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With the help of bifurcation techniques, some multiplicity results and global structure for sign-
changing solutions of some m-point boundary value problems are obtained when the nonlinear
term is sublinear at 0.

1. Introduction and Main Results

In this paper, we consider them-point boundary value problems:

u′′ + λf(u) = 0, t ∈ (0, 1), (1.1)

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
, (1.2)

where integer m ≥ 3, ηi ∈ (0, 1), λ is a positive parameter, and f ∈ C1(R,R). We study
the multiplicity and global structure of sign-changing solutions of (1.1) and (1.2) under the
assumptions:

(A1) αi > 0 for i = 1, . . . , m − 2 with 0 <
∑m−2

i=1 αi < 1;

(A2) f ∈ C1(R,R) satisfies sf(s) > 0 for s /= 0;

(A3) f0 := lim|s|→ 0f(s)/s = 0;

(A4) f∞ := lim|s|→∞f(s)/s = 0.
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Multipoint boundary value problems for ordinary differential equations arise in
different areas of applied mathematics and physics. The existence of solutions of second-
order multipoint boundary value problems has been extensively studied in the literature,
see [1–4] and the references therein. Particularly, many authors have studied the existence
of sign-changing solutions for various nonlinear boundary value problems, see for example
[5–10].

Recently, the global structure of solutions of nonlinear multipoint boundary value
problems has also been investigated by several authors using bifurcation methods, see [7–
10]. These papers dealt with the case f0 ∈ (0,∞), and relatively little is known about the
global structure of solutions when f satisfying f0 = 0. The main reason is that the global
bifurcation techniques cannot be used directly in this case. Very recently, [11] investigated
the global structure of positive solutions for a class of boundary value problems with f0 = 0.
However, to our knowledge there is no paper studying the global structure of sign-changing
solutions for nonlinear multipoint boundary value problems under the assumption f0 = 0.
The purpose of present paper is to fill this gap.

In this paper, we consider the global structure of nodal solutions of (1.1) and (1.2), a
kind of sign-changing having a given number of zeros, when f0 = f∞ = 0. We find that the
discussion is more complicated, when sign-changing solutions are concerned. Eigenvalue
theory and Sturm’s comparison theorem play important roles in our discussion.

Now, we introduce some notations as follows.
Let Y = C[0, 1] with the norm ‖u‖∞ = maxt∈[0,1]|u(t)|. Let X = {u ∈ C1[0, 1] | u(0) =

0, u(1) =
∑m−2

i=1 αiu(ηi)}, and E = {u ∈ C2[0, 1] | u(0) = 0, u(1) =
∑m−2

i=1 αiu(ηi)} equipped
with the norm:

‖u‖X = max
{‖u‖∞,

∥∥u′∥∥
∞
}
, ‖u‖ = max

{‖u‖∞,
∥∥u′∥∥

∞,
∥∥u′′∥∥

∞
}
. (1.3)

For any C1 function u, if u(x0) = 0 and u′(x0)/= 0, then x0 is called a simple zero of u.
For any integer k ≥ 1 and any ν ∈ {+,−}, let Sν

k
, Tν

k
⊂ C2[0, 1] be sets consisting of functions

u ∈ C2[0, 1] satisfying the following conditions:

Sν
k: (i) u(0) = 0, νu′(0) > 0;

(ii) u has only simple zeros in [0, 1] and has exactly k − 1 zeros in (0, 1).

Tν
k
: (i) u(0) = 0, νu′(0) > 0 and u′(1)/= 0;

(ii) u′ has only simple zeros in (0, 1) and has exactly k zeros in (0, 1);

(iii) u has a zero strictly between each two consecutive zeros of u′.

Remark 1.1. If u ∈ Tν
k
, then u ∈ Sν

k
or u ∈ Sν

k+1. The sets Tν
k
(k = 1, 2, . . .) are open in E and

disjoint [8].

Lemma 1.2 (See [8]). Let (A1) and (A2) hold. If (μ, u) is a nontrivial solution of (1.1) and (1.2).
Then, u ∈ Tν

k
for some k, ν.

Let X = R ×X with the product topology. As in [12], we add the point {(λ,∞) | λ ∈ R} to the
space X. Denote θ ∈ X, θ(t) ≡ 0, t ∈ [0, 1].

