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Suppose that H is a real Hilbert space and F,K : H → H are bounded monotone maps with
D(K) = D(F) = H. Let u∗ denote a solution of the Hammerstein equation u+KFu = 0. An explicit
iteration process is shown to converge strongly to u∗. No invertibility or continuity assumption is
imposed on K and the operator F is not restricted to be angle-bounded. Our result is a significant
improvement on the Galerkin method of Brézis and Browder.

1. Introduction

Let X be a real normed linear space with dual X∗. For q > 1, we denote by Jq the generalized
duality mapping from X to 2X

∗
defined by

Jq(x) :=
{
f∗ ∈ X∗ :

〈
x, f∗〉 = ‖x‖ · ∥∥f∗∥∥, ∥∥f∗∥∥ = ‖x‖q−1

}
, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing. J2 is denoted by J . IfX∗ is strictly convex,
then Jq is single-valued. A map Gwith domainD(G) in a normed linear space X is said to be
strongly accretive if there exists a constant k > 0 such that for every x, y ∈ D(G), there exists
jq(x − y) ∈ Jq(x − y) such that

〈
Gx −Gy, jq

(
x − y

)〉 ≥ k
∥∥x − y

∥∥q
. (1.2)

If k = 0, G is said to be accretive. If X is a Hilbert space, accretive operators are called
monotone. The accretive mappings were introduced independently in 1967 by Browder [1]
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and Kato [2]. Interest in such mappings stems mainly from their firm connection with
equations of evolution. It is known (see, e.g., Zeidler [3]) that many physically significant
problems can be modelled by initial-value problems of the form

x′(t) +Ax(t) = 0, x(0) = x0, (1.3)

where A is an accretive operator in an appropriate Banach space. Typical examples where
such evolution equations occur can be found in the heat, wave, or Schrödinger equations. If
in (1.3), x(t) is independent of t, then (1.3) reduces to

Au = 0, (1.4)

whose solutions correspond to the equilibrium points of the system (1.3). Consequently,
considerable research efforts have been devoted, especially within the past 30 years or so, to
methods of finding approximate solutions (when they exist) of (1.4). An early fundamental
result in the theory of accretive operators, due to Browder [1], states that the initial value
problem (1.3) is solvable ifA is locally Lipschitzian and accretive onX. Utilizing the existence
result for (1.3), Browder [1] proved that if A is locally Lipschitzian and accretive on X, then
A ism-accretive, that is, R(I +A) = X, where R(I +A) denotes the range of (I +A). Clearly, a
consequence of this is that the equation

u +Au = 0 (1.5)

has a solution. One important generalization of (1.5) is the so-called equation of Hammerstein
type (see, e.g., Hammerstein [4]), where a nonlinear integral equation of Hammerstein type
is one of the form:

u(x) +
∫

Ω
κ
(
x, y

)
f
(
y, u

(
y
))
dy = h(x), (1.6)

where dy is a σ-finite measure on the measure spaceΩ; the real kernel κ is defined onΩ × Ω,
f is a real-valued function defined on Ω × R and is, in general, nonlinear and h is a given
function on Ω. If we now define an operator K by

Kv(x) :=
∫

Ω
κ
(
x, y

)
v
(
y
)
dy, x ∈ Ω, (1.7)

and the so-called superposition or Nemytskii operator by Fu(y) := f(y, u(y)) then, the integral
equation (1.6) can be put in operator theoretic form as follows:

u +KFu = 0, (1.8)

where, without loss of generality, we have taken h ≡ 0.
Interest in (1.8) stems mainly from the fact that several problems that arise in differ-

ential equations, for instance, elliptic boundary value problems whose linear parts possess
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Greens functions can, as a rule, be transformed into the form (1.8) (see e.g., Pascali and
Sburlan [5], Chapter IV). Equations of Hammerstein type play a crucial role in the theory
of optimal control systems and in automation and network theory (see, e.g., Dolezal [6]).

