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This paper addresses the problem of searching for a located target in the plane by using one searcher starting its motion from the
point (𝑋

0
, 𝑌
0
). The searcher moves along parabolic spiral curve. The position of the target has a known distribution. We show that

the distance between the target position and the searcher starting point depends on the number of revolutions, where the complete
revolution is done when 𝑡 = 2𝜋. Furthermore, we study this technique in the one-dimensional case (i.e., when the searcher moves
with linear search technique). It is desired to get the expected value of the time for detecting the target. Illustrative examples are
given to demonstrate the applicability of this technique assuming circular normal distributed estimates of the target position.

1. Introduction

Search problem dates back to World War II, and the works
of Koopman [1–3] and Stone [5, 6] offer a classic treatise
of this area from an operational research perspective. Many
variants and extensions of this problem, in a wide variety
of directions, have been presented in both the statistical and
operations research literature since Koopman [1] solved this
problem for the unidimensional case. This problem has been
discussed under some specific hypotheses by Richardson [4].
However, as pointed out by Koopman [2, 3], there is so
much complexity in real search and rescue missions that
any statistical model can only reflect part of the real-life
situation and ours are no exception. On search theory in
general, Stone [5] has given a good account of various results
presently available, with some informative examples, and
also has provided a rigorous mathematical treatment of the
subject, for both discrete and continuous cases. On the other
hand, Stone [6] provided an overview of different areas in
the development of search theory, which could be designated
as classical, mathematical, algorithmic, and dynamic. Also,
exhaustive surveys of works realized on this topic have been
given by Iida [7] and Benkoski et al. [8].

Studying of searching problem in the plane had found
considerable interest among researchers due to its wide

applications in our life. Feinerman et al. [9] introduced
some search trajectories to find the desert Ants Nearby Trea-
sure. They used multiple searchers without communication
between them in the plane. Edelsbrunner and Maurer [10]
obtained the optimal solutions for the postoffice problem.
The certain point location problems in two dimensions are
derived via geometric transforms from an optimal solution
for the search problem in three dimensions: find the first
point hit by a rotating or sweeping plane. Mohamed et al.
[11, 12] obtained more interesting search plans that give the
minimum expected value of the cost for detecting the lost
target. This problem has been discussed when the located
target has symmetric and asymmetric distributions and with
less information available to the searchers. In both papers,
they desired to minimize the expected time for detecting
the target. El-Hadidy [13] introduced a new search plan
in the plane which is divided into identical cells and the
searcher moves along spiral with line segment curve. He
found the optimal value of the arcs that the searcher should
do and finds the target with minimum cost. Also, Mohamed
and El-Hadidy [14] discussed the existence of the search
plan that finds the conditionally deterministic target motion.
They have shown the existence of the optimal search plan
and found the necessary conditions that make the expected
value of the first meeting time finite. When the target starts
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its motion as parabolic spiral from a random point in the
plane, Mohamed and El-Hadidy [15] studied this problem
such that no time information about the target’s position
is available to the searcher. The searcher starts its motion
from the origin. They formulated a search model and found
the conditions that make this search plan finite. Recently,
El-Hadidy [16] formulated another search model for a helix
target motion in the space by using a team of three searchers.
He studied the existence of the optimal search plan and found
it.

In this paper, the search for a randomly located target
in the plane by a single searcher is studied. The target’s
position is unknown, but the searcher knows its probability
distribution.The searcher moves along parabolic spiral curve
as in Figure 1, starting its motion from the point (𝑋

0
, 𝑌
0
).

Furthermore, we study this technique in the one-dimensional
case (i.e., when the searcher moves with linear search tech-
nique but here the searcher moves with speed depending on
time). This problem is more effective and more applicable to
real-world search scenarios such as searching for underwater
target by firing with 91RTE2 missile system; see website
http://www.youtube.com/watch?v=EgQk-FEGV-Y and also
the electrons movement in a cyclotron under the influence of
a constant magnetic field. The purpose here is to obtain the
expected value of the time for detecting the target, assuming
circular normal distributed estimates of its position.

