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We consider the 2D liquid crystal systems, which consists of Navier-Stokes system coupled with
wave maps or biharmonic wave maps, respectively. By logarithmic Sobolev inequalities, we obtain

a blow-up criterion Vd, 0;d € L'(0,T; ng (R?)) for the case with wave maps, and we prove the
existence of a global-in-time strong solutions for the case with biharmonic wave maps.

1. Introduction

First, we consider the following simplified liquid crystal flows in two space dimensions [1]:

Ou+u-Vu+ Vo —Au= > 8d" - vdF, (1.1)
k
div u =0, (1.2)
9%d+u-Vd- Ad = d<|Vd|2 - |atd|2), | =1, (1.3)
(u,d,0:d) (x,0) = (ug, do, d1)(x), x€RZ |do| =1, do-dh =0, (1.4)

where u is the velocity, o is the pressure, and d represents the macroscopic average of the
liquid crystal orientation field with values in the unit circle.
The first two equations (1.1) and (1.2) are the well-known Navier-Stokes system with

the Lorentz force 3, 9;d* - Vd*. The last equation (1.3) is the well-known wave maps when
u=0.
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It is a simple matter to show that the system (1.1)—(1.4) has a unique local-in-time
smooth solution when ug, Vdy, d; € H'** (R?) withs > 0, divug =0, |do| =1, do-d; =0
in R%. The aim of this paper is to study the regularity criterion of smooth solutions to the
problem (1.1)—(1.4). We will prove the following.

Theorem 1.1. Let ug, Vdy, di € H*(R?) withs >0, div ug = 0,|do| = 1, do - dq = 0 in R? and
let (u,d) be a smooth solution of (1.1)—(1.4) on some interval [0,T] with 0 < T < oo. Assume that

vd,d e L'(0,T; B, . (R?)). (1.5)

Then the solution (u, d) can be extended beyond T > 0.

B, ., is the homogeneous Besov space. We have L* ¢ BMO c BY, ; see Triebel [2].
In the proof of Theorem 1.1, we will use the logarithmic Sobolev inequalities [3-6]:

ol < Cllulpalog! (e + el ), (16)
1Vdll . < C(1+IVdllgy log(e + | Vdllgs.) ), (17)
0rcll < C(1+ 0udlly, , Tog(e + [Dudllgp) ), (18)

for s > 0, and the Gagliardo-Nirenberg inequalities:

1-
A1+Sw

I2
a

lolls < Clleollz

7

(1.9)

JASwlys < Cllwlz" || 4w

7

12

with A := (—A)l/z, a:=1-(1/2)-(1/(1+s)), and s > 0, and the product estimate due to
Kato-Ponce [7]:

”As(fg)”Lﬁ < C(”f”m ”Asg”m + ”g”LPZ ”Asf”mz)f (1.10)

withs>0and1/p=1/p1+1/q1 =1/p2+1/q.
Motivated by the problem (1.1)-(1.4), we consider the following liquid crystal flows:

6tu+u-Vu+V7r—Au=Zatdk-de, (111)
k
divu=0, (1.12)
Od+u-Vd+ (-A)?d=-\d, |d=1, (1.13)
A= 10df + [Ad] + A|VAP +2 0kd - Adid, (1.14)
k

(u,d,0;d)(x,0) = (uy,do, d1)(x,0), x€R? |do|=1. (1.15)
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The last two equations (1.13) and (1.14) are the biharmonic wave maps. It is also a simple
matter to show that the problem (1.11)—(1.15) has at least one local-in-time strong solution.
The aim of this paper is to prove the global-in-time regularity. We obtain the following.

Theorem 1.2. Let ug € H?, (Vdy,di) € H® x H> with div ug = 0, |do| =1, do - di = 0in R2.
Then there exists at least a global-in-time smooth solution:

(u,Vd,d:d) € L*® <o, T; H2> x L (0, T; H3) x L*® (o, T; H2> (1.16)

forany T > 0.

Remark 1.3. We are unable to prove the uniqueness of strong solutions in Theorem 1.2.