Several existence and uniqueness theorems have been proved for equations of the
Hammerstein type (see e.g., Brézis and Browder [7–9], Browder [1], Browder et al. [10],
Browder and Gupta [11], Cydotchepanovich [12], and De Figueiredo and Gupta [13]). For
the iterative approximation of solutions of (1.4) and (1.5), the monotonicity/accretivity of A is
crucial. The Mann iteration scheme (see, e.g., Mann [14]) has successfully been employed
(see, e.g., the recent monographs of Berinde [15] and Chidume [16]). The recurrence formulas
used involved K−1 which is also assumed to be strongly monotone, and this, apart from
limiting the class of mappings to which such iterative schemes are applicable, is also not
convenient in applications. Part of the difficulty is the fact that the composition of two mono-
tone operators need not be monotone. In the special case in which the operators are defined
on subsetsD of X which are compact (or more generally, angle-bounded see e.g., Pascali and
Sburlan [5] for definition), Brézis and Browder [7] have proved the strong convergence of a
suitably defined Galerkin approximation to a solution of (1.8) (see also Brézis and Browder
[9]).

It is our purpose in this paper to prove that an explicit coupled iteration process
recently introduced by Chidume and Zegeye [17] which does not involve K−1 which is also
required to be monotone converges strongly to a solution of (1.8)whenK and F are bounded
and monotone. Our new method of proof is also of independent interest.

2. Preliminaries

In the sequel, we will need the followings results.

Lemma 2.1 (see Xu [18]). Let {an} be a sequence of nonnegative real numbers satisfying the follow-
ing relations:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0, (2.1)

where (i) {αn} ⊂ (0, 1),
∑

αn = ∞; (ii) lim supσn ≤ 0; (iii) γn ≥ 0, (n ≥ 0),
∑

γn < ∞. Then,
an → 0 as n → ∞.

Lemma 2.2 (see Chidume and Djitte, [19, Lemma 2.5]). Let H be a real Hilbert space and A :
H → H be a map with D(A) = H. Suppose that A is m-accretive, that is, (i) for all u, v ∈ H,
〈Au − Av, u − v〉 ≥ 0; (ii) R(I + s0A) = H for some s0 > 0. Then A satisfies the range condition,
that is, R(I + sA) = H for all s > 0.

We now prove the following result.

Lemma 2.3. Let H be a real Hilbert space and F,K : H → H be maps with D(F) = D(K) = H.
Let E = H ×H and T : E → E be the map defined by:

Tw = (Fu − v,Kv + u), ∀w = (u, v) ∈ E. (2.2)

Assume that F and K are monotones and satisfy the range condition. Then, T is monotone and also
satisfies the range condition.
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Proof. On E we have the natural norm ‖ · ‖E and natural inner product 〈·, ·〉E given by:

‖w‖E =
(
‖u‖2H + ‖v‖2H

)1/2
, for w = (u, v) ∈ E,

〈w1, w2〉E = 〈u1, u2〉H + 〈v1, v2〉H, for w1 = (u1, v1), w2 = (u2, v2) ∈ E.
(2.3)

Step 1. We prove that T is monotone. Let w1 = (u1, v1), w2 = (u2, v2) ∈ E. We have Tw1 =
(Fu1−v1, Kv1+u1) and Tw2 = (Fu2−v2, Kv2+u2). So, Tw1−Tw2 = (Fu1−Fu2+v2−v1, Kv1−
Kv2 + u1 − u2). Therefore, using the fact that F and K are monotone, we obtain,

〈Tw1 − Tw2, w1 −w2〉E = 〈Fu1 − Fu2 + v2 − v1, u1 − u2〉H
+ 〈Kv1 −Kv2 + u1 − u2, v1 − v2〉H

= 〈Fu1 − Fu2, u1 − u2〉H + 〈Kv1 −Kv2, v1 − v2〉H
≥ 0.

(2.4)

So, T is monotone.

Step 2. We show that R(IE + rT) = E for all r, 0 < r < 1. In fact let r0 such that 0 < r0 < 1.
Since F and K are monotone and satisfy the range condition, then it is known that (I + r0F)
and (I + r0K) are bijective and moreover, the resolvent JFr0 := (I + r0F)

−1 of F and the resolvent
JKr0 := (I + r0K)−1 of K are nonexpansive.

