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By means of the fixed point methods and the properties of the pseudo almost automorphic
functions, the existence and uniqueness of pseudo almost automorphic solutions are obtained
for differential equations involving reflection of the argument. For the nonscalar, case we use the
exponential dichotomy properties.

1. Introduction

The existence, uniqueness, and stability of periodic, almost periodic, almost automorphic,
asymptotically almost automorphic, and pseudo almost automorphic solutions has been one
of the most attractive topics in the qualitative theory of ordinary or functional differential
equations for its significance in the physical sciences, mathematical biology, control theory,
and others.

The differential equations involving reflection of argument have many applications
in the study of stability of differential-difference equations, see Šarkovskiı̆ [1], and such
equations show very interesting properties by themselves, so many authors have worked
on this category of equations. Wiener and Aftabizadeh [2] initiated to study boundary
value problems involving reflection of the argument. Gupta in [3, 4] investigated two point
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boundary value problems for this kind of equations and Aftabizadeh and Huang [5] studied
the existence of unique bounded solution of

x′(t) = f(t, x(t), x(−t)). (1.1)

They proved that x(t) is almost periodic by assuming the existence of bounded solution. In
[6], Piao considers the case of pseudo almost periodic solution. This work is motivated by
the last reference and devoted to investigate the existence and uniqueness of pseudo almost
automorphic solution in the scalar and vectorial case.

The concept of almost automorphic functions, which was introduced by Bochner as an
extension of one of the almost periodic functions, has recently caught the attention of many
mathematicians (see, e.g., [7–11]. . .). In [12], Zhang has introduced an extension of the almost
periodic functions, the so-called pseudo almost periodic functions. For more details on this
notion, we can refer to [12–18]. Then the combination between pseudo almost periodic and
almost automorphic leads to the pseudo almost automorphic functions, which is considered
in this work.

The theory of exponential dichotomy has played a central role in the study of ordinary
differential equations and diffeomorphisms for finite dimensional dynamic systems. This
theory, which addresses the issue of strong transversality in dynamic systems, originated
in the pioneering works of Lyapunov (1892) and Poincaré (1890). During the last few years,
one finds an ever growing use of exponential dichotomies to study the dynamic structures of
various partial differential delay equations, for more details, we refer to [19, 20].

This paper is organized as follows. In Section 2, we recall some preliminary results
which is divided in two sections, in the first one we give some results on the exponential
dichotomy theory, and in the second one, we give some definitions of pseudo almost
automorphic functions. The main results are announced and discussed in Section 3. In the
last section, we give some illustrated examples.

2. Preliminaries

Throughout the paper Cb := {f : R → R
n, f continuous and bounded} and for f ∈ Cb, |f | =

sup{|f(t)| : t ∈ R}.

2.1. Exponential Dichotomy

In the sequel, A denotes a continuous mapping from R to Mn(R), where Mn(R) is the space
of square matrices with real coefficients.

Definition 2.1. Let A(t) be a continuous square matrix on an interval J and let X(t) be a
fundamental matrix of the following system:

dx

dt
(t) = A(t)x(t), (2.1)

satisfying X(0) = I, where I is the unit matrix.
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The system of differential equations (2.1) is said to possess an exponential dichotomy
on the interval J , if there exists a projection matrix P (i.e., P 2 = P) and constants k > 1, α > 0,
such that

∥
∥
∥X(t)PX−1(s)

∥
∥
∥ ≤ k exp(−α(t − s)), for s ≤ t, with s, t ∈ J

∥
∥
∥X(t)(I − P)X−1(s)

∥
∥
∥ ≤ k exp(−α(s − t)), for t ≤ s, with s, t ∈ J.

(2.2)

We denote by (P, k, α) the triple of elements associated to an exponential dichotomy.

Remark 2.2. When A(t) = A is constant, the system (2.1) has an exponential dichotomy on an
infinite interval, if and only if the eigenvalues of A have a nonzero real part. When A(t) is
periodic, (2.1) has an exponential dichotomy on an infinite interval, if and only if the Floquet
multipliers lie off the unit circle.

For the properties of exponential dichotomies, one may refer to [13, 19–22].

Remark 2.3. Putting Ã(t) = −A(−t). Then equation

y′ = Ã(t)y (2.3)

has as fundamental matrix Y (t) = X(−t). Let J be one of the following intervals R
+, R

−.
Equation (2.3) admits an exponential dichotomy with parameters (P, k, α) on J , if and only if
(2.1) has an exponential dichotomy on −J with parameters (I − P, k, α). On the other hand, x
is a solution of

x′ = A(t)x + f(t) (2.4)

if and only if y : t → x(−t) is a solution of

y′ = Ã(t)y + f̃(t), (2.5)

where f̃(t) = −f(−t).