The main results of this paper are as follows.
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Figure 1

Theorem 1.3. Let (A1)–(A4) hold. Then, there exists a component Cν
k ⊂ (0,∞) × Tν

k of solutions of
(1.1) and (1.2), which joins (∞, θ) to (∞,∞)(see Figure 1(a)) such that Proj

R
Cν
k
= [ρν

k
,∞) for some

ρνk > 0. Here, Cν
k
joins (∞, θ) to (∞,∞) meaning that:

lim
(λ,u)∈Cν

k
,‖u‖≤1,λ→+∞

‖u‖ = 0, lim
(λ,u)∈Cν

k
,‖u‖>1,λ→+∞

‖u‖ = +∞. (1.4)

Corollary 1.4. Let (A1)–(A4) hold. Then, there exists λν
k
≥ ρν

k
> 0 such that (1.1) and (1.2) have at

least two solutions in Tν
k for λ ∈ (λνk,∞).

Remark 1.5. Theorem 1.3 extends the result stated in [11]. Meanwhile, Theorem 1.3 and
Corollary 1.4 do not only obtain the multiplicity of nodal solutions of (1.1) and (1.2), but
also describe the global structure of these solutions.

2. Preliminary Lemmas

The following definition and lemmas about superior limit and component are important to
prove Theorem 1.3.

Definition 2.1 (See [13]). Let W be a Banach space, and {Cn | n = 1, 2, . . .} be a family of
subsets of W . Then, the superior limit D of {Cn} is defined by:

D := lim sup
n→∞

Cn = {x ∈ W | ∃{ni} ⊂ N, xni ∈ Cni , such that xni −→ x}. (2.1)

Lemma 2.2 (See [13]). Each connected subset of metric space W is contained in a component, and
each component of W is closed.

Lemma 2.3 (See [11]). Let W be a Banach space and Cn a family of closed connected subsets of W .
Assume that:

(i) there exist zn ∈ Cn, n = 1, 2, . . ., and z∗ ∈ W such that zn → z∗;
(ii) rn = ∞, where rn = sup{‖x‖ | x ∈ Cn};
(iii) for all R > 0, (∪∞

n=1Cn) ∩ BR is a relative compact set of W, where

BR = {x ∈ W | ‖x‖ ≤ R}. (2.2)

Then, there exists an unbounded connected component C in D such that z∗ ∈ C.
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Define a linear operator L : E → Y by:

Lu := −u′′, u ∈ E. (2.3)

We consider the linear eigenvalues problem:

Lu = λu, u ∈ E. (2.4)

Let λk be the kth eigenvalue of (2.4), and ϕk an eigenfunction corresponding to λk. The
following lemma or similar result can be found in [7–9].

Lemma 2.4. Let (A1) hold. Then,

0 < λ1 < λ2 < · · · < λk < λk+1 < · · · , lim
k→∞

λk = ∞. (2.5)

For each k ∈ N, algebraic multiplicity of λk is equal to 1, and the corresponding eigenfunction ϕk ∈ T+
k

and is strictly positive on (0,1).

Define a map Tλ : Y −→ E by:

Tλu(t) = λ

∫1

0
H(t, s)f(u(s))ds, (2.6)

where

H(t, s) = G(t, s) +
∑m−2

i=1 αiG
(
ηi, s

)

1 −∑m−2
i=1 αiηi

t,

G(t, s) =

{
(1 − t)s, 0 ≤ s ≤ t ≤ 1,
t(1 − s), 0 ≤ t ≤ s ≤ 1.

(2.7)

It is clear that Tλ : Y → X is completely continuous provided that (A1) and (A2) hold.

Lemma 2.5. Let (A1) and (A2) hold, and {(μl, yl)} ⊂ (0,∞)×Tν
k
be a sequence of solutions of (1.1)

and (1.2). Assume that μl ≤ C0 for some constant C0 > 0, and lim
l→∞

‖yl‖ = ∞. Then,

lim
l→∞

∥∥yl

∥∥
∞ = ∞. (2.8)

Proof. From the relation yl(t) = μl

∫1
0 H(t, s)f(yl(s))ds, we conclude that y′

l(t) =
μl

∫1
0 Ht(t, s)f(yl(s))ds. Then,

∥∥y′
l

∥∥
∞ ≤ C0

(
1 +

∑m−2
i=1 αi

1 −∑m−2
i=1 αiηi

)∫1

0

∣∣f
(
yl(s)

)∣∣ds. (2.9)
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Equations (2.9) and (1.1) imply that {‖y′
l‖∞}, {‖y′′

l ‖∞} are bounded, whenever {‖yl‖∞} is
bounded.