Let h = (h1, h2) ∈ E. Define G : E → E by

Gw =
(
JFr0(h1 + r0v), JKr0 (h2 − r0u)

)
, ∀w = (u, v) ∈ E. (2.5)

Using the fact that JFr0 and JKr0 are nonexpansive, we have,

‖Gw1 −Gw2‖E ≤ r0‖w1 −w2‖E, ∀w1, w2 ∈ E. (2.6)

Therefore G is a contraction. So, by the Banach fixed point theorem, G has a unique fixed
point w∗ = (u∗, v∗) ∈ E, that is Gw∗ = w∗ or equivalently,

u∗ = JFr0(h1 + r0v
∗), v∗ = JKr0 (h2 − r0u

∗). (2.7)

These imply (IE + r0T)w∗ = h. Therefore, R(IE + r0T) = E.
By Lemma 2.2, it follows that T satisfies the range condition. This completes the

proof.

Theorem 2.4 (see Reich [20]). Let H be a real Hilbert space. Let A : H → H be monotone with
D(A) = H and suppose that A satisfies the range condition: R(I + rA) = H for all r > 0. Let
Jtx := (I + tA)−1x, t > 0 be the resolvent of A, and assume that A−1(0) is nonempty. Then for each
x ∈ H, limt→∞Jtx ∈ A−1(0).
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3. Main Results

Let H be a real Hilbert space and F,K : H → H be maps with D(K) = D(F) = H such that
the following conditions hold:

(i) F is bounded and monotone, that is,

〈Fu1 − Fu2, u1 − u2〉 ≥ 0, ∀u1, u2 ∈ H, (3.1)

(ii) K is bounded and monotone, that is,

〈Ku1 −Ku2, u1 − u2〉 ≥ 0, ∀u1, u2 ∈ H, (3.2)

(iii) F and K satisfy the range condition.

With these assumptions, we prove the following theorem.

Theorem 3.1. LetH be a real Hilbert space. Let {un} and {vn} be sequences inH defined iteratively
from arbitrary points u1, v1 ∈ H as follows:

un+1 = un − λn(Fun − vn) − λnθn(un − u1), n ≥ 1,

vn+1 = vn − λn(Kvn + un) − λnθn(vn − v1), n ≥ 1,
(3.3)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0,

(2)
∑∞

n=1 λnθn = ∞, λn = o(θn),

(3) limn→∞((θn−1/θn) − 1)/λnθn = 0.

Suppose that u + KFu = 0 has a solution in H. Then, there exists a constant d0 > 0 such that if
λn ≤ d0θn for all n ≥ n0 for some n0 ≥ 1, then the sequence {un} converges to u∗, a solution of
u +KFu = 0.

Proof. Let E := H × H with the norm ‖z‖E = (‖u‖2H + ‖v‖2H)1/2, where z = (u, v). Define the
sequence {wn} in E by:wn := (un, vn). Let u∗ ∈ H be a solution of u +KFu = 0, v∗ := Fu∗ and
w∗ := (u∗, v∗). We observe that u∗ = −Kv∗. It suffices to show that {wn} converges to w∗ in E.

For this, let n0 ∈ N, there exists r > 0 sufficiently large such thatw1 ∈ B(w∗, r/2),wn0 ∈
B(w∗, r), where B(w∗, r) denotes the ball of center w∗ and radius r. Define B := B(w∗, r).
Since F and K are bounded, we set M1 := sup{‖Fx − y‖2H + r2 : (x, y) ∈ B} < ∞ and
M2 := sup{‖Ky + x‖H + r2 : (x, y) ∈ B} < ∞. Let M := M1 +M2. We split the proof in three
steps.

Step 1. We first prove that the sequence {wn} is bounded in E. Indeed, it suffices to show that
wn is in B for all n ≥ n0. The proof is by induction. By construction, wn0 ∈ B. Suppose that
wn ∈ B for n ≥ n0. We prove thatwn+1 ∈ B. Assume for contradiction thatwn+1 /∈ B. Then, we
have ‖wn+1 −w∗‖E > r. We compute as follows:

‖wn+1 −w∗‖2 = ‖un+1 − u∗‖2H + ‖vn+1 − v∗‖2H. (3.4)
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We have

‖un+1 − u∗‖2H = ‖un − u∗ − λn(Fun − vn) − λnθn(un − u1)‖2

= ‖un − u∗‖2H − 2λn〈Fun − vn + θn(un − u1), un − u∗〉

+ λ2n‖Fun − vn + θn(un − u1)‖2H
≤ ‖un − u∗‖2H − 2λn〈Fun − vn + θn(un − u1), un − u∗〉 + λ2nM1.

