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The main purpose of this paper is the visualization of convex data that results in a smooth,
pleasant, and interactive convexity-preserving curve. The rational cubic function with three free
parameters is constructed to preserve the shape of convex data. The free parameters are arranged
in a way that two of them are left free for user choice to refine the convex curve as desired, and
the remaining one free parameter is constrained to preserve the convexity everywhere. Simple
data-dependent constraints are derived on one free parameter, which guarantee to preserve the
convexity of curve. Moreover, the scheme under discussion is, C1 flexible, simple, local, and
economical as compared to existing schemes. The error bound for the rational cubic function is
O(h3).

1. Introduction

Spline interpolation is a significant tool in computer graphics, computer-aided geometric
design and engineering as well. Convexity is prevalent shape feature of data. Therefore,
the need for convexity preserving interpolating curves and surfaces according to the given
data becomes inevitable. The aspiration of this paper is to preserve the hereditary attribute
that is the convexity of data. There are many applications of convexity preserving of data,
for instance, in the design of telecommunication systems, nonlinear programming arising in
engineering, approximation of functions, optimal control, and parameter estimation.

The problem of convexity-preserving interpolation has been considered by a number
of authors [1–21] and references therein. Bao et al. [1] used function values and first
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derivatives of function to introduce a rational cubic spline (cubic/cubic). A method for
value control, inflection-point control and convexity control of the interpolation at a point
was developed to be used in practical curve design. Asaturyan et al. [3] constructed a six-
degree piecewise polynomial interpolant for the space curves to satisfy the shape-preserving
properties for collinear and coplanar data.

Brodlie and Butt [4] developed a piecewise rational cubic function to preserve the
shape of convex data. In [4], the authors inserted extra knots in the interval where the
interpolation loses the convexity of convex data which is the drawback of this scheme.
Carnicer et al. [5] analyzed the convexity-preserving properties of rational Bézier and non-
uniform rational B-spline curves from a geometric point of view and also characterize totally
positive systems of functions in terms of geometric convexity-preserving properties of the
rational curves.

Clements [6] developed a C2 parametric rational cubic interpolant with tension
parameter to preserve the convexity. Sufficient conditions were derived to preserve the
convexity of the function on strictly left/right winding polygonal line segments. Costantini
and Fontanella [8] preserved the convexity of data by semi-global method. The scheme has
some research gaps like the degree of rectangular patches in the interpolant that was too
large; the resulting surfaces were not visually pleasing and smooth.

Delbourgo and Gregory [9] developed an explicit representation of rational cubic
function with one free parameter which can be used to preserve the convexity of convex data.
Meng and Shi Long [11] also developed an explicit representation of rational cubic function
with two free parameters which can be used to preserve the convexity of convex data. In the
schemes [9, 11], there was no choice for user to refine the convexity curve as desired. The
rational spline was represented in terms of first derivative values at the knots and provided
an alternative to the spline under tension to preserve the shape of monotone and convex data
by Gregory [10].

McAllister [12], Passow [13], and Roulier [14] considered the problem of interpolating
monotonic and convex data in the sense of monotonicity and convexity preserving. They
used a piecewise polynomial Bernstein-Bézier function and introduce additional knots into
their schemes. Such a scheme for quadratic spline interpolation was described by McAllister
[12] and was further developed by Schumaker [15] using piecewise quadratic polynomial
which was very economical, but the method generally inserts an extra knot in each interval
to interpolate.

Sarfraz and Hussain [17] used the rational cubic function with two shape parameters
to solve the problem of convexity preserving of convex data. Data-dependent sufficient
constraints were derived to preserve the shape of convex data. Sarfraz [18] developed a
piecewise rational cubic functionwith two families of parameters. In [18], the authors derived
the sufficient conditions on shape parameters to preserve the physical shape properties of
data. Sarfraz [19–21] used piecewise rational cubic interpolant in parametric context for
shape preserving of plane curves and scalar curves with planar data. The schemes [17–21]
are local, but, unfortunately, they have no flexibility in the convexity-preserving curves.

In this paper, we construct a rational cubic function with three free parameters. One
of the free parameter is used as a constrained to preserve the convexity of convex data while
the other two are left free for the user to modify the convex curve. Sufficient data-dependent
constraints are derived. Our scheme has a number of attributes over the existing schemes.