Theorem 2.4 (see [21]). Assume that the following differential equation:

d

dt
x(t) = A(t)x(t) (2.6)

has an exponential dichotomy on R
+(R−, R, resp.) with parameters (P, α, k). Let B : R → Mn(R)

be a bounded continuous function such that δ = supt∈R+ |B(t)| < α/4k2(R−, R, resp.). Then the
perturbed equation

d

dt
x(t) = [A(t) + B(t)]x(t) (2.7)
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has an exponential dichotomy on R
+(R−, R, resp.) with parameters (Q, α − 2kδ, k1 = (5/2)k2),

where Q is a projection with the same kernel (range, resp.) as the one of P . Moreover, if Y (t) is the
fundamental matrix of (2.7) satisfying Y (0) = I, then

∣
∣
∣Y (t)QY−1(t) −X(t)PX−1(t)

∣
∣
∣ ≤ 4

α
δk3 ∀t on R

+(resp. R
−, R

)

. (2.8)

Lemma 2.5 (see [21]). Let t0, τ be real constants, τ < t0(τ > t0, resp.). If (2.6) has an exponential
dichotomy on [t0,+∞[ respectively ] −∞, t0], then it has one on [τ,+∞[ respectively ] −∞, τ], with
the same exponents and the same projection P .

2.2. Almost Automorphic Functions

Definition 2.6. A continuous function g : R → E is said to be almost automorphic if for every
sequence of real numbers (t′n)n, there exists a subsequence of (t′n)n, denoted (tn)n such that
for each t ∈ R

lim
n→+∞

g(t + tn) = k(t) exists ∀t ∈ R

lim
n→+∞

k(t − tn) = g(t) exists ∀t ∈ R.
(2.9)

Denote by AA(R,E) is the set of all such functions.

If g is almost automorphic, then its range is relatively compact, thus bounded in norm.
By the pointwise convergence, the function k is just measurable and not necessarily

continuous.
If the convergence in both limits is uniform, then g is almost periodic. The concept of

almost automorphy is then larger than the one of almost periodicity. It was introduced in the
literature by Bochner and recently studied by several authors. A complete description of their
properties and further applications to evolution equations can be found in the monographs
by N’Guérékata [10, 11].

Example 2.7. f(t) = sin 1/(2 − sin t − sinπt) is an almost automorphic function, which is not
almost periodic, because it is not uniformly continuous.

Definition 2.8 (see [23]). A continuous function f : R × E → E is said to be almost
automorphic in t uniformly with respect to x in E, if the following two conditions hold:

(i) for all x ∈ E, f(·, x) ∈ AA(R,E);

(ii) f is uniformly continuous on each compact subsetK ⊂ Xwith respect to the second
variable x, namely, for each compact subset K in E, and for all ε > 0, there exists
δ > 0, such that for all x1, x2 ∈ K, one has

‖x1 − x2‖ ≤ δ =⇒ sup
t∈R

∥
∥f(t, x1) − f(t, x2)

∥
∥ ≤ ε. (2.10)

Denote by AAU(R × E,E) is the set of all such functions.
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With these definitions, we have the following inclusions:

AP(E) ⊂ AA(E), APU(R × E) ⊂ AAU(R × E). (2.11)

Theorem 2.9 (see [23]). Let f ∈ AAU(R × E,E) and x ∈ AA(R,E). Then [t → f(t, x(t)) ∈
AA(R,E)].

2.3. Pseudo Almost Automorphic Functions

Set

PAP0(R,E) =
{

ϕ ∈ Cb(R,E), lim
r→∞

1
2r

∫ r

−r

∥
∥ϕ(s)

∥
∥ds = 0

}

,

PAP0(R ×Ω,E) =

⎧

⎪
⎨

⎪
⎩

ϕ ∈ Cb(R ×Ω,E), lim
r→∞

1
2r

∫ r

−r

∥
∥ϕ(s, x)

∥
∥ds = 0

uniformly in x ∈ Ω

⎫

⎪
⎬

⎪
⎭

.

(2.12)

Definition 2.10. f ∈ Cb(R,E)(Cb(R × E,E), resp.) is called pseudo almost-automorphic, if
f = g + ϕ with g ∈ AA(R,E)(AA(R × E,E), resp.) and ϕ ∈ PAP0(R,E)(PAP0(R ×
E,E), resp.),g and ϕ are, respectively, called the almost automorphic component and the
ergodic perturbation of f . Denote the set of all such functions by PAA(R,E)(PAA(R ×
E,E), resp.).

It is easy to verify that PAA(R,E) is a translation invariant closed subspace ofCb(R,E)
containing the constant functions. Furthermore,

PAA(E) = AA(E) ⊕ PAP0(E). (2.13)

Definition 2.11. A closed subset K of R is said to be an ergodic zero set if meas(K ∩
[−t, t])/2t → 0 as t → ∞, where meas is the Lebesgue measure on R.

Remark 2.12. One sees that ϕ ∈ C(R,E) is in PAP0(R,E) if and only if for ε > 0, the set
Kε = {t ∈ R : ‖ϕ(t)‖ ≥ ε} is an ergodic zero set in R.