(3.5)

Observing that

〈Fun − vn + θn(un − u1), un − u∗〉 = 〈Fun − Fu∗, un − u∗〉 − 〈vn − v∗, un − u∗〉

+ θn‖un − u∗‖2H + θn〈u∗ − u1, un − u∗〉,
(3.6)

and using (3.1), we obtain the following estimate:

‖un+1 − u∗‖2H ≤ [1 − 2λnθn]‖un − u∗‖2H + λ2nM1

+ 2λn〈vn − v∗, un − u∗〉
− 2λnθn〈u∗ − u1, un − u∗〉.

(3.7)

Following the same argument, we also obtain

‖vn+1 − v∗‖2H ≤ [1 − 2λnθn]‖vn − v∗‖2H + λ2nM2

− 2λn〈un − u∗, vn − v∗〉
− 2λnθn〈v∗ − v1, vn − v∗〉.

(3.8)

Thus, we obtain

‖wn+1 −w∗‖2E ≤ [1 − 2λnθn]‖wn −w∗‖2E +Mλ2n − 2λnθn〈u∗ − u1, un − u∗〉
− 2λnθn〈v∗ − v1, vn − v∗〉.

(3.9)

Using

0 ≤ ‖u∗ − u1 + (un − u∗)‖2H = ‖u∗ − u1‖2H + 2〈u∗ − u1, un − u∗〉 + ‖un − u∗‖2H,

0 ≤ ‖v∗ − v1 + (vn − v∗)‖2H = ‖v∗ − v1‖2H + 2〈v∗ − v1, vn − v∗〉 + ‖vn − v∗‖2H,
(3.10)

we have

−2〈u∗ − u1, un − u∗〉 ≤ ‖u∗ − u1‖2H + ‖un − u∗‖2H,

−2〈v∗ − v1, vn − v∗〉 ≤ ‖v∗ − v1‖2H + ‖vn − v∗‖2H.
(3.11)
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Therefore

‖wn+1 −w∗‖2E ≤ [1 − 2λnθn]‖wn −w∗‖2E +Mλ2n + λnθn‖wn −w∗‖2E
+ λnθn‖w∗ −w1‖2E.

(3.12)

So we obtain the following estimate:

‖wn+1 −w∗‖2E ≤ [1 − λnθn]‖wn −w∗‖2E + λnθn‖w∗ −w1‖2E +Mλ2n. (3.13)

Let d0 = r2/4M. Then using the induction assumptions, the fact that w1 ∈ B(w∗, r/2) and
λn ≤ d0θn, we obtain

‖wn+1 −w∗‖2H ≤
[
1 − λnθn

4

]
r2 < r2, (3.14)

a contradiction. Therefore, wn+1 ∈ B. Thus by induction, {wn} is bounded and so are {un}
and {vn}.

Step 2. We show that there exists a unique sequence zn = (xn, yn) ∈ E such that

θn(xn − u1) + Fxn − yn = 0, (3.15)

θn
(
yn − v1

)
+Kyn + xn = 0, (3.16)

and xn → x∗, yn → y∗, with x∗ +KFx∗ = 0 and y∗ = Fx∗.
In fact, let T : E → E be defined by T(u, v) = (Fu − v,Kv + u), for all (u, v) ∈ E.

Using the fact that F and K are monotone and satisfy the range condition, it follows from
Lemma 2.3 that T is monotone and also satisfies the range condition.

Applying Theorem 2.4, with t = 1/θn and x = (u1, v1), we obtain that limt→+∞Jtx ∈
T−1(0) implies that

lim
n→+∞

(
I +

1
θn

T

)−1
(u1, v1) ∈ T−1(0). (3.17)

Set zn = (xn, yn) := (I + (1/θn)T)
−1(u1, v1). Then (I + (1/θn)T)(xn, yn) = (u1, v1), for all n ≥ 1.

So we have,

xn+
1
θn

(
Fxn − yn

)
= u1,

yn+
1
θn

(
Kyn + xn

)
= v1.

(3.18)

Therefore,

θn(xn − u1) + Fxn − yn = 0,

θn
(
yn − v1

)
+Kxn + xn = 0.