(i) In this paper, the shape-preserving of convex data is achieved by simply imposing
the conditions subject to data on the shape parameters used in the description of
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rational cubic function. The proposed scheme works evenly good for both equally
and unequally spaced data. In contrast [1] assumed certain function values and
derivative values to control the shape of the data.

(ii) In [12, 15], the smoothness of interpolant is C0 while in this work the degree of
smoothness is C1.

(iii) The developed scheme has been demonstrated through different numerical
examples and observed that the scheme is not only local, computationally
economical, and easy to compute, time saving but also visually pleasant as
compared to existing schemes [17–21].

(iv) In [9–11, 17–21], the schemes do not allow to user to refine the convex curve
as desired while for more pleasing curve (and still having the convex shape
preserved) an additional modification is required, and this task is more easily done
in this paper by simply adjustment of free parameters in the rational cubic function
interpolation on user choice.

(v) In [17–21], the authors did not provide the error analysis of the interpolants while
a very good O(h3) error bound is achieved in this paper.

(vi) In [4, 12–15], the authors developed the schemes to achieve the desired shape
of data by inserting extra knots between any two knots in the interval while we
preserve the shape of convex data by only imposing constraints on free parameters
without any extra knots.

The remaining part of this paper is organized as follows. A rational cubic function is defined
in Section 2. The error of the rational cubic interpolant is discussed in Section 3. The problem
of shape preserving convexity curve is discussed in Section 4. Derivatives approximation
method is given in Section 5. Some numerical results are given in Section 6. Finally, the
conclusion of this work is discussed in Section 7.

2. Rational Cubic Spline Function

Let {(xi, fi), i = 0, 1, 2, . . . , n} be the given set of data points such as x0 < x1 < x2 < · · · < xn.
The rational cubic function with three free parameters introduced by Abbas et al. [2], in each
subinterval Ii = [xi, xi+1], i = 0, 1, 2, . . . , n − 1, is defined as

Si(x) =
pi(θ)
qi(θ)

, (2.1)

with

pi(θ) = uifi(1 − θ)3 +
(
wifi + uihidi

)
θ(1 − θ)2 +

(
wifi+1 − vihidi+1

)
θ2(1 − θ) + vifi+1θ

3,

qi(θ) = ui(1 − θ)3 +wiθ(1 − θ) + viθ
3,

(2.2)

where θ = x − xi/hi, hi = xi+1 − xi, and ui, vi,wi are the positive free parameters. It is worth
noting that whenwe use the values of these free parameters as ui = 1, vi = 1 and wi = 3, then
the C1 piecewise rational cubic function (2.1) reduces to standard cubic Hermite spline
discussed in Schultz [16].
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The piecewise rational cubic function has the following interpolatory conditions:

Si(xi) = fi, Si(xi+1) = fi+1, S′
i(xi) = di, S′

i(xi+1) = di+1, (2.3)

where S′
i(x) denotes the derivative with respect to “x,” and di denotes the derivative values

at knots.

3. Interpolation Error Analysis

The error analysis of piecewise rational cubic function (2.1) is estimated, without loss of
generality, in the subinterval Ii = [xi, xi+1]. It is to mention that the scheme constructed
in Section 2 is local. We suppose that f(x) ∈ C3[x0, xn], and Si(x) is the interpolation of
function f(x) over arbitrary subinterval Ii = [xi, xi+1]. The Peano Kernel Theorem, Schultz
[16] is used to obtain the error analysis of piecewise rational cubic interpolation in each
subinterval Ii = [xi, xi+1], and it is defined as

R
[
f
]
= f(x) − Si(x) =

1
2

∫xi+1

xi

f (3)(τ)Rx

[
(x − τ)2+

]
dτ. (3.1)

In each subinterval, the absolute value of error is

∣∣f(x) − Si(x)
∣∣ ≤ 1

2

∥∥∥f (3)(τ)
∥∥∥

∫xi+1

xi

∣∣∣Rx

[
(x − τ)2+

]∣∣∣dτ, (3.2)

where

Rx

[
(x − τ)2+

]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x − τ)2 −

(
wi(xi+1 − τ)2 − 2hivi(xi+1 − τ)

)
θ2(1 − θ) + vi(xi+1 − τ)2θ3

qi(θ)
xi < τ < x,

(
wi(xi+1 − τ)2 − 2hivi(xi+1 − τ)

)
θ2(1 − θ) + vi(xi+1 − τ)2θ3

qi(θ)
x < τ < xi+1,

=

⎧
⎨

⎩

a(τ, x) xi < τ < x,

b(τ, x) x < τ < xi+1,

(3.3)

where Rx[(x − τ)2+] is called the Peano Kernel of integral. To derive the error analysis, first of
all we need to examine the properties of the kernel functions a(τ, x) and b(τ, x), and then to
find the values of following integrals:

∫xi+1

xi

∣∣∣Rx

[
(x − τ)2+

]∣∣∣dτ =
∫x

xi

|a(τ, x)|dτ +
∫xi+1

x

|b(τ, x)|dτ. (3.4)
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So, we calculate these values in two parts. The proof of Theorem will be completed by
combining these two parts.