Example 2.13. (a)f(t) = sin 1/(2− sin t− sinπt) + (1/
√
1 + t2) is a pseudo almost automorphic

function.
(b) A continuous function f : R → E satisfying lim|t|→+∞f(t) = 0 is an ergodic

function. Indeed by hypothesis, for all ε > 0, there exists δ > 0 such that |t| ≥ δ ⇒ ‖f(t)‖ ≤ ε,
then for all r > δ,

{
t ∈ [−r, r]
(−δ, δ) :

∥
∥f(t)

∥
∥ ≥ ε

}

= ∅. (2.14)

We conclude by using Remark 2.12.
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3. Main Results

In this part of this work, we are concerned with the following differential equation:

x′(t) = A(t)x(t) + B(t)x(−t) + f(t, x(t), x(−t)), (3.1)

where A and B are two square matrices, and f(t, x, y) is almost automorphic in t uniformly
with respect to x and y in any compact subset of R

2n.
In the first time, we consider the following scalar and linear differential equation:

x′(t) = ax(t) + bx(−t) + g(t), b /= 0, t ∈ R, |a| > |b|, (3.2)

where g is continuous on R. Let y(t) = x(−t), then (3.2) is changed into the following system:

x′(t) = ax(t) + by(t) + g(t), t ∈ R

y′(t) = −bx(t) − ay(t) − g(−t), t ∈ R,
(3.3)

which is in a formally Hamilton system with Hamiltonian function as

H
(

x, y, t
)

=
1
2
bx2 +

1
2
by2 + axy − g(−t)x − g(t)y. (3.4)

So, one may say that some first order scalar differential equations can also generate Hamilton
systems.

3.1. Scalar Case

In the scalar case, our main results can be stated as follows.

Theorem 3.1. For any g ∈ PAA(R,R), with α2 = a2 − b2 > 0, (3.2) has an unique pseudo almost
automorphic solution x(t).

For the proof of Theorem 3.1, we use the following lemmas.

Lemma 3.2 (see [10]). If g ∈ AA(R,E), then t → g(−t) ∈ AA(R,E).

Lemma 3.3 (see [15]). If ϕ ∈ PAP0(R,E), then t → ϕ(−t) ∈ PAP0(R,E).

Lemma 3.4 (see [8]). If f ∈ PAA(R,R), and g ∈ L1(R,R), then h = f ∗ g ∈ PAA(R,R).

Proof of Theorem 3.1. Uniqueness. If there is two pseudo almost automorphic solutions x1(t)
and x2(t) of (3.2), then the difference x1(t) − x2(t) should be a solution of the homogeneous
equation as

x′(t) = ax(t) + bx(−t), b /= 0, t ∈ R. (3.5)
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According to Lemma 2 of [2], one can derive that

x1(t) − x2(t) = C

[
α + a

−b exp(αt) + exp(−αt)
]

, t ∈ R, (3.6)

for some constant C. If C/= 0, x1(t) − x2(t) will be unbounded. This is a contradiction to the
boundedness of pseudo almost automorphic function. So x1(t) = x2(t).

Existence. From Lemmas 2 and 3 of [5] that we can derive to the following solution:

x(t) =
−1
2α

[∫∞

−∞
exp−α(s − t)

[

(α + a)g(s) − bg(−s)]ds
]

+
1
2α

[∫∞

−∞
expα(s − t)

[

(α + a)g(s) + bg(−s)]ds
] (3.7)

is a particular solution of (3.2) for any g ∈ PAA(R,R). Now we show that x(t) ∈ PAA(R,R).
Let us go back to the rest of the proof. Now we show x(t) ∈ PAA(R,R). Assume that

g(t) = h(t) + ϕ(t),h(t) ∈ AA(R,R), ϕ(t) ∈ PAP0(R,R). Let

H(t) =
−1
2α

[∫∞

t

exp−α(s − t)[(α + a)h(s) − bh(−s)]ds
]

+
1
2α

[∫ t

−∞
expα(s − t)[(α + a)h(s) + bh(−s)]ds

]

Φ(t) =
−1
2α

[∫∞

t

exp−α(s − t)
[

(α + a)ϕ(s) − bϕ(−s)]ds
]

+
1
2α

[∫ t

−∞
expα(s − t)

[

(α + a)ϕ(s) + bϕ(−s)]ds
]

,

(3.8)

then x(t) = H(t) + Φ(t).
Similar to the proof of Theorem 2.2 in [6], we have Φ ∈ PAP0(R,R). Now, we prove

that H(t) is almost automorphic indeed, let (s′n) ⊂ R be an arbitrary sequence. Since h ∈
AA(R,R), then t → h(−t) is also almost automorphic, consequently t → (h(t), h(−t)) is also
almost automorphic, which leads to the fact that we can found a same subsequence (sn) of
(s′n) and two functions (k, k1) such that

lim
n→∞

h(t + sn) = k(t), lim
n→∞

k(t − sn) = h(t), ∀t ∈ R,

lim
n→∞

h(t − sn) = k1(t), lim
n→∞

k1(t + sn) = h(t), ∀t ∈ R

(3.9)
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We define

K(t) =
−1
2α

[∫∞

t

exp−α(s − t)[(α + a)k(s) − bk1(−s)]ds
]

+
1
2α

[∫ t

−∞
expα(s − t)[(α + a)k(s) + bk1(−s)]ds

]

.

