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We prove a blow-up criterion for local strong solutions to a simplified hydrodynamic flow modeling the compressible, nematic

liquid crystal materials in a bounded domain.

1. Introduction

Let O ¢ R® be a bounded domain with smooth boundary
0Q. We consider the following simplified version of Ericksen-
Leslie system modeling the hydrodynamic flow of compress-
ible nematic liquid crystals:

9,p +div (pu) = 0, @

0, (pu) + div (pu®u) + Vp (p) — pAu
- (A+u)Vdivu = -Ad - Vd, ©

0,d+u-Vd = Ad + |Vd|’d,
ld/=1 in Qx(0,00), ®
u=0, d=dy(x) on Qx(0,00), 4)
(pu,d) (x,0) = (po tg, dy) (),

|do| = 1, xeQcR ®

Here p is the density of the fluid, u is the fluid velocity,
d represents the macroscopic average of the nematic liquid
crystal orientation field, and p(p) := ap? is the pressure with
positive constantsa > 0and y > 1. Two real constants g and A
are the shear viscosity and the bulk viscosity coefficients of the
fluid, respectively, which are assumed to satisfy the following
physical condition:

u>0, 31+2u>0. (6)

Equations (1) and (2) are the well-known compressible Navi-
er-Stokes system with the external force —Ad - Vd. Equation
(3) is the well-known heat flow of harmonic map when u = 0.

Recently, Huang et al. [1] prove the following local-in-
time well-posedness.

Proposition 1. Let p, € W™ for some q € (3,6] and p, > 0
inQ, uy € H>, d, € H and |d,| = 1 in Q. If, in addition, the
compatibility condition

—pbug = (A + ) Vdivuy = Vp(py) = Ady - Vdy = \/pog
for some g € L* (Q)
7)

holds, then there exist T, > 0 and a unique strong solution
(p,u, d) to the problem (1)-(5).

Based on the above proposition, Huang et al. [2] prove the
regularity criterion

T
J, (12 @l + 19 ) de < 0 (8)
to the problem (1)-(3), (5) with the boundary condition
u=0=% on 0Q x (0,00) 9)
oy

or

u-v:curluxv:a—d:O on 0Q x (0,00). (10)

v



Here,

D (u) = %(Vu + tVu), (11)

where v is the unit outward normal vector to Q.
When Q = R’, Huang and Wang [3] show the following
regularity criterion:

||P||L°°(0,T;L°°) + ullps oy + VAl o2y < 00, (12)
with #; and s; satisfying

2 3
—+—=1,

Si T

3<r;<00, i=1,2. (13)

When the term |Vd|*d in (3) is replaced by d — |d|*d, the
problem (1)-(5) has been studied by L. M. Liu and X. G. Liu
[4]; they proved the following regularity criterion:

T
J (IVullzz + IVull ) dt < co. (14)
0

The aim of this paper is to study the regularity criterion
of local strong solutions to the problem (1)-(5). We will prove

Theorem 2. Let the assumptions in Proposition 1 hold true. If
(12) holds true with 0 < T < oo, then the solution (p,u,d) can
be extended beyond T > 0.

Remark 3. Theorem 2 is also true for the boundary condition
(9). But it is an open problem to prove (12) when the homoge-
neous Dirichlet boundary condition u = 0 is replaced by

u-v=0, curluxvy=0 on 0Q x(0,00). (15)

2. Proof of Theorem 2

Since (p,u,d) is the local strong solution, we only need to
prove a priori estimates.