3.1. Part 1

By simple computation, the roots of a(x, x) = (θ2(1 − θ)2((wi − νi)θ + (2νi −
wi))h2

i )/qi(θ) in [0, 1] are θ = 0, θ = 1 and θ∗ = 1 − νi/(wi − νi). It is easy to show that
when θ ≤ θ∗, a(x, x) ≤ 0 and θ ≥ θ∗, a(x, x) ≥ 0. The roots of quadratic function a(τ, x) = 0
are

τ∗1 = x − θhi(θ(wi − νi) +A)
(1 − θ)ui + θwi

, τ∗∗1 = x − θhi(θ(wi − νi) −A)
(1 − θ)ui + θwi

, (3.5)

where A =
√
νi((wi − 2νi) + 3θ) +wi(wi − 4νi)θ.

So, when θ > θ∗, xi < τ∗∗1 < x and when θ < θ∗, τ∗∗1 > x. Thus, θ < θ∗, a(τ, x) <
0 for all τ ∈ [xi, x],

∫x

xi

|a(τ, x)|dτ =
∫x

xi

(−a(τ, x))dτ

=
(νi(3 − θ) −wi(1 − θ))(1 − θ)3θ2h3

i

3qi(θ)
+
(wi − 3vi)(1 − θ)θ2h3

i

3qi(θ)
+
viθ

3h3
i

3qi(θ)
− θ3h3

i

3
.

(3.6)

The value of a(τ, x) varies from negative to positive on the root τ∗∗1 when θ > θ∗,

∫x

xi

|a(τ, x)|dτ =
∫ τ∗∗1

xi

(−a(τ, x))dτ +
∫x

τ∗∗1

a(τ, x)dτ

=
2((wi − νi)θ −A)3θ3h3

i

3((1 − θ)ui + θwi)
3

− θ3h3
i

3
− 2h3

i

3qi(θ)

[
(1 − θ) +

θ((wi − νi)θ −A)
(1 − θ)ui + θwi

]3

× ((1 − θ)wi + θνi) +
2h3

i νiθ
2(1 − θ)

qi(θ)

[
(1 − θ) +

θ((wi − νi)θ −A)
(1 − θ)ui + θwi

]2
.

(3.7)

3.2. Part 2

In this part, we discuss the properties of function b(τ, x). Consider b(τ, x), τ ∈ [x, xi+1] as
function of τ . The roots of function b(τ, x) are similar as a(τ, x) in Section 3.1 at τ = x. It is
easy to show that when θ ≤ θ∗, b(x, x) ≤ 0 and θ ≥ θ∗, b(x, x) ≥ 0. The roots of quadratic
function b(τ, x) = 0 are

τ∗2 = xi+1, τ∗∗2 = xi+1 − 2(1 − θ)νihi

(1 − θ)wi + θνi
. (3.8)
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The function b(τ, x) varies from negative to positive on the root τ∗∗2 when θ ≤ θ∗. Thus,

∫xi+1

x

|b(τ, x)|dτ =
∫ τ∗∗2

x

(−b(τ, x))dτ +
∫xi+1

τ∗∗2

b(τ, x)dτ

=
8θ2(1 − θ)3νi3h3

i

3qi(θ)((1 − θ)ui + θwi)
2
+
h3
i θ

2(1 − θ)3

3qi(θ)
(wi(1 − θ) − νi(3 − θ)),

(3.9)

when θ ≥ θ∗,

∫xi+1

x

|b(τ, x)|dτ =
∫xi+1

x

b(τ, x)dτ

=
h3
i θ

2(1 − θ)3

3qi(θ)
(νi(3 − θ) −wi(1 − θ)).