(3.10)

Now, consider the following:

H(t + sn) =
−1
2α

[∫∞

t+sn
exp−α(s − sn − t)[(α + a)h(s) − bh(−s)]ds

]

+
1
2α

[∫ t+sn

−∞
expα(s − t − sn)[(α + a)h(s) + bh(−s)]ds

]

=
−1
2α

[∫∞

t

exp−α(s − t)[(α + a)h(s + sn) − bh(−s − sn)]ds
]

+
1
2α

[∫ t

−∞
expα(s − t)[(α + a)h(s + sn) + bh(−s − sn)]ds

]

.

(3.11)

Note that

∣
∣
∣e−α(s−t)[(α + a)h(s + sn) − bh(−s − sn)]

∣
∣
∣ ≤ |h|∞(|α + a| + |b|)e−α(t−s),

∣
∣
∣eα(s−t)[(α + a)h(s + sn) + bh(−s − sn)]

∣
∣
∣ ≤ |h|∞(|α + a| + |b|)e−α(t−s),

e−α(s−t)[(α + a)h(s + sn) − bh(−s − sn)] −→
n→∞

e−α(s−t)[(α + a)k(s) − bk1(−s)] ∀t ∈ R,

eα(s−t)[(α + a)h(s + sn) + bh(−s − sn)] −→
n→∞

eα(s−t)[(α + a)k(s) + bk1(−s)] ∀t ∈ R.

(3.12)

Then by the Lebesgue dominated convergence theorem, limn→∞H(t + sn) = K(t), for all
t ∈ R. In similar, way we can show that limn→∞K(t − sn) = H(t) for all t ∈ R, which ends the
proof.

3.2. The Vectorial Case

Let us consider the following equation with reflection:

dx

dt
= A(t)x(t) + B(t)x(−t) + g(t), (3.13)

where t → A(t), B(t) ∈ Mn(R), x : R → Mn,1(R), and g : R → Mn,1(R) bounded
continuous functions.
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Putting y(t) = x(−t), one has

y′(t) = −x′(−t) = −A(−t)x(−t) − B(−t)x(t) − g(−t) = −A(−t)y(t) − B(−t)x(t) − g(−t).
(3.14)

If we put X(t) =
(

x(t)
y(t)

)

, then X(t) is a solution of the following system:

dX(t)
dt

= M(t)X(t) +G(t), (3.15)

where

M(t) =
(

A(t) B(t)
−B(−t) −A(−t)

)

, G(t) =
(

g(t)
−g(−t)

)

. (3.16)

Theorem 3.5. If the system

dx

dt
= A(t)x(t) (3.17)

has a fundamental matrix X(t) and has an exponential dichotomy with parameters (P, α, k), then the
following system:

dx

dt
= M0(t)x(t), (3.18)

where M0(t) =
(

A(t) 0
0 −A(−t)

)

, has a fundamental matrix Y (t) =
(

X(t) 0
0 X(−t)

)

and admits an
exponential dichotomy with parameters (Q,α, 2k), where

Q =
(
P 0
0 I − P

)

. (3.19)

Proof. If X(t) is a fundamental matrix of the system (3.17),

d

dt
[X(t)] =

dX

dt
(t) = A(t)X(t),

d

dt
[X(−t)] = −dX

dt
(−t) = −A(−t)X(−t).

(3.20)

Consequently,

dY

dt
(t) =

(
A(t) 0
0 −A(−t)

)(
X(t) 0
0 X(−t)

)

= M0(t)Y (t)

with Y (0) =
(
I 0
0 I

)

, Y−1(t) =

(

X−1(t) 0
0 [X(−t)]−1

)

.

(3.21)
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Furthermore, since (3.17) has an exponential dichotomy, then there exist a projection P and
positive constants α, k such that

∥
∥
∥X(t)PX−1(s)

∥
∥
∥ ≤ k exp(−α(t − s)), for s ≤ t,

∥
∥
∥X(t)(I − P)X−1(s)

∥
∥
∥ ≤ k exp(−α(s − t)), for t ≤ s.

(3.22)

If we put Q =
(
P 0
0 I−P

)

, then it is easy to see that Q is a projection, and that

∥
∥
∥Y (t)QY−1(s)

∥
∥
∥ =

∥
∥
∥
∥
∥

(
X(t) 0
0 X(−t)

)(
P 0
0 I − P

)(

X−1(s) 0
0 [X(−s)]−1

)∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

(
X(t)P 0

0 X(−t)(I − P)

)(

X−1(s) 0
0 [X(−s)]−1

)∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

(

X(t)PX−1(s) 0
0 X(−t)(I − P)[X(−s)]−1

)∥
∥
∥
∥
∥

≤
∥
∥
∥X(t)PX−1(s)

∥
∥
∥ +

∥
∥
∥X(−t)(I − P)[X(−s)]−1

∥
∥
∥

≤ k exp(−α(t − s)) + k exp(−α(−s + t))