(3.19)
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Since T is monotone and satisfies the range condition, then it is known that (I+rT) is bijective
for every r > 0. So, the sequence {zn} is unique. Using (3.17) and Theorem 2.4, we have,
lim zn ∈ T−1(0). Let xn → x∗ and yn → y∗. Then (x∗, y∗) ∈ T−1(0). So, T(x∗, y∗) = 0, that is,

Fx∗ − y∗ = 0,

Ky∗ + x∗ = 0.
(3.20)

Therefore, y∗ = Fx∗ and x∗ +KFx∗ = 0.

Step 3. We show that {wn} → (u∗, v∗), where u∗ +KFu∗ = 0 and v∗ = Fu∗.

Claim 1. wn+1 − zn → 0 as n → ∞. We compute as follows:

‖wn+1 − zn‖2E = ‖un+1 − xn‖2H +
∥∥vn+1 − yn

∥∥2
H. (3.21)

We have

‖un+1 − xn‖2H = ‖un − xn − λn(Fun − vn + θn(un − u1))‖2H
= ‖un − xn‖2H − 2λn〈Fun − vn + θn(un − u1), un − xn〉
+ λ2n‖Fun − vn + θn(un − u1)‖2H.

(3.22)

From the boundness of {un}, {vn}, and F, there exists M3 > 0 such that ‖Fun − vn + θn(un −
u1)‖2H ≤ M3. Using (3.15) and the fact that F is monotone, we obtain

‖un+1 − xn‖2H ≤ (1 − λnθn)‖un − xn‖2H − 2λn〈Fxn − vn, un − xn〉
− 2λn

〈
yn − Fxn, un − xn

〉
+M3λ

2
n

= (1 − λnθn)‖un − xn‖2H − 2λn
〈
yn − vn, un − xn

〉
+M3λ

2
n,

(3.23)

for some constant M3 > 0. Using (3.16) and similar arguments, we obtain:

‖vn+1 − vn‖2H ≤ (1 − λnθn)
∥∥vn − yn

∥∥2
H − 2λn

〈
Kyn + un, vn − yn

〉

+ 2λn
〈
xn +Kyn, vn − yn

〉
+M4λ

2
n

= (1 − λnθn)
∥∥vn − yn

∥∥2
H + 2λn

〈
xn − un, vn − yn

〉
+M4λ

2
n,

(3.24)

for some constant M4 > 0. Therefore, we have the following estimate:

‖wn+1 − zn‖2E ≤ (1 − λnθn)‖wn − zn‖2E +M′λ2n, where M′ = M3 +M4. (3.25)

On the other hand, using the monotonicity of F and K we have

‖zn−1 − zn‖2E ≤
∥∥∥xn−1 − xn + θ−1

n

(
Fxn−1 − yn−1 − Fxn + yn

)∥∥∥
2

H

+
∥∥∥yn−1 − yn + θ−1

n

(
Kyn−1 + xn−1 −Kyn − xn

)∥∥∥
2

H
.

(3.26)
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Using (3.15) and (3.16), we observe that

xn−1 − xn +
1
θn

(
Fxn−1 − yn−1 − Fxn + yn

)
=

θn − θn−1
θn

(xn−1 − u1),

yn−1 − yn +
1
θn

(
Kyn−1 + xn−1 −Kyn − xn

)
=

θn − θn−1
θn

(
yn−1 − v1

)
.

(3.27)

Therefore,

‖zn−1 − zn‖E ≤ θn−1 − θn
θn

‖zn−1 −w1‖E. (3.28)

Using (3.25) and the boundness of {xn} and {yn}, we obtain that there exists C > 0 such that:

‖wn+1 − zn‖2E ≤ (1 − λnθn)‖wn − zn−1‖2H + C

(
θn−1 − θn

θn

)
+M′λ2n. (3.29)

Thus, by Lemma 2.1, wn+1 − zn → 0. Since zn → (x∗, y∗), we obtain that wn → (x∗, y∗). But
since wn = (un, vn), this implies that un → u∗ and vn → v∗. This completes the proof.

Corollary 3.2. Let H be a real Hilbert space and F,K : H → H be maps with D(K) = D(F) = H
such that the following conditions hold:

(i) F and K are Lipschitz and monotone,

(ii) F and K satisfy the range condition.

