3.25)

Substituting (3.25) into the first equation of system (2.3), we have

∫φ

0

1

s
√(

A − sk)(A + sk
)ds = ±

√
b

(k + 1)

∫ ξ

0
ds, (3.26)

where A =
√
a(k + 1)/b.

Let

ψ = sk, ψ1 = φk. (3.27)
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Thus, (3.26) and (3.27) merge into

∫ψ1

0

1

ψ
√(

A − ψ)(A + ψ
)dψ = k

√
b

(k + 1)
|ξ|. (3.28)

Completing the integral in (3.28), we obtain

ψ(ξ) = ± (k + 1)a
b

sech
(√

akξ
)
. (3.29)

From (3.27) and (3.29), we have

u13,14(ξ) = ±
[
(k + 1)a

b
sech

(√
akξ
)
]1/k

. (3.30)
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