This paper is organized as follows. In Section 2 we
formulate the problem.Theexpected value of the time is given
when the target position has circular normal distribution in
Section 3. One-dimensional case that rides to the generalized
linear search problem is discussed in Section 4. Finally,
the paper concludes with a discussion of the results and
directions for future research.

2. Modeling of Search
Problem and Formulation

Here, assumptions of a parabolic spiral search plan for a
randomly located target are described and the problem is
mathematically formulated as an allocation of searching
effort which is the expected value of the time for detecting
the target.

Let 𝑋, 𝑌 be two independent random variables that
represent the position of the target. The searcher is assumed
to move according to the model [17]

𝑥 (𝑡) = 𝑋
0

+ 𝑡
2 cos (𝑡) ,

𝑦 (𝑡) = 𝑌
0

+ 𝑡
2 sin (𝑡) ,

(1)

where (𝑋
0
, 𝑌
0
) is the starting point of the searcher and 𝑡 ∈

{0} ∪ R+, where R is the set of real numbers. Equations (1)
show that the searcher moves along parabolic spiral curve as
in Figure 1.

The searching process is continuous time and continuous
space. We consider that the searcher will make a complete
revolution when returns the 𝑥

󸀠-axis; see Figure 1. At time 𝑡,

the searcher moves along a circle with centre (𝑋
0
, 𝑌
0
) and

radius 𝑡
2 given by

(𝑥 (𝑡) − 𝑋
0
)
2

+ (𝑦 (𝑡) − 𝑌
0
)
2

= 𝑡
4
. (2)

From (1) we have

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑥̇ = 2𝑡 cos (𝑡) − 𝑡

2 sin (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= ̇𝑦 = 2𝑡 sin (𝑡) + 𝑡

2 cos (𝑡) .

(3)

Thus, the speed of the searcher will be given as

V = √𝑥̇2 + ̇𝑦2 = √4𝑡2 + 𝑡4 = 𝑡√𝑡2 + 4. (4)

It is clear that the speed will vanish at 𝑡 = 0 only, and V
depends on 𝑡. We obtain the time that the searcher will take
to detect the target in a complete revolution by considering
that the searcher path will intersect the line 𝑦(𝑡) = 𝑚𝑥(𝑡) + 𝑐

at time 𝑡, where 𝑚 is the slope of the line and 𝑐 is the absolute
constant. Using (1) we get 𝑐+𝑚𝑋

0
+𝑚𝑡2 cos(𝑡) = 𝑌

0
+𝑡2 sin(𝑡),

but at 𝑡 = 0 we have 𝑌
0

= 𝑚𝑋
0

+ 𝑐 then 𝑚𝑡2 cos(𝑡) =

𝑡2 sin(𝑡). Consequently, 𝑡 = tan−1𝑚, but at 𝑚 = 0 we have
𝑡 = 0, 2𝜋, 4𝜋, . . ., (i.e., the complete revolutions will be done
at the time values 0, 2𝜋, 4𝜋, . . .).

In addition, the area that the searcher will search through
making the complete revolution is given in the following.

After time 𝑡, in the first revolution the searcher will arrive
to the point (𝑋

0
+ 𝑡2 cos(𝑡), 𝑌

0
+ 𝑡2 sin(𝑡)) and make an angle

𝑡 with 𝑥󸀠-axis; see Figure 2.
With the previous understanding of using polar coordi-

nates, the area that is done by the first revolution is given
by 𝐴
1

= ∫
2𝜋

0
∫
𝑡
2

0
𝑔(𝑟, 𝑡)𝑟𝑑𝑟 𝑑𝑡, where 𝑔(𝑟, 𝑡) is the pro-

bability density function of the target position. And the area
between the first and second revolution is given by 𝐴

2
=

∫
2𝜋

0
∫
(𝑡+2𝜋)

2

𝑡
2

𝑔(𝑟, 𝑡)𝑟𝑑𝑟 𝑑𝑡. Similarly, the area between the

(𝑖 − 1)th and 𝑖th revolution is given by 𝐴
𝑖

= ∫
2𝜋

0
∫
(𝑡+2𝑖𝜋)

2

(𝑡+2(𝑖−1)𝜋)
2

𝑔(𝑟, 𝑡)𝑟𝑑𝑟 𝑑𝑡.
In this work, the search space is a standard Euclidean 2-

space 𝐸 with points designated by ordered pairs (𝑥, 𝑦). We
aim now to evaluate 𝐷, that is, the expected value of the time
for detecting the target.