Let {un} and {vn} be sequences inH defined iteratively from arbitrary points u1, v1 ∈ H as follows:

un+1 = un − λn(Fun − vn) − λnθn(un − u1), n ≥ 1,

vn+1 = vn − λn(Kvn + un) − λnθn(vn − v1), n ≥ 1,
(3.30)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0,

(2)
∑∞

n=1 λnθn = ∞, λn = o(θn),

(3) limn→∞((θn−1/θn) − 1)/λnθn = 0.

Suppose that u + KFu = 0 has a solution in H. Then, there exists a constant d0 > 0 such that if
λn ≤ d0θn for all n ≥ n0 for some n0 ≥ 1, then the sequence {un} converges to u∗, a solution of
u +KFu = 0.

Let X be a real Banach space with dual space X∗ and let A : X → X∗ be a monotone
linear operator. The mapping A is said to be angle-bounded with constant α ≥ 0 if

∣∣(Ax, y
) − (

Ay, x
)∣∣ ≤ 2α(Ax, x)1/2

(
Ay, y

)1/2
, ∀x, y ∈ D(A), (3.31)
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where (·, ·) denotes the duality pairing between elements of X∗ and those of X. The class of
angle-bounded operators is a subclass of the class of monotone operators. The angle-boundness
of A with α = 0 corresponds to the symmetry of A, that is,

(
Ax, y

)
=
(
Ay, x

)
, ∀x, y ∈ D(A). (3.32)

(See Pascali and Sburlan [5, Chapter IV, page 189]).
Let H be a separable real Hilbert space and C be a closed subspace of H. For a given

f ∈ C, consider the Hammerstein equation:

(I +KF)u = f, (3.33)

and its nth Galerkin approximation given by

(I +KnFn)un = P ∗f, (3.34)

where Kn = P ∗
nKPn : H → Cn and Fn = PnFP

∗
n : Cn → H, where the symbols have

their usual meanings (see [5] for the meaning of the symbols). Under this setting, Brézis and
Browder (see [9]) proved the following approximation theorem.

Theorem BB. Let H be a separable real Hilbert space. Let K : H → C be a bounded continuous
monotone operator and F : C → H be an angle-bounded and weakly compact mapping. Then, for
each n ∈ N, the Galerkin approximation (3.34) admits a unique solution un in Cn and {un} converges
strongly in H to the unique solution u ∈ C of the (3.33).

Remark 3.3. Theorem BB is the special case of the actual theorem of Brézis and Browder in
which the Banach space is a separable real Hilbert space. The main theorem of Brézis and
Browder is proved in an arbitrary separable Banach space.

Remark 3.4. The class of mappings considered in our theorem (Theorem 3.1) is larger than
that considered in Theorem BB. In particular, in Theorem BB, in addition to assuming that
the operator K is bounded and monotone, the authors also required K to be continuous.
Furthermore, the operator F is restricted to the class of angle-bounded operators (a subclass
of the monotone operators) and is also assumed to be weakly compact. In Theorem 3.1, the
operators K and F are only assumed to be bounded and monotone and satisfy the range
condition. We remark that continuity of the monotone map K implies that K is m-accretive
(see Martin [21]) and it is known that m-accretive implies range condition.

Remark 3.5. Theorem BB guarantees the existence of a sequence {un}which converges strongly
to a solution of the Hammerstein equation (3.33). Our theorem provides an iterative sequence
which converges strongly to a solution of (3.33).

Remark 3.6. Real sequences that satisfy the hypotheses of Theorem 3.1 are λn = (n + 1)−a and
θn = (n + 1)−b with 0 < b < a and a + b < 1.
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We verify that these choices satisfy, in particular, condition (3) of Theorem 3.1. In fact,
using the fact that (1 + x)p ≤ 1 + px, for x > −1 and 0 < p < 1, we have

0 ≤ ((θn−1/θn) − 1)
λnθn

=

[(
1 +

1
n

)b

− 1

]
· (n + 1)a+b

≤ b · (n + 1)a+b

n
= b · n + 1

n
· 1

(n + 1)1−(a+b)
−→ 0,

(3.35)

as n → ∞.
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