≤ 2k exp(−α(t − s)), for t ≥ s,

∥
∥
∥Y (t)(I −Q)Y−1(s)

∥
∥
∥ =

∥
∥
∥
∥
∥

(
X(t) 0
0 X(−t)

)(
I − P 0
0 P

)(

X−1(s) 0
0 [X(−s)]−1

)∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

(
X(t)(I − P) 0

0 X(−t)P
)(

X−1(s) 0
0 [X(−s)]−1

)∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

(

X(t)(I − P)X−1(s) 0
0 X(−t)P[X(−s)]−1

)∥
∥
∥
∥
∥

≤
∥
∥
∥X(t)(I − P)X−1(s)

∥
∥
∥ +

∥
∥
∥X(−t)P[X(−s)]−1

∥
∥
∥

≤ k exp(−α(s − t)) + k exp(−α(−t + s))

≤ 2k exp(−α(s − t)), for s ≥ t,

(3.23)

which ends the proof.
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Lemma 3.6. If the system

dx

dt
= A(t)x(t) (3.24)

has an exponential dichotomy with parameters (P, α, k) and if B(t) is continuous and uniformly
bounded in t such that

(H1) δ = supt∈R+ |B(t)| < α/(4k2), then the system

dx

dt
= M(t)x(t) (3.25)

has an exponential dichotomy.

Proof. The proof is a direct application of Theorems 2.4 and 3.5.

Corollary 3.7. If the system

dx

dt
= A(t)x(t) (3.26)

has an exponential dichotomy with parameters (P, α, k), and if B(t) is continuous and uniformly
bounded in t, such that

(H2) limr→∞(1/2r)
∫ r

−r |B(t)|dt = 0, then the system

dx

dt
= M(t)x(t) (3.27)

has an exponential dichotomy too.

Proof. The proof is a direct consequence of Corollary 3.3 in Ait Dads and Arino [13] and
Theorem 3.5.

Theorem 3.8. Under the hypothesis (H1) or (H2), if moreover g is pseudo almost automorphic, then
(3.13) has a unique pseudo almost automorphic solution.

Proof. The proof is a direct application of the two following results.

Lemma 3.9 (see [7]). If g is pseudo almost automorphic, then G(t) =
(

g(t)
−g(−t)

)

is also pseudo almost
automorphic.

Lemma 3.10. If the system (2.6) has an exponential dichotomy and if f is pseudo almost automorphic,
then the system (dx/dt)(t) = A(t)x(t) + f(t) has an unique pseudo almost automorphic solution.
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Proof (The unique bounded solution, when we consider f bounded). A solution x(t) is represented
as follows (see [24]):

x(t) =
∫∞

−∞
G(t, s)f(s)ds, (3.28)

where

G(t, s) =

{

X(t)PX−1(s), for t ≥ s

−X(t)(I − P)X−1(s), for t ≤ s.
(3.29)

G(t, s) is a piecewise continuous function on the (t, s) plane. If f(t) = g(t) + ϕ(t), where g is
almost automorphic and ϕ is an ergodic perturbation, then

x(t) =
∫∞

−∞
G(t, s)g(s)ds +

∫∞

−∞
G(t, s)ϕ(s)ds. (3.30)

Moreover, it is known that
∫∞
−∞ G(t, s)ϕ(s)ds is an ergodic perturbation [13]. It remains to be

prove that
∫∞
−∞ G(t, s)g(s)ds is almost automorphic. For this, we use the following result.

Proposition 3.11 (see [9]). Let A : R → Mn(R) be continuous function and assume that the
equation dx/dt = A(t)x(t) has an exponential dichotomy on R, then for f ∈ AA(R,Rn), the unique
bounded solution of dx/dt = A(t)x(t) + f(t) is almost automorphic.

Corollary 3.12. If A and B are ω-periodic with the same period, such that the Floquet multipliers
of A(t) lie of the unit circle and B verifies the condition (H1) or (H2), then the system (3.27) has an
exponential dichotomy. Moreover, if g is ω periodic, then (3.13) has an unique ω periodic solution.

3.3. Autonomous Case

Definition 3.13. For A ∈ Mn(R), the spetrum of A denoted by

sp(A) = {λ ∈ C, such that there exists x ∈ Mn,1(C), x /= 0 with Ax = λx}. (3.31)

Proposition 3.14. In the autonomous case, If sp(A − B)(A + B) ∩ R
− = ∅, and g is pseudo almost

automorphic, then (3.13) has an unique pseudo almost automorphic solution.