Theorem 1. If the searcher moves along a parabolic spiral
curve starting its motion from random point (𝑋

0
, 𝑌
0
), then the

expected value of detecting the target is given by

𝐷 ≤ 2𝜋 ( ∫
2𝜋

0

∫
𝑡
2

0

𝑔 (𝑟, 𝑡) 𝑟𝑑𝑟 𝑑𝑡

+

∞

∑
𝑖=1

𝑖 [∫
2𝜋

0

∫
(𝑡+2𝑖𝜋)

2

(𝑡+2(𝑖−1)𝜋)
2

𝑔 (𝑟, 𝑡) 𝑟𝑑𝑟 𝑑𝑡]) .

(5)
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Figure 1: The search path of the searcher.
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Figure 2: (a) The position of the searcher at time 𝑡 and 𝑡 + 2𝜋. (b) The area at time 𝑑𝑡.
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Proof. From our hypothesis we can see that

𝐷 ≤ 2𝜋 ∫
2𝜋

0

∫
𝑡
2

0

𝑔 (𝑟, 𝑡) 𝑟𝑑𝑟 𝑑𝑡

+ 4𝜋 ∫
2𝜋

0

∫
(𝑡+2𝜋)

2

𝑡
2

𝑔 (𝑟, 𝑡) 𝑟𝑑𝑟 𝑑𝑡

+ 6𝜋 ∫
2𝜋

0

∫
(𝑡+4𝜋)

2

(𝑡+2𝜋)
2

𝑔 (𝑟, 𝑡) 𝑟𝑑𝑟 𝑑𝑡 + ⋅ ⋅ ⋅

= 2𝜋 ( ∫
2𝜋

0

∫
𝑡
2

0

𝑔 (𝑟, 𝑡) 𝑟𝑑𝑟 𝑑𝑡

+

∞

∑
𝑖=1

𝑖 [∫
2𝜋

0

∫
(𝑡+2𝑖𝜋)

2

(𝑡+2(𝑖−1)𝜋)
2

𝑔 (𝑟, 𝑡) 𝑟𝑑𝑟 𝑑𝑡]) .

(6)

If we consider that the target has been detected after 𝑛-
revolutions, 𝑛 > 1, then we have

𝐷 ≤ 2𝜋 ( ∫
2𝜋

0

∫
𝑡
2

0

𝑔 (𝑟, 𝑡) 𝑟𝑑𝑟 𝑑𝑡

+

𝑛

∑
𝑖=1

𝑖 [∫
2𝜋

0

∫
(𝑡+2𝑖𝜋)

2

(𝑡+2(𝑖−1)𝜋)
2

𝑔 (𝑟, 𝑡) 𝑟𝑑𝑟 𝑑𝑡]) .

(7)

It is noticed from (7) that 𝐷 depends on 𝑛. Hence, there exists
a relationship between the random distance 𝐻 (the distance
between the target position (𝑋, 𝑌) and the searcher starting
point (𝑋

0
, 𝑌
0
)) and the number of revolutions 𝑛.

Theorem 2. Assume that the searcher made 𝑛 complete revo-
lutions; then 𝐿 (the distance from (𝑋

0
, 𝑌
0
) to the searcher) is

given by (𝑡 + 2𝑛𝜋)
2; 𝑛 is a natural number.

Proof. The jump in the first revolution is given by (𝑡2 − 0) and
the jump in the second revolution is given by (𝑡 + 2𝜋)

2
− 𝑡2.