3. Proof of the Main Results

We will construct a sequence of functions {f [n]}which is asymptotic linear at 0 and satisfies

lim
n→∞

sup
s∈R

∣∣∣f [n](s) − f(s)
∣∣∣ = 0, lim

n→∞

(
f [n]

)

0
:= lim

n→∞

(
lim|s|→ 0f

[n](s)
s

)
= 0. (3.1)

By means of some corresponding auxiliary equations, we can obtain a sequence of un-
bounded components {Cν[n]

k } via Rabinowitz’s global bifurcation theorem [14]. Based on the
sequence, we can find an unbounded component Cν

k satisfying:

Cν
k ⊂ lim sup

n→∞
C

ν[n]
k

, (3.2)

and joining (∞, θ)with (∞,∞). We do it as follows.
For each n ∈ N, define f [n](s) : R → R by:

f [n](s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(s), s ∈
(
1
n
,∞
)
∪
(
−∞,− 1

n

)
,

nf

(
1
n

)
s, s ∈

[
− 1
n
,
1
n

]
.

(3.3)

Then, f [n] ∈ C(R,R)
⋂
C1(R \ {±1/n},R) with

sf [n](s) > 0, ∀s /= 0,
(
f [n]

)

0
= nf

(
1
n

)
. (3.4)

By (A3), it follows that

lim
n→∞

(
f [n]

)

0
= 0. (3.5)

Now let us consider the auxiliary family of problems:

u′′ + λf [n](u) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
.

(3.6)

From Proposition 4.1 in [8], we obtain the following.

Lemma 3.1. Let (A1) and (A2) hold. If (μ, u) is a nontrivial solution of (3.6). Then, u ∈ Tν
k for some

k, ν.
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Let g[n] ∈ C(R,R) such that:

f [n](u) =
(
f [n])

0u + g[n](u) = nf

(
1
n

)
u + g[n](u). (3.7)

Note that

lim
|s|→ 0

g[n](s)
s

= 0. (3.8)

Let us consider

Lu − λ
(
f [n]

)

0
u = λg[n](u), (3.9)

as a bifurcation problem from the trivial solution u ≡ θ.
Equation (3.9) can be converted to the equivalent form:

u(t) =
∫1

0
H(t, s)

[
λ
(
f [n]

)

0
u(s) + λg[n](u(s))

]
ds

:= λL−1
[(

f [n]
)

0
u(·)

]
(t) + λL−1

[
g[n](u(·))

]
(t).

(3.10)

Note that ‖L−1[g[n](u)]‖ = o(‖u‖) for u near θ in X. Applying Lemma 2.4, the global
bifurcation result of Rabinowitz [14] for (3.9) can be stated as follows: for each integer k ≥ 1,
ν ∈ {+, −}, there exists a continuum C

ν[n]
k of solutions of (3.9) joining (λk/(f [n])0, θ) to

infinity in X. Moreover, Cν[n]
k

\ (λk/(f [n])0, θ) ⊂ (0,∞) × Tν
k
.

For properties of Cν[n]
k

, we give the following lemmas.

Lemma 3.2. Let (A1)–(A4) hold. Then for each fixed n, Cν[n]
k joins (λk/(f [n])0 , θ) to (∞,∞) in X

(see Figure 1(b)).

Proof. We divide the proof into two steps.

Step 1. We show that sup{λ | (λ, u) ∈ C
ν[n]
k } = ∞. Assume on the contrary that sup{λ | (λ, u) ∈

C
ν[n]
k } =: C0 < ∞. Let {(μl, yl)} ⊂ C

ν[n]
k be such that:

∣∣μl

∣∣ +
∥∥yl

∥∥ → ∞. (3.11)

Similar to the argument of Lemma 2.5, we conclude that ‖yl‖∞ → ∞.

Since (μl, yl) ∈ Cν[n]
k , we have

y′′
l (t) + μlf

[n](yl(t)
)
= 0, t ∈ (0, 1),

yl(0) = 0, yl(1) =
m−2∑

i=1

αiyl

(
ηi
)
.