Remark 3.15. If the matrices A and B are constant, the system (3.15) has an exponential
dichotomy if and only if the eigenvalues of the matrixM have nonzero real part. One has

M2 =
(
A B
−B −A

)(
A B
−B −A

)

=
(
C D
D C

)

, (3.32)
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with C = A2 − B2 and D = AB − BA. Let P =
(

In In
In −In

)

. One has P−1 = (1/2)
(

In In
In −In

)

and

M2 = P

(
C +D 0

0 C −D

)

P−1. (3.33)

On the other hand,

sp(M) ∩ iR = ∅ ⇐⇒ sp
(

M2
)

∩ R
− = ∅ ⇐⇒ sp(C +D) ∩ R

− = ∅, (3.34)

and sp(C −D) ∩ R
− = ∅, so, we have

C +D = (A − B)(A + B), C −D = (A + B)(A − B),

sp(A − B)(A + B) = sp(A + B)(A − B),
(3.35)

then

sp(M) ∩ iR = ∅ ⇐⇒ sp((A − B)(A + B)) ∩ R
− = ∅. (3.36)

In the sequel, we suppose that

sp((A − B)(A + B)) ∩ R
− = ∅. (3.37)

Then, (3.40) has an unique bounded solution denoted by X(t) =
(

x(t)
y(t)

)

.
One has

x′(t) = Ax(t) + By(t) + g(t)

y′(t) = −Bx(t) −Ay(t) − g(−t).
(3.38)

Putting

Z(t) =
(
z1(t)
z2(t)

)

with

{

z1(t) = y(−t)
z2(t) = x(−t), (3.39)

one has

z′1(t) = Bx(−t) +Ay(−t) + g(t) = Az1(t) + Bz2(t) + g(t),

z′2(t) = −Ax(−t) − By(−t) − g(−t) = −Bz1(t) −Az2(t) − g(−t).
(3.40)

Remark 3.16. Z(t) is a bounded solution of (3.40), by the uniqueness of bounded solution, we
have that Z(t) = X(t) in the sequel y(t) = x(−t), consequently, x is a bounded solution of
(3.13). Finally (3.38) has a unique bounded solution, and the application x(t) →

(
x(t)
x(−t)

)

is a
bijective from the set of bounded solutions of (3.13) to the set of bounded solutions of (3.40).
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3.4. Goal Result of Nonlinear Case

Consider the following equation involving reflection of the argument:

x′(t) = A(t)x(t) + B(t)x(−t) + f(t, x(t), x(−t)). (3.41)

If we put y(t) = x(−t), then (3.41) is changed into system

X′(t) = M(t)X(t) + F(t, X(t)), (3.42)

where X(t) =
(

x(t)
y(t)

)

, and M(t) is defined as in (3.16) and

F :
(

t,

(
x
y

))

−→
(

f
(

t, x, y
)

−f(−t, y, x)
)

. (3.43)

We assume that there exists 
1 ∈ Lp(R) ∩ C(R), with 1 < p ≤ +∞ such that

∥
∥f
(

t, x, y
) − f

(

t, x′, y′)∥∥ ≤ 
1(t)
[∣
∣x − x′∣∣ +

∣
∣y − y′∣∣], ∀t ∈ R, as x, x′, y, y′ ∈ R

n. (3.44)

In what follows, let us put 
(t) = (1/2)[
1(t) + 
1(−t)].

Remark 3.17. If f satisfies (3.44), then F satisfies

∣
∣F
(

t, x, y
) − F

(

t, x′, y′)∣∣ =
∣
∣
∣
∣

(
f
(

t, x, y
) − f

(

t, x′, y′)

−f(−t, y, x) + f
(−t, y′, x′)

)∣
∣
∣
∣

≤ 2
(t)
[∣
∣x − x′∣∣ +

∣
∣y − y′∣∣], ∀t ∈ R, as x, x′, y, y′ ∈ R

n.

(3.45)

Theorem 3.18. Assume that f ∈ PAA(R × R
2n,Rn) and satisfies the Lipschitz condition (3.44), if

the system

dx

dt
= A(t)x(t) (3.46)

has an exponential dichotomy with parameters (P, α, k) and if B(t) is continuous and uniformly
bounded in t, such that (H1) or (H2) holds. If

‖
‖p ≤
(

αq
)1/q

2k
(

1 + [e − 1]1/p
) , (3.47)

then (3.41) has an unique pseudo almost automorphic solution.

For the proof, we need the following preliminary result.
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Lemma 3.19. Let c > 0, and put

μ(t) = 2p
∫ t

−∞

p(s)ds,

∥
∥ϕ
∥
∥
c = sup

t∈R

exp
(−cμ(t))∣∣ϕ(t)∣∣.

(3.48)

Then ‖ · ‖c is an equivalent norm to the uniform convergence norm.

Proof. In fact,

∥
∥ϕ
∥
∥
∞ exp

(

−2pc
∫

R


p(s)ds
)

≤ ∥∥ϕ∥∥c ≤
∥
∥ϕ
∥
∥
∞. (3.49)

Proof of Theorem 3.18. PAA(R × R
2n,Rn) is a Banach space with the supremum norm. If

f(t, x, y) ∈ PAA(R × R
2n,Rn), then for any ϕ ∈ PAA(R,Rn), f(t, ϕ(t), ϕ(−t)) is also pseudo

almost automorphic. For ϕ ∈ PAA(R,Rn), the following differential equation:

x′(t) = A(t)x(t) + B(t)x(−t) + f
(

t, ϕ(t), ϕ(−t)), B /= 0, t ∈ R (3.50)

has a unique pseudo almost automorphic solution, denoted by Tϕ(t), then we define a
mapping as

K : PAA
(

R × R
2n,Rn

)

−→ PAA
(

R × R
2n,Rn

)

,

(KΦ)(t) =
∫∞

−∞
G(t, s)F(s,Φ(s))ds.