In addition, the jump in the last revolution is given by (𝑡 +

2𝑛𝜋)
2

− (𝑡 + 2(𝑛 − 1)𝜋)
2. Then, the distance from (𝑋

0
, 𝑌
0
) to

the searcher is given by

𝐿 = [𝑡
2

− 0] + [(𝑡 + 2𝜋)
2

− 𝑡
2
] + [(𝑡 + 4𝜋)

2
− (𝑡 + 2𝜋)

2
]

+ ⋅ ⋅ ⋅ + [(𝑡 + 2𝑛𝜋)
2

− (𝑡 + 2 (𝑛 − 1) 𝜋)
2
]

= 𝑡
2

+ 4𝜋
2

+ 4𝑡𝜋 + 12𝜋
2

+ 4𝑡𝜋 + 20𝜋
2

+ 4𝑡𝜋 + 28𝜋
2

+ 4𝑡𝜋 + ⋅ ⋅ ⋅ + (8𝑛 − 4) 𝜋
2

+ 4𝑡𝜋

= 𝑡
2

+ 4𝑛𝑡𝜋 + 4𝜋
2

[1 + 3 + 5 + 7 + ⋅ ⋅ ⋅ + (2𝑛 − 1)]

= 𝑡
2

+ 4𝑛𝑡𝜋 + 4𝜋
2
𝑛
2

= (𝑡 + 2𝑛𝜋)
2
.

(8)

3. The Case of a Target Position Given by
Circular Normal Distribution

Stone et al. [18] studied more interesting problem; that is, on
June 2009, an Airbus 330–200 with 228 passengers and crew
of the Air France Flight 447 is disappeared over the South
Atlantic during a night flight from Rio de Janeiro to Paris. An
international air and surface search effort recovered the first
wreckage on June 6 five and one half days after the accident.
More than 1000 pieces of the aircraft and 50 bodies were
recovered and their positions logged. A French submarine
as well as French and American research teams searched
acoustically for the underwater locator beacons on each of the
two flight recorder’s (black boxes) for 30 days from June 10 to
July 10, 2009, with no results. They described this problem
and analyzed the results of this analysis. The analysis shows
that all impact points are contained within a 20 nautical mile
radius circle from the point at which the emergency situation
began.The results of this analysis are represented by a second
distribution which is circular normal with center at the last
known position. One of the important advantages of circular
normal distribution is that they are sensitive to shifts in the
centering of the searching process.

Thus, we assume that the position of the target has a
bivariate normal distribution with parameters 𝜎

1
and 𝜎

2
.

Let (𝑋, 𝑌) give the initial target’s actual position. Then 𝑋 is
normally distributed with mean 0 and standard deviation
𝜎
1
. In addition, 𝑋 is independent of 𝑌, which is normally

distributed with mean 0 and standard deviation 𝜎
2
. Let

𝑓 (𝑥, 𝑦) =
1

2𝜋𝜎
1
𝜎
2

exp[−
1

2
(

𝑥
2

𝜎2
1

+
𝑦2

𝜎2
2

)] ,

for (𝑋, 𝑌) ∈ Q

(9)

be the probability density function of the bivariate normal
distribution, where Q denotes a standard Euclidean 2-space.
Thus, the distribution of error in the navigation system yields
𝑓 as given in (10) for the density of the target distribution. If
𝜎
1

= 𝜎
2

= 𝜎, then (9) becomes

𝑓 (𝑥, 𝑦) =
1

2𝜋𝜎2
exp[−

(𝑥2 + 𝑦2)

2𝜎2
] , for (𝑋, 𝑌) ∈ Q,

(10)

and the target distribution is called circular normal. Conse-
quently, (7) becomes

𝐷 ≤ 2𝜋 ([−
1

𝜋
∫
2𝜋

0

∫
𝑡
2

0

exp(
−𝑟2

2𝜎2
) 𝑑 (

−𝑟2

2𝜎2
) 𝑑𝑡]

+

𝑛

∑
𝑖=1

2𝑖 [−
1

𝜋
∫
2𝜋

0

∫
(𝑡+2𝑖𝜋)

2

(𝑡+2(𝑖−1)𝜋)
2

exp(
−𝑟2

2𝜎2
)𝑑 (

−𝑟2

2𝜎2
)𝑑𝑡])
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Table 1: Values of 𝐷 given the values of 𝜎 and 𝑛 = 5, 10, 15, . . . , 45, 50.