2. Proof of Theorem 1.1

We only need to prove a priori estimates.
Testing (1.1) by u, using (1.2), we see that

%%qudx+f|Vu|2dx = f(u-V)d.atddx. (2.1)
Testing (1.3) by 0¢d, using |d| =1 and d - 0;d = 0, we find that

1d

oF f |Vd|* + |0:d|*dx = - I(u -V)d - d,d dx. (2.2)

Summing up (2.1) and (2.2), we get

1if 24 |VA +|9,d*dx + f [Vul>dx =0, (2.3)
2dt
from which we get
T
fuz +|Vd]? +|0d*dx + f f |Vul*dx dt < C. (2.4)
0

Applying A" to (1.1), testing by A**u, using (1.2) and (1.10), we derive

1d 1+s
3o | A

2
dx

2dx + f |A2+Su

—- [ A" divuow) - At udx + [ AT (Ot - Vd) - A udx

< Cllull;» A%y

A1+su
2

12
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+ C<||atd||Lw Aoy

AFd| |Vl

Ao, )|

2
2)’

12
1 2
< _| A2+su A1+Su
2 2

2 2
ot Cllullze

A1+su

+Cll@aid, V)l (42 +|

(2.5)
where

A“Satd”; +[|ara i (2.6)

y2:=|

Taking A*® to (1.3), testing by A**9,d, we have

1d

L= [ ot o) 0

(2.7)
- IA1+S(u -Vd) - A0 ddx = I + L.

By using (1.10), (2.4), and (1.9), I; can be bounded as follows:

I < C[lld-

A (1VvdP - (o] ?)

12
LVl Al + ool )] [ Ao

) e
A"*0,d

+| Ad

< C[<||Vd||Lm' A4 A9,d

+ey (IVdll ey + |3rdl -y ™)
< CJl(3ed, V)l .

et l10¢d|

12

By using (1.10), I can be bounded as

I < C(llull=|[ A% ALy

L+ IVl

1+s
LZ>| A atd L2
2 > (2.9)
2)’

Combining (2.5), (2.7), (2.8), and (2.9) and using (1.6), (1.7), (1.8), and the Gronwall
lemma, we arrive at

< Cllullpoy? + C|1 V] <y2 + At

lull Lo (0,7 1010y + Ul 20,7102y < C,

(2.10)
1(Vd, 61d) | 0, 7;p1105) < C.

This completes the proof.
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3. Proof of Theorem 1.2

For simplicity, we only present a priori estimates.
First, we still have (2.1).
Testing (1.13) by 0;d, using d - 0;d = 0, we have

%% f |Ad]* + |0d|*dx = — f(u -V)d - 9,d dx. (3.1)
Summing up (2.1) and (3.1), we get

T
qu +|AdP +0id[*dx + I f |VulPdxdt < C,

(3.2)
1d
37 j |Vd[*dx = —fAd Ord dx < ||Ad||j2]|0ed]| 2 £ C,
which yields
I|Vd|2dx <C. (3.3)
Applying A to (1.11), testing by Au, using (1.2) and (1.10), we deduce that
2
2dt I|Au| dx+f|VAu| dx
- I Adiv(ueu) - Audx + f A(0id, Vd) - Audx
< Cllullp IV Auell 2 | Arell 2 + C[|Ordl = IV Adl 2 + [Vl Lo | A0t 2) [| Al 2
1 ) 5 ) (3.4)
< IV Aullza + Cllull- | Anllz
+C<||atd||1/2||Aatd”l/z”AdHl/z - + ||Vd||Lw||Aatd”Lz>||Au||Lz
1
< SIVAuIE, + Cllulf-l|Aulf: + Cy? + Cllaull, + CIVAl. (4 + 1 auli),
where
2 2 24117
2 = | Ad P + ||A d”Lz. (3.5)

Applying A to (1.13), we have

AO*d + Ad = —(AAd +2V - Vd +dA)) - A(u- Vd). (3.6)
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Since

0 = A(doyd) = dAdd + B,dAd + 2 0, ddyd,d,
k

we easily see that

—-dAdd = d,dAd + 3,|Vd|*.

Testing (3.6) by Ad:d, using (3.8), we obtain

Sy = —J‘/\Ad - A0 d + VA[2Vd - Add + V (0, dAd +2Vd - VO,d)]dx

- f A(u-Vd) - Adddx =: J; +],.

By the same calculations as those in [8], we have

J1 <C(L+|Vd|l)y* < C(1+ (| Vd| i log (e + )y

By using (1.10), J, can be bounded as

Jo < C(|1Aullpal[Vl e + [[ullp IV Ad]l2)[[ADed]| 2

1/2
< C|[Vl (7 + | Aul) + Cllull 2 ul 2 adl2 ] a2 |

|Ad| 1>

< CIIVdl (v + 1 Aulf, ) + Cy? + CllAulf.

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Combining (3.4), (3.9), (3.10), and (3.11) and using (1.6) and the Gronwall lemma, we

conclude that

||u||L°°(O,T;H2) + ||u||L2(O,T;H3) <C,

IVl o,1;03) + 10l Lo (0,712 < C.

This completes the proof.
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