(3.51)

Thus, KΦ ∈ PAA(R × R
2n,Rn), so that K is well defined.

Now for Φ1,Φ2 ∈ PAA(R × R
2n,Rn), we have

‖(KΦ1 −KΦ2)(t)‖ ≤
∫ t

−∞
k exp(−α(t − s))2
(s)‖Φ1(s) −Φ2(s)‖ds

+
∫∞

t

k exp(−α(s − t))2
(s)‖Φ1(s) −Φ2(s)‖ds

≤ k‖Φ1 −Φ2‖c
[∫ t

−∞
exp(−α(t − s))2
(s) exp

(

cμ(s)
)

ds

+
∫∞

t

exp(−α(s − t))2
(s) exp
(

cμ(s)
)

ds

]
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≤k‖Φ1 −Φ2‖c
(∫ t

−∞
exp

(

pcμ(s)
)

2p
p(s)ds

)1/p(∫ t

−∞
exp

(−αq(t − s
)

)ds

)1/q

+k‖Φ1 −Φ2‖c
(∫∞

t

exp
(

pcμ(s)
)

2p
p(s)ds
)1/p

(∫ t

−∞
exp

(−αq(s − t
)

)ds

)1/q

≤ k
(

αq
)1/q

‖Φ1 −Φ2‖c

⎡

⎣

(∫ t

−∞
exp

(

pcμ(s)
)

μ′(s)ds

)1/p

+

(∫∞

t

exp
(

pcμ(s)
)

μ′(s)ds

)1/p
⎤

⎦.

(3.52)

Let us put

I(t) =

(∫ t

−∞
exp

(

pcμ(s)
)

μ′(s)ds

)1/p

+
(∫∞

t

exp
(

pcμ(s)
)

μ′(s)ds
)1/p

, (3.53)

then one has

‖KΦ1(t) −KΦ2(t)‖ ≤ k
(

αq
)1/q

‖Φ1 −Φ2‖cI(t). (3.54)

On the other hand,

I(t) =

(∫ t

−∞
exp

(

pcμ(s)
)

μ′(s)ds

)1/p

+
(∫+∞

t

exp
(

pcμ(s)
)

μ′(s)ds
)1/p

=
(

1
pc

)1/p(

exp
(

cμ(t)
)

+
[

exp
(

pc2p‖
‖pp
)

− exp
(

pcμ(t)
)]1/p

)

,

(3.55)

which leads to

I(t) exp
(−cμ(t)) =

(
1
pc

)1/p(

1 +
[

exp
(

pc
(

2p‖
‖pp − μ(t)
))

− 1
]1/p

)

=
(

1
pc

)1/p
(

1 +
[

exp
(

pc2p
∫+∞

t


p(s)ds
)

− 1
]1/p)

.

(3.56)

Hence,

sup
t∈R

I(t) exp
(−cμ(t)) =

(
1
pc

)1/p(

1 +
[

exp
(

pc2p‖
‖pp
)

− 1
]1/p

)

, (3.57)
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therefore,

‖KΦ1 −KΦ2‖c ≤
k

(

αq
)1/q

(
1
pc

)1/p(

1 +
[

exp
(

pc2p‖
‖pp − 1
)]1/p

)

‖Φ1 −Φ2‖c. (3.58)

If we choose c such that

pc2p‖
‖pp = 1, (3.59)

then,

k
(

αq
)1/q

(
1
pc

)1/p(

1 +
[

exp
(

pc2p‖
‖pp
)

− 1
]1/p

)

< 1

⇐⇒ k
(

αq
)1/q

2‖
‖p
(

1 + [e − 1]1/p
)

< 1 ⇐⇒ ‖
‖p <

(

αq
)1/q

2k
(

1 + [e − 1]1/p
) .

(3.60)

Then, K will be a contraction, which proves that K is continuous. So by the Banach fixed
point theorem, there exists a unique u ∈ PAA(R × R

2n,Rn), such that Ku = u, that is,

u(t) =
∫∞

−∞
G(t, s)F(s, u(s))ds. (3.61)

The proof is complet.

Proposition 3.20. Assume that f ∈ PAA(R × R
2n,Rn) and satisfies the Lipschitz condition as

∣
∣f
(

t, x1, y1
) − f

(

t, x2, y2
)∣
∣ ≤ L

(|x1 − x2| +
∣
∣y1 − y2

∣
∣
)

. (3.62)

If the system

dx

dt
= A(t)x(t) (3.63)

has an exponential dichotomy with parameters (P, α, k) and if B(t) is continuous and uniformly
bounded in t, such that (H1) or (H2) holds, then (3.41) has an unique pseudo almost automorphic
solution provided that (4k/α)L < 1.