𝜎 𝐷 𝜎 𝐷 𝜎 𝐷 𝜎 𝐷

0.5

59.18550725

1

58.97643164

1.5

58.81600228

2

58.68075407
184.8492134 184.6401378 184.4797084 184.3444602
389.0527359 388.8436603 388.6832309 388.5479827
671.7960748 671.5869992 671.4265698 671.2913216
1033.079230 1032.870154 1032.709725 1032.574477
1472.902202 1472.693126 1472.532697 1472.397449
1991.264990 1991.055914 1990.895485 1990.760237
2588.167594 2587.958518 2587.798089 2587.662841
3263.610015 3263.400939 3263.240510 3263.105262
4017.592251 4017.383175 4017.222746 4017.087498
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Figure 3: The curves represent the relation between 𝐷, 𝜎, and 𝑛. In the part (a) Scatter plot of 𝜎 versus 𝐷 and in the part (b) Surface Plot of
𝑛 versus 𝐷, 𝜎.

= −2 ([

[

∫
2𝜋

0

[exp(
−𝑟2

2𝜎2
)]

𝑡
2

0

𝑑𝑡]

]

+

𝑛

∑
𝑖=1

𝑖 [

[

∫
2𝜋

0

[exp(
−𝑟2

2𝜎2
)]

(𝑡+2𝑖𝜋)
2

(𝑡+2(𝑖−1)𝜋)
2

𝑑𝑡]

]

)

= 2 ([∫
2𝜋

0

[1 − exp(
−𝑡4

2𝜎2
)] 𝑑𝑡]

+

𝑛

∑
𝑖=1

𝑖 [∫
2𝜋

0

[exp(
−(𝑡 + 2 (𝑖 − 1) 𝜋)

4

2𝜎2
)

− exp(
−(𝑡 + 2𝑖𝜋)

4

2𝜎2
)] 𝑑𝑡]) .

(11)

Using Mathematica 7 programme, we get

𝐷 ≤ 2 (2𝜋 +
Γ (1/4, 8𝜋4/𝜎2) − Γ (1/4)

223/4(1/𝜎2)
1/4

+
𝜋

2

𝑛

∑
𝑖=1

𝑖 [ (𝑖 − 1) Ei(
3

4
,

8((𝑖 − 1) 𝜋)
4

𝜎2
)

− 2𝑖Ei(
3

4
,

8(𝑖𝜋)
4

𝜎2
)

+ (1 + 𝑖)Ei(
3

4
,

8((𝑖 + 1) 𝜋)
4

𝜎2
)]) ,

(12)

where Ei gives the exponential integral function.

Example 3. Suppose that the target position (black boxes,
etc.) follows the circular normal distribution with probability
density function (10). For many values of 𝜎 and 𝑛 =

5, 10, 15, . . . , 45, 50, we get the expected value of the time for
detecting the target as in Table 1.

It appears from numerical calculations that the value of
𝐷 has small increments with decreasing the value of the
parameter 𝜎 as in Figure 3.
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Naturally, 𝜎 and 𝐷 depend on the target position. This
means that 𝐷 does not depend only on 𝜎 but also depends on
𝑛, where fromTheorem 2 we have 𝑛 = (√𝐿 − 𝑡)/2𝜋.

4. One-Dimensional Case

In one-dimensional case, the searcher moves with the model

𝑥 (𝑡) = 𝑋
0

+ 𝑡
2 cos (𝑡) ,

𝑦 (𝑡) = 𝑌
0
.

(13)

This model is produced from the projection of model (1)
on 𝑥-axis; that is, Π

1
(𝑥(𝑡), 𝑦(𝑡)) = 𝑥(𝑡) = 𝑋

0
+ 𝑡2 cos(𝑡).