(3.10)

Thus, from (3.6) and (3.9), it can be shown that when 0 ≤ θ ≤ θ∗,

∣∣f(x) − Si(x)
∣∣ ≤ 1

2

∥∥∥f (3)(τ)
∥∥∥

∫xi+1

xi

∣∣∣Rx

[
(x − τ(x − τ)2+

]∣∣∣dτ =
∥∥∥f (3)(τ)

∥∥∥h3
i p1(ui, vi,wi, θ),

(3.11)

where

p1(ui, νi,wi, θ) =
(νi(3 − θ) −wi(1 − θ))(1 − θ)3θ2

6 qi(θ)
+
(wi − 3νi)(1 − θ)θ2

6 qi(θ)
+

νiθ
3

6 qi(θ)
− θ3

6

+
8θ2(1 − θ)3νi3

6 qi(θ)((1 − θ)ui + θwi)
2
+
θ2(1 − θ)3

6 qi(θ)
(wi(1 − θ) − νi(3 − θ)),

(3.12)

and, from (3.7) and (3.10), it can be shown that when θ∗ ≤ θ ≤ 1,

∣∣f(x) − Si(x)
∣∣ ≤ 1

2

∥∥∥f (3)(τ)
∥∥∥

∫xi+1

xi

∣∣∣Rx

[
(x − τ)2+

]∣∣∣dτ =
∥∥∥f (3)(τ)

∥∥∥h3
i p2(ui, νi,wi, θ), (3.13)

where

p2(ui, νi,wi, θ) =
2((wi − νi)θ −A)3θ3

6((1 − θ)ui + θwi)
3

− θ3

6
− 2
6qi(θ)

[
(1 − θ) +

θ((wi − νi)θ −A)
(1 − θ)ui + θwi

]3

× ((1 − θ)wi + θνi) +
νiθ

2(1 − θ)
qi(θ)

[
(1 − θ) +

θ((wi − νi)θ −A)
(1 − θ)ui + θwi

]2

+
θ2(1 − θ)3

6qi(θ)
(νi(3 − θ) −wi(1 − θ)).

(3.14)
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Theorem 3.1. For the positive free parameters ui, νi, and wi, the error of interpolating rational cubic
function Si(x), for f(x) ∈ C3[x0, xn], in each subinterval Ii = [xi, xi+1] is

∣
∣f(x) − Si(x)

∣
∣ ≤ 1

2

∥
∥
∥f (3)(τ)

∥
∥
∥

∫xi+1

xi

∣
∣
∣Rx

[
(x − τ)2+

]∣∣
∣dτ =

∥
∥
∥f (3)(τ)

∥
∥
∥h3

i ci, ci = max
0≤θ≤1

p(ui, νi,wi, θ),

(3.15)

where

p(ui, νi,wi, θ) =

⎧
⎨

⎩

max p1(ui, νi,wi, θ), 0 ≤ θ ≤ θ∗

max p2(ui, νi,wi, θ), θ∗ ≤ θ ≤ 1.
(3.16)

Remark 3.2. It is interesting to note that the rational cubic interpolation (2.1) reduces to
standard cubic Hermite interpolation whenwe adjust the values of parameters as ui = 1, νi =
1 and wi = 3. In this special case, the functions p1(ui, νi,wi, θ) and p2(ui, νi,wi, θ) are

p1(ui, vi,wi, θ) =
4θ2(1 − θ)3

3(3 − 2θ)2
, 0 ≤ θ ≤ 1

2
, (3.17)

p2(ui, νi,wi, θ) =
4θ3(1 − θ)2

3(1 + 2θ)2
,

1
2
≤ θ ≤ 0, (3.18)

respectively. Since ci = max{max0≤θ≤0.5p1(ui, νi,wi, θ),max0.5≤θ≤0 p2(ui, νi,wi, θ)} = 1/96. This
is the standard result for standard cubic Hemite spline interpolation.

4. Shape Preserving 2D Convex Data Rational
Cubic Spline Interpolation

The piecewise rational cubic function (2.1) does not guarantee to preserve the shape of
convex data. So, it is required to assign suitable constraints on the free parameters by some
mathematical treatment to preserve the convexity of convex data.