Corollary 3.21. In the scalar case, if A = a, B = b and f ∈ PAA(R × R
2,R) and satisfies the

lipschitz condition as

∣
∣f
(

t, x1, y1
) − f

(

t, x2, y2
)∣
∣ ≤ L

(|x1 − x2| +
∣
∣y1 − y2

∣
∣
)

, (3.64)

for any (x1, y1), (x2, y2) ∈ R
2, where L < α2/(|α − a| + |α + a| + 2|b|), α2 = a2 − b2 > 0, and α > 0,

then (3.41) has an unique pseudo almost automorphic solution.
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Proof. Thanks to Lemmas 3.2, 3.3, and 3.6, and from Theorem 3.1, for any ϕ ∈ PAA(R,R), we
see that the following equation:

x′(t) = ax(t) + bx(−t) + f
(

t, ϕ(t), ϕ(−t)), (3.65)

has a unique pseudo almost automorphic solution, which we denote by (K0ϕ)(t). Then, if
we consider the operator K0 : PAA(R,R) → PAA(R,R). Now we can show that K0 is a
contraction. Indeed, for ϕ and φ ∈ PAA(R,R), the following equation:

x′(t) = ax(t) + bx(−t) + f
(

t, ϕ(t), ϕ(−t)) − f
(

t, φ(t), φ(−t)), b /= 0, t ∈ R, (3.66)

has a unique pseudo almost automorphic solution (K0ϕ −K0φ)(t). Moreover,

(

K0ϕ −K0φ
)

(t) = − 1
2α

∫∞

t

exp−α(s − t)(α + a)
[

f
(

t, ϕ(s), ϕ(−s)) − f
(

s, φ(s), φ(−s))]ds

+
b

2α

∫∞

t

exp−α(s − t)
[

f
(−s, ϕ(−s), ϕ(s)) − f

(−s, φ(−s), φ(s))]ds

+
1
2α

∫ t

−∞
expα(s − t)(α − a)

[

f
(

t, ϕ(s), ϕ(−s)) − f
(

s, φ(s), φ(−s))]ds

− b

2α

∫ t

−∞
expα(s − t)

[

f
(

t, ϕ(−s), ϕ(s)) − f
(−s, φ(−s), φ(s))]ds.

(3.67)

So

∥
∥K0ϕ −K0φ

∥
∥ ≤ |α + a| + |α − a| + 2|b|

2α2
2L
∥
∥ϕ − φ

∥
∥. (3.68)

Since

|α + a| + |α − a| + 2|b|
2α2

2L < 1, (3.69)

so K0 is a contraction mapping, and so K0 has a unique fixed point in PAA(R,R), which
proves that (3.41) has a unique pseudo almost automorphic solution.

3.5. Examples

3.5.1. Scalar Case

Consider the following equation:

x′(t) = −x(t) + 1
1 + t2

x(−t) + sin
1

2 − sin t − sin πt
+

1√
1 + t2

. (3.70)
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In this situation, x′(t) = −x(t) admits exponential dichotomy and the function t → 1/(1 + t2)
satisfies that limt→∞1/(1 + t2) = 0, so the condition (ii) in Theorem 3.18 is satisfied, and
the function t → sin 1/(2 − sin t − sinπt) + 1/(

√
1 + t2) is a pseudo almost automorphic

function, so all the hypotheses of Theorem 3.18 hold, and so (3.70) has an unique pseudo
almost automorphic solution.

3.6. Vectorial Case

Let us consider the following example of Markus and Yamabe:

dx

dt
= A(t)x(t) + B(t)x(−t) +G(t), (3.71)

where

A(t) =

⎛

⎜
⎜
⎜
⎝

−1 + 3
2
cos2t −1 + 3

2
cos t sin t

−1 − 3
2
cos t sin t −1 + 3

2
sin2t

⎞

⎟
⎟
⎟
⎠

, (3.72)

B(t) =

⎛

⎜
⎝

1
1 + t2

0

0
1

1 + t2

⎞

⎟
⎠, G(t) =

⎛

⎜
⎜
⎝

sin
1

2 − sin t − sinπt
+

1
1 + t2

sinπt +
1√
1 + t2

⎞

⎟
⎟
⎠

, (3.73)

The matrix A(t) is π-periodic and the eigenvalues λ1(t), λ2(t) of A(t) are

λ1(t) =
−1 + i

√
7

4
, λ2(t) =

−1 − i
√
7

4
, (3.74)

and, in particular, the real parts of the eigenvalues are negative. If ρj = exp(λjω), j =
1, 2 . . . , n are the characteristic multipliers of A(t), where ω is the minimal period and λj the
eigenvalues of A(t), then, we have

n

Π
j=1

ρj = exp
∫ω

0
traceA(s)ds,

n∑

j=1

λj =
1
ω

∫ω

0
traceA(s)ds

(

mod
2πi
ω

)

. (3.75)

One of the characteristic multipliers is exp(π/2). The other multiplier is exp(−π), since the
product of the multipliers is exp(−π/2). So, the system dx/dt = A(t)x(t) has an exponential
dichotomy. The matrix B(t) is an ergodic function. G is pseudo almost automorphic, hence,
(3.71) has an unique pseudo almost automorphic solution.
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