(3.12)



ISRN Mathematical Analysis 7

Set vl(t) = yl(t)/‖yl‖∞. Then, ‖vl‖∞ = 1, and

v′′
l (t) + μl

f [n](yl(t)
)

∥∥yl

∥∥
∞

= 0, t ∈ (0, 1). (3.13)

Using lim|u|→ 0f(u)/u = 0, we can show that

lim
l→∞

∣∣f [n](yl(t)
)∣∣

∥∥yl

∥∥
∞

= 0. (3.14)

The proof is similar to that of Theorem 1 in [12], and therefore we omit it. Equations (3.13)
and (3.14) imply that ‖v′′

l ‖∞ ≤ M for some constant M > 0, independent of l. Hence, {vl}
has a convergent subsequence in X. Without loss of generality, we assume that there exists
(μ∗, v∗) ∈ [0, C0] ×X with:

‖v∗‖∞ = 1, (3.15)

such that

lim
l→∞

(
μl, vl

)
=
(
μ∗, v∗

)
, in R × Y. (3.16)

Note that (3.12) is equivalent to

vl(t) = μl

∫1

0
H(t, s)

f [n](yl(s)
)

∥∥yl

∥∥
∞

ds, t ∈ (0, 1). (3.17)

Combining this with (3.16) and using (3.14) and the Lebesgue dominated convergence
theorem, we have

v∗(t) = μ∗

∫1

0
H(t, s) 0ds = 0, t ∈ (0, 1). (3.18)

This contradicts (3.15). Therefore,

sup
{
λ | (λ, y) ∈ Cν[n]

k

}
= ∞. (3.19)
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Step 2. We show that sup{‖u‖∞ | (λ, u) ∈ C
ν[n]
k } = ∞. On the contrary, assume that sup{‖u‖∞ |

(λ, u) ∈ C
ν[n]
k

} = M0 < ∞. Then, there exists a sequence {(μl, yl)} ⊂ C
ν[n]
k

such that

μl −→ ∞,
∥∥yl

∥∥
∞ ≤ M0. (3.20)

From Remark 1.1, we can take a subsequences of {(μl, yl)}, still denoted by {(μl, yl)}, such
that {yl} ⊂ Tν

k

⋂
Sν
k
or {yl} ⊂ Tν

k

⋂
Sν
k+1. Without loss of generality, we suppose that {yl} ⊂

Tν
k

⋂
Sν
k
. When {yl} ⊂ Tν

k

⋂
Sν
k+1 is considered, the proof is similar. We omit it.

Note that (μl, yl) satisfies the autonomous equation:

y′′
l + μlf

[n](yl

)
= 0, t ∈ (0, 1). (3.21)

Therefore, the graph of yl consists of a sequence of positive and negative bumps, together
with a truncated bump at the right end of the interval [0, 1], with the following properties
(ignoring the truncated bump) (see [8]): all the positive (respectively, negative) bumps (i)
have the same shape (the shapes of the positive and negative bumps may be different); (ii)
attain the same maximum (minimum) value.

Let

0 = τ0l < τ1l < · · · < τk−1l
(3.22)

denote the zeros of yl in [0, 1]. Then, after taking a subsequence if necessary, liml→∞τ
j

l
:=

τ
j
∞, j ∈ {0, 1, . . . , k − 1}. Clearly, τ0∞ = 0. Set τk∞ = 1. We can choose at least one subinterval
(τj∞, τ

j+1
∞ ) � I

j
∞ which is of length at least 1/k for some j ∈ {0, 1, . . . , k − 1}. Then, for this j,

τ
j+1
l

− τ
j

l
> 3/4k if l is large enough. Put (τj

l
, τ

j+1
l

) � I
j

l
.

Obviously, for the above given k, ν, and j, yl(t) have the same sign on I
j

l
for all l.

Without loss of generality, we assume

yl(t) > 0, t ∈ I
j

l . (3.23)

Armed with the information on the shape of yl, it is easy to show that for the above given I
j

l
,

‖yl‖Ij
l
,∞ := max

I
j

l
yl(t) ≤ M0, l = 1, 2, . . ..