Theorem 4.1. The C1 piecewise rational cubic function (2.1) preserves the convexity of convex data if
in each subinterval Ii = [xi, xi+1], i = 0, 1, 2, . . . , n, the free parameters satisfy the following sufficient
conditions:

wi > max
{
0,

di+1νi
(di+1 −Δi)

,
di+1νi

(Δi − di)
,
2uiνi(di+1 −Δi)
(di+1νi −Δiui)

,
2uiνi(Δi − di)
(Δiνi − diui)

,
uiνi(di+1 − di)
Δi(ui + νi)

}
,

ui, νi > 0.
(4.1)
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The above constraints are rearranged as

wi = li +max
{
0,

di+1νi
(di+1 −Δi)

,
di+1νi

(Δi − di)
,
2uiνi(di+1 −Δi)
(di+1νi −Δiui)

,
2uiνi(Δi − di)
(Δiνi − diui)

,
uiνi(di+1 − di)
Δi(ui + νi)

}
,

li ≥ 0, ui, νi > 0.
(4.2)

Proof. Let {(xi, fi), i = 0, 1, 2, . . . , n} be the given set of convex data. For the strictly convex
set of data, so

Δ1 < Δ2 < Δ3 < · · · < Δn−1. (4.3)

In similar way for the concave set of data, we have

Δ1 > Δ2 > Δ3 > · · · > Δn−1. (4.4)

Now, for a convex interpolation Si(x), necessary conditions on derivatives parameters di

should be in the form such that

d1 < Δ1 < · · · < Δi−1 < di < Δi < · · · < Δn−1 < dn. (4.5)

Similarly, for concave interpolation,

d1 > Δ1 > · · · > Δi−1 > di > Δi > · · · > Δn−1 > dn. (4.6)

The necessary conditions for the convexity of data are

Δi − di ≥ 0, di+1 −Δi ≥ 0. (4.7)

Now a piecewise rational cubic interpolation Si(x) is convex if and only if S(2)
i (x) ≥ 0, ∀x ∈

[x1, xn], for x ∈ [xi, xi+1] after some simplification it can be shown that;

S
(2)
i (x) =

∑8
k=1 θ

k−1(1 − θ)8−kCik

hi

(
qi(θ)

)3 , (4.8)
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where

C i1 = 2ν2i (wi(di+1 −Δi) + diui − di+1νi), Ci2 = 4 Ci1 + 6ν2i (di+1νi −Δiui),

Ci3 = (Ci2 − C i1) + 6νi{wi(di+1νi −Δiui) − 2uiνi(di+1 −Δi)},

Ci4 = (Ci3 + C i1 − Ci2) + 2wi{wi(Δi(ui + νi)) − uiνi(di+1 − di)} + 14uiνi(di+1νi − diui),

Ci5 = (Ci6 + Ci8 − Ci7) + 2wi{wi(Δi(ui + νi)) − uiνi(di+1 − di)} + 14uiνi(di+1νi − diui),

Ci6 = (Ci7 − Ci8) + 6ui{wi(Δiνi − diui) − 2uiνi(Δi − di)},

Ci7 = 4 Ci8 + 6u2
i (Δiνi − diui), Ci8 = 2u2

i (wi(Δi − di) + diui − di+1νi).
(4.9)

All Cik’s are the expression involving the parameters d′
is, Δ

′
is, u

′
is, v

′
is, and w′

is.
A C1 piecewise rational cubic interpolant (2.1) preserves the convexity of data

if S(2)
i (x) ≥ 0.

S
(2)
i (x) > 0 if both

∑8
k=1 θ

k−1(1 − θ)8−kCi k > 0 and hi(qi(θ))
3 > 0.

Since ui, νi, wi are positive free parameters, so hi(qi(θ))
3 > 0 must be positive

8∑

k=1

θk−1(1 − θ)8−kCik > 0 if Cik > 0, k = 1, 2, 3, 4, 5, 6, 7, 8. (4.10)

Hence, Cik > 0, k = 1, 2, 3, 4, 5, 6, 7, 8 if we have the following sufficient conditions on
parameter wi:

wi > max
{
0,

di+1νi
(di+1 −Δi)

,
di+1νi

(Δi − di)
,
2uiνi(di+1 −Δi)
(di+1νi −Δiui)

,
2uiνi(Δi − di)
(Δiνi − diui)

,
uiνi(di+1 − di)
Δi(ui + νi)

}
.

(4.11)

The above constraints are rearranged as

wi= li+max
{
0,

di+1νi
(di+1−Δi)

,
di+1νi
(Δi−di)

,
2uiνi(di+1−Δi)
(di+1νi−Δiui)

,
2uiνi(Δi−di)
(Δiνi−diui)

,
uiνi(di+1−di)
Δi(ui+νi)

}
, li ≥ 0,

(4.12)

where Δi = (fi+1 − fi)/hi.