Consequently, the speed of the searcher will be given as

V = 𝑥̇ = 2𝑡 cos (𝑡) − 𝑡
2 sin (𝑡) . (14)

At 𝑥̇ = 0, we have 𝑡(2 cos(𝑡) − 𝑡 sin(𝑡)) = 0, which leads
to 𝑡 = 2cot(𝑡), 𝑡 ̸= 0. We choose only positive values of 𝑡.
From (13), the parabolic spiral search will ride to the linear
search problem. The method of linear search is an important
methodology to find a lost target on the real line.The position
of the target is represented by the random variable𝑋where𝑋

has a probability density function 𝑤(𝑥). The searcher moves
continuously along the real line in both directions of the
starting point 𝑎

0
. The searcher would conduct his search in

the following manner (see Figure 4): start at 𝑎
0

= 0 and go
to the left (right) as far as 𝑎

1
. Then, turn back to explore the

right (left) part of 𝑎
0

= 0 as far as 𝑎
2
. Retrace the steps again

to explore the left (right) part of 𝑎
1
as far as 𝑎

3
, and so forth.

The searcher starts from any point on the real line with
uniform velocity and tries to find the target in minimal
expected time. It is assumed that the searcher can change the
direction of its motion without any loss of time. The target
can be detected only if the searcher reaches the target. This
problem has been studied extensively in many variations,
mostly by A. Beck andM. Beck [19, 20], Reyniers [21, 22], and
Balkhi [23, 24]. On the other hand, when the target moves
on the real line according to a known random process, the
searchermoves continuously along the line in both directions
of the starting point until the target is met. In an earlier work,
this problem has been studied by Mohamed [25], El-Rayes et
al. [26], Washburn [27], and Stone [28]. Recently, Mohamed
et al. [29, 30] discussed this problem when the target moves
randomly on one of real lines. They formulated a search
model and found the conditions under which the expected
value of the first meeting time between one of the searchers
and the target is finite. Furthermore, they have shown the
existence of the optimal search plan that minimized the
expected value of the first meeting time and found it.

The problem studied here is more applicable than the
linear search problem because the speed of the searcher
depends on 𝑡 as in (14). Equations (11) and (12) show that the
searcher moves on the line with the linear search technique
as in Figure 5.

a0

a2 a1
a3

The target

Figure 4: The generalized linear search path.

0 10 20 30 40

−2000

−1000

0

1000

2000

Figure 5: The search path of the searcher in one-dimensional case
with speed V = 2𝑡 cos(𝑡) − 𝑡2 sin(𝑡).

In this case, to get the time values of the turning points as
in Figure 4, we let 𝑦 = 𝑡 and we use the numerical method to
solve the system

𝑦 = 𝑡,

𝑦 = 2cot (𝑡) .

(15)

For simplicity, let 𝑋
0

= 𝑌
0

= 0. Thus, the roots of this system
are the intersection points of the line 𝑦 = 𝑡 and the equation
𝑦 = 2cot(𝑡) as in Figure 6.

Figure 6 gives an illustration of the roots (the time of the
turning points) through the time interval ]0, 𝑇]. From (14)
the distances ℎ

𝑖
that the searcher does through the times 𝑡

𝑖
,

𝑖 = 1, 2, . . . are given by

󵄨󵄨󵄨󵄨ℎ𝑖
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑖
(2𝑡
𝑖
cos (𝑡
𝑖
) − 𝑡
2

𝑖
sin (𝑡
𝑖
))

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑡
2

𝑖
(2 cos (𝑡

𝑖
) − 𝑡
𝑖
sin (𝑡
𝑖
))

󵄨󵄨󵄨󵄨󵄨
.

(16)

Now, we can easily obtain the expected value of the time
for detecting the target, where the target position has known
distribution.