Let σ be a constant with 0 < σ < 3/8k. Since yl is concave on I
j

l
, we have

yl(t) ≥ σ
∥∥yl

∥∥
I
j

l
,∞, ∀ t ∈

[
τ
j

l
+ σ, τ

j+1
l

− σ
]
. (3.24)

Then, there must exist constants α, β with [α, β] ⊂ I
j
∞ and l0 such that

yl(t) ≥ σ
∥∥yl

∥∥
I
j

l
,∞ > 0, uniformly for t ∈ [α, β] and l > l0. (3.25)
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On the other hand, note that

f [n](yl(t)
)

yl(t)
≥ inf

{
f [n](s)

s
| 0 < s ≤ M0

}
> 0, t ∈

(
τ
j

l , τ
j+1
l

)
. (3.26)

Using the relation:

y′′
l (t) + μl

f [n](yl(t)
)

yl(t)
yl(t) = 0, t ∈

(
τ
j

l
, τ

j+1
l

)
, (3.27)

and Sturm’s comparison theorem, we deduce that yl must change its sign on (α, β) if l is
sufficiently large, contradicting (3.25). Therefore,

lim
l→∞

∥∥yl

∥∥
∞ = ∞. (3.28)

Hence, Cν[n]
k joins (λk/(f [n])0, θ) to (∞,∞) in X.

Lemma 3.3. Let (A1)–(A4) hold. Then, there exists ρν
k
> 0 such that

( ∞⋃

n=1

C
ν[n]
k

)
⋂((

0, ρνk
) ×X

)
= ∅. (3.29)

Proof. The proof is similar to that of Lemma 4.3 in [11]. We omit it.

Lemma 3.4. Let (A1)–(A4) hold, and let ρνk be as in Lemma 3.3. Then, there exist n0 ∈ N and

λ̂ν
k
≥ ρν

k
> 0 such that for any λ > λ̂ν

k
and u ∈ C

ν[n]
k

:

C
ν[n]
k

∩
{
(λ, u) | λ ≥ λ̂ν

k
; ‖u‖∞ = 1

}
= ∅, ∀ n > n0. (3.30)

Proof. Suppose on the contrary that there exists {(μl, yl)} ⊂ (
⋃∞

n=1 C
ν[n]
k

)
⋂

((0,∞) × X) such
that

lim
l→∞

μl = ∞,
∥∥yl

∥∥
∞ = 1. (3.31)

Now, the method used in the proof of Lemma 3.2, Step 2, is still valid. Let σ be a
constant with 0 < σ < 3/8k. Taking subsequences again if necessary, still denoted by {(μl, yl)},
such that {yl} ⊂ Tν

k

⋂
Sν
k
. Without loss of generality, we can also derive an interval [α, β] ⊂ I

j
∞

and l0 such that

1 ≥ yl(t) ≥ σ
∥∥yl

∥∥
I
j

l
,∞ = σ, uniformly for t ∈ [α, β] and l > l0. (3.32)
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It is easy to find an integer n0 ∈ N such that 1/n0 < σ. This implies that

inf

{
f [n](s)

s
| σ < s ≤ 1

}
= inf

{
f(s)
s

| σ < s ≤ 1
}
, ∀ n > n0. (3.33)

Note that for n > n0,

f [n](yl(t)
)

yl(t)
≥ inf

{
f(s)
s

| σ < s ≤ 1
}

> 0, uniformly for t ∈ (α, β) and l > l0. (3.34)

Combining these facts and the relation:

y′′
l (t) + μl

f [n](yl(t)
)

yl(t)
yl(t) = 0, t ∈ (α, β), (3.35)

and Sturm’s comparison theorem, we conclude that yl must change its sign on (α, β) if l is
large enough. This contradicts (3.32), and the proof is done.

Lemma 3.5. Let (A1)–(A4) hold, and let n0 be as in Lemma 3.4. Then, there exist λν
k
≥ ρν

k
> 0 and

ε ∈ (0, 1/2) such that for any λ > λνk and u ∈ C
ν[n]
k :

C
ν[n]
k ∩ {(λ, u) | λ ≥ λνk; 1 − 2ε ≤ ‖u‖∞ ≤ 1 + 2ε

}
= ∅, ∀ n > n0. (3.36)

Proof. Similar to the proof of Lemma 3.4, we can find a constant λ̃ν
k
> 0 such that ‖u‖∞ /= 1

provided that (λ, u) ∈ (λ̃νk,∞) × Tν
k being a solution of (1.1) and (1.2).