5. Determination of Derivatives

Usually, the derivative values at the knots are not given. These values are derived either at
the given data set {(xi, fi), i = 0, 1, 2, . . . , n} or by some other means. In this paper, these
values are determined by following arithmetic mean method for data in such a way that the
smoothness of the interpolant (2.1) is maintained.
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Figure 1: Cubic Hermite spline scheme.

Table 1: Convex data set.

i 1 2 3 4 5 6 7 8 9 10
x 1.2 1.4 1.8 2 6 12 13 14.4 14.8 15
y = f(x) 18 16 12 10 2.2 2.23 3.5 7.2 14 18

5.1. Arithmetic Mean Method

This method is the three point difference approximation with

di =

⎧
⎪⎨

⎪⎩

0 if Δi−1 = 0 or Δi = 0,

hiΔi−1 + hi−1Δi

hi + hi−1
otherwise, i = 2, 3, . . . n − 1,

(5.1)

and the end conditions are given as

d1 =

⎧
⎪⎨

⎪⎩

0 if Δ1 = 0 or sgn(d1)/= sgn(Δ1),

Δ1 + (Δ1 −Δ2)h1

h1 + h2
otherwise,

dn =

⎧
⎪⎨

⎪⎩

0 if Δn−1 = 0 or sgn(dn)/= sgn(Δn−1),

Δn−1 + (Δn−1 −Δn−2)hn−1
hn−1 + hn−2

otherwise.

(5.2)

6. Numerical Examples

In this section, a numerical demonstration of convexity-preserving scheme given in Section 4
is presented.
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Figure 2: Convexity shape-preserving rational cubic interpolation.

Table 2: Numerical results of Figure 2.

i 1 2 3 4 5 6 7 8 9 10
di −10 −10 −10 −9.6167 −1.168 1.0893 1.842 13.81 19 21
Δi −10 −10 −10 −1.95 0.005 1.27 2.6429 17 20 —
ui 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
vi 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
wi 0.11 5.6295e013 1.0827e014 0.14932 0.12009 0.30386 0.44488 0.29 0.52 0.11

1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

−2

y
-a
xi
s

x-axis

Figure 3: Cubic hermite spline scheme.
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Table 3: Convex data set [11].

i 1 2 3 4 5 6 7 8 9
x 1 1.1 1.4 2 2.2 4 5 10 10.22
y = f(x) 10 5.5 4.2 2.5 2 0.625 0.4 1 1.8
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Figure 4: Convexity shape-preserving rational cubic Interpolation.

Example 6.1. Consider convex data set taken in Table 1. Figure 1 is produced by cubic Hermite
spline. We remark that Figure 1 does not preserve the shape of convex data. To overcome
this flaw, Figure 2 is produced by the convexity-preserving rational cubic spline interpolation
developed in Section 4 with the values of free parameters ui = 0.02, νi = 0.02 to preserve the
shape of convex data. Numerical results of Figure 2 are determined by developed convexity
preserving rational cubic spline interpolation shown in Table 2.

Example 6.2. Consider convex data set taken in Table 3. Figure 3 is produced by cubic
Hermite spline, and it is easy to see that Figure 3 does not preserve the shape of convex
data. Figure 4 is produced by the convexity-preserving rational cubic spline interpolation
developed in Section 4 with the values of free parameters ui = 0.02, νi = 0.02 to preserve the
shape of convex data. Numerical results of Figure 4 are determined by developed convexity
preserving rational cubic spline interpolation shown in Table 4.

7. Conclusion

In this paper, we have constructed a C1 piecewise rational cubic function with three free
parameters. Data-dependent constraints are derived to preserve the shape of convex data.
Remaining two free parameters are left free for user’s choice to refine the convexity-
preserving shape of the convex data as desired. No extra knots are inserted in the interval
when the curve loses the convexity. The developed curve scheme has been tested through
different numerical examples, and it is shown that the scheme is not only local and
computationally economical but also visually pleasant.
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Table 4: Numerical results of Figure 4.

i 1 2 3 4 5 6 7 8 9
di −55.16 −34.83 −3.83 −2.58 −2.32 −0.41 −0.16 3.48 3.78
Δi −45 −4.33 −2.83 −2.5 −0.76 −0.22 0.12 3.63 —
ui 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
vi 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
wi 0.14279 0.87 0.38 0.4368 0.11125 0.15086 0.26265 0.74 0.14279
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