Theorem 4. If the target location has known distribution with
probability density function 𝑤(𝑥), then the expected value of
the time for detecting the target is given by

𝐷 ≤

∞

∑
𝑖=1

𝑖 is odd

𝑡
𝑖
∫
ℎ
𝑖

ℎ
𝑖−1

𝑤 (𝑥) 𝑑𝑥 +

∞

∑
𝑖=2

𝑖 is even

𝑡
𝑖
∫
ℎ
𝑖

ℎ
𝑖−2

𝑤 (𝑥) 𝑑𝑥. (17)

Proof. If the target lies in ]0, ℎ
1
], then 𝐷 ≤ 𝑡

1
∫
ℎ
1

0
𝑤(𝑥)𝑑𝑥, and

if it lies in ]0, ℎ
2
], then 𝐷 ≤ 𝑡

2
∫
ℎ
2

0
𝑤(𝑥)𝑑𝑥. Also, if the target
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Figure 6: The turning point in one-dimensional case.

Table 2: The time values of the turning points through the time
interval ]0, 10] and its corresponding distances.

𝑖 𝑡
𝑖

|ℎ
𝑖
|

1 1.07687 0.151 39
2 3.6436 21.522
3 6.57833 80.893
4 9.62956 179.62

Table 3: Values of 𝐷 given the values of 𝜎.

𝜎 𝐷

0.5 4.455 6
1 4.779 0
1.5 4.888 8
2 4.944 0
2.5 4.977 1

lies in ]ℎ
1
, ℎ
3
], then 𝐷 ≤ 𝑡

3
∫
ℎ
3

ℎ
1

𝑤(𝑥)𝑑𝑥 and if it lies in ]ℎ
2
, ℎ
4
]

then 𝐷 ≤ 𝑡
4

∫
ℎ
4

ℎ
2

𝑤(𝑥)𝑑𝑥, and so forth. Consequently, we have

𝐷 ≤ 𝑡
1

∫
ℎ
1

0

𝑤 (𝑥) 𝑑𝑥 + 𝑡
2

∫
ℎ
2

0

𝑤 (𝑥) 𝑑𝑥 + 𝑡
3

∫
ℎ
3

ℎ
1

𝑤 (𝑥) 𝑑𝑥

+ 𝑡
4

∫
ℎ
4

ℎ
2

𝑤 (𝑥) 𝑑𝑥 + ⋅ ⋅ ⋅

=

∞

∑
𝑖=1

𝑖 is odd

𝑡
𝑖
∫
ℎ
𝑖

ℎ
𝑖−1

𝑤 (𝑥) 𝑑𝑥 +

∞

∑
𝑖=2

𝑖 is even

𝑡
𝑖
∫
ℎ
𝑖

ℎ
𝑖−2

𝑤 (𝑥) 𝑑𝑥.

(18)

Example 5. Let the previous illustrative Example 3 and make
a projection on 𝑥-axis, then (10) becomes

𝑓 (𝑥, 𝑦) =
1

√2𝜋𝜎2
exp[−

𝑥2

2𝜎2
] , for − ∞ ≤ 𝑥 ≤ ∞.

(19)
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Figure 7: The relation between 𝐷 and 𝜎 in one-dimensional case.

In addition, we let the target be detected through the time
interval ]0, 10]; then by using Figure 6 and (16) we can get
the time values of the turning points and its corresponding
distances as in Table 2.
For many values of 𝜎 we can get the values of 𝐷 as in Table 3.

It is clear that from numerical calculations the value of 𝐷

increases with increasing the value of the parameter 𝜎 as in
Figure 7.

5. Conclusion and Future Work

A parabolic spiral search plan for a randomly located target
in the plane has been presented, where the target position
is given by independent random variables 𝑋, 𝑌. We get
the expected value of the time for detecting the target in
Theorem 1. InTheorem 2, we show that the distance between
the target position and the searcher starting point depends on
the number of revolutions, where the complete revolution is
done when 𝑡 = 2𝜋.

To study this problem in one-dimensional case, wemake a
projection of the searcher path on𝑥-axis.Wefind that the case
of one-dimension of this problem rides to the generalized
linear search problem. In Theorem 4, we can easily get the
expected value of the time for detecting the target after
knowing the values of the turning points, where the target
position is given by a random variable 𝑋. The effectiveness
of this technique is illustrated using numerical examples
assuming circular normal distributed estimates of the target
position.

In future research, it seems that the proposed model will
be extendible to the multiple searchers case by considering
the combinations of movement of multiple targets.
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