Let λνk = max{λ̂νk, λ̃νk}+ 1. We claim that there exists ε ∈ (0, 1/2) such that (3.36) holds.
Suppose on the contrary that there exists

{(
μl, yl

)} ⊂
( ∞⋃

n=1

C
ν[n]
k

)
⋂((

λνk,∞
) ×X

)
, (3.37)

satisfying

lim
l→∞

μl = μ∗ ≥ λνk lim
l→∞

∥∥yl

∥∥
∞ = 1. (3.38)

We can discuss two cases.

Case 1. If μ∗ < ∞. {yl} is compact in X implies that there exists a subsequence, still denoted
by {yl}, such that

lim
l→∞

yl = y∗ ∈ Tν
k ,

∥∥y∗∥∥
∞ = 1. (3.39)

Obviously, (μ∗, y∗) is a solution of (1.1) and (1.2). It is impossible.
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Figure 2

Case 2. If μ∗ = ∞. Taking subsequences again if necessary, still denoted by {(μl, yl)}, such that
1/2 ≤ ‖yl‖∞ ≤ 3/2. Using the same argument as Lemma 3.4, we can find a contradiction.

Proof of Theorem 1.3. We will prove that the superior limit of Cν[n]
k

contains an unbounded
component Cν

k ⊂ (0,∞) × Tν
k of solutions of (1.1) and (1.2), which joins (∞, θ) to (∞,∞). For

r > 0, introduce

Ωr = {u ∈ Y | ‖u‖∞ < r}. (3.40)

Set

Γνk :=
(
[0,∞) × Tν

k

) \ {(η, u) | η ≥ λνk; u ∈ Tν
k , ‖u‖∞ ≤ 1 + ε

}
,

Σν
k :=

{(
η, u

) | η ≥ λνk; u ∈ Tν
k , ‖u‖∞ ≤ 1 − ε

}
.

(3.41)

Let n0 and ε be as in Lemma 3.5. Firstly, for each given nonnegative integer p = 0, 1, 2, . . ., and
n ≥ n0 with (λk/(f [n] )0) ≥ λν

k
+ p, we define the connected subset, (ζν[n]

k
)p, in C

ν[n]
k

satisfying
(see Figure 2(a)):

(i) (ζν[n]k )p ⊂ (Cν[n]
k \ (λνk + p,∞) ×Ω1−ε);

(ii) (ζν[n]
k

)p joins {λνk + p} ×Ω1−ε with infinity in Γν
k
.

By Lemmas 2.2 and 2.3, lim supn→∞(ζ
ν[n]
k )p contains a component (ζνk)p joining {λνk +p}×Ω1−ε

with infinity in Γν
k
(see Figure 2(b)).

It is easy to verify that if (λ, u) ∈ (ζν
k
)p(p = 0, 1, 2, . . .), then (λ, u) is a solution of (1.1)

and (1.2), and u ∈ Tν
k .

Next, by using Lemma 2.3 and the method in [11] (see (4.22)–(4.30) in [11]), we can
find a component Cν

k
in lim supp→∞(ζ

ν
k
)p, which is unbounded both in Γν

k
and Σν

k
.

Finally, we show that Cν
k joins (∞, θ) with (∞,∞). This will be done by the following

three steps.

Step 1. We show that limλ→+∞‖u‖∞ = 0 for (λ, u) ∈ (Cν
k
∩ Σν

k
).

Suppose on the contrary that there exists {(μl, yl)} ⊂ Cν
k with ‖yl‖∞ ≤ 1 − ε, and

μl → +∞,
∥∥yl

∥∥
∞ ≥ a, (3.42)
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for some constant a > 0. Applying the method of proving Lemma 3.2, we can deduce a
contradiction.

Step 2. We show that sup{λ | (λ, u) ∈ (Cν
k
∩ Γν

k
)} = ∞. By a similar argument as Lemma 3.2,

we can get the conclusion.

Step 3. We show that limλ→+∞‖u‖∞ = +∞ for (λ, u) ∈ (Cν
k
∩ Γν

k
).

On the contrary, suppose that there exists {(μl, yl)} ⊂ (Cν
k
∩ Γν

k
) with

μl → +∞, 1 <
∥∥yl

∥∥
∞ ≤ M, (3.43)

for some constant M > 0. The proof can be done by the same argument as Lemma 3.2.

This completes the proof of Theorem 1.3.

Proof of Corollary 1.4. The result can be directly obtained by Theorem 1.3.
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