First, testing (2) and (3) by u and Ad+|Vd 1°d, respectively,
and adding the resulting equations together, we see that

d 1o ap )
dtj<2p|u| + = |Vd| +Y dx

. J (vl + (0 + ) @ivin? + |ad + [VdPd[ ) dx = o,
(16)
which gives
[ (ot + 1var)

17)
T 2
v [ [ (vul + |ad+ vaPdf ) dxae < c.
0

We decompose the velocity u into two parts: u = v + w,
where v(t) € HS(Q) N H?(Q) satisfies

plAv+ (A +u) Vdivy =Vp(p), (18)
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and thus w(t) € Hé(Q) N H*(Q) satisfies
pAw + (A + p) Vdivw = pit + Ad - Vd, (19)

where we used & := Ou + u - Vu to denote the material
derivative of u. Then, together with the standard W"? theory
and H? theory for elliptic systems, we obtain

”VV"L6 < C"p(P)“LS)

Cllpal,. + Clladvd| .

2 20)
IVwllgs + | V2w|,, <
Testing (3) by Ad,d and using (4), (20), (3), and the

identity 0 = A(d0d,d) = dAd,d + 9,dAd + 2Vdo,d, we derive
1d

2
e J AdPdx + I Vo[ dx

J

—

u-Vd - |Vd|’d) Ad,d dx
V (- V) Va,d dx jwdﬁ (dA3,d) dx
— | (uV?d + Vu - Vd) Vo,d dx

+ | |Vd|* (8,dAd + 2Vdvo,d) dx

(u-V?d+Vu-vd)Vo,ddx

+

\Vd|* (Ad + |Vd|*d - u - Vd) Ad dx

zj VdIPVAva,d dx

v2d

IN

12r1/(n-2) nvatd"L2

+ 1Vl Vet 205 | VO, 2

lleell

2 2 2
+ CIVAIL, 1Adl s + Clullpn 18] -2
2
+ e[ vodl:

< Ce||VB d“Lz + C"u”]jl

+ CIVA|Z, I Vulz: + e||Vu||ie
+ CIVAIlg, IAdI: + el +C

< Ce|[Vo,d|, + CelldlZs + Cellpi] -
+ClIVd|}, (||Ad||iz +[Vull?:)

+ C||u||L,1 +C

(1)
for any 0 < € < 1, where we have used the Holder inequality

192l 2 < CIVal); &/ )2 (22)
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and the Gagliardo-Nirenberg inequality

1- (3
g

H?

||V2d

1272/(r2-2) <
IVedlzs < [Vl + [Vl s (23)

< C+||[Vw]s.

By the H? theory of the elliptic equations, it follows from
(3) that

ldle < C(1+[VAd]2)

<C(1+|v(3d+u-vd-|vdld)

)

< C(1+ Vo + lullr V2 oo
VAl Vil s + IV [V )
C(1+|Vod| . +eldllge
+ ||u||sLL{2 2 HElVullgs
HIVAIZ2 VUl 2 + IVAIZ 1Az ),
(24)
which yields
ldlze < C(1+ [Vad] s + luli]v2d] ,
(25)
VAL IVul: + 194132V )
Testing (2) by o,u and setting M(d) = Vd o Vd -

(1/2)|Vd|*1;, we find that

;j J(;Aqul + (A +p) (dive)?) dx + JPIL'tIde

j dewudx— di J-M(d) Vuudx
= qu- (u-Vu)dx - Jatpdivudx
—JatM(d):Vudx

< |lpi| 2 Nl IVl 20 s

+ C\Vd|l 1 1 Vull f2r2s2-2 ||vatd||L2 - th divudx.

(26)

Now we deal with the last term.
First, (1) implies that
(y-1)pdivu=0.

o,p +div (pu) + (27)

Using (27) and (20), we have

—Jatpdivudx =- Jatpdivvdx— Jatpdivwdx
= J Vo, pvdx + Jdiv(pu) divwdx
+(y- I)deivudivwdx

(e

- J puVdivwdx

(le V) )

+(y- l)jpdivudivwdx

4t

+ C||pul| IV div wl| 2

(d1v V) >

+ C||div ul| ;2 [|div w 2.
(28)

Inserting (28) into (26) and using (20), we have

1d

T J (yqul + (A +p) (divu) )

d (B, AtH
+dtj<2|Vv| +

(jt delvudx— di JM(d) Vudx

(div v)2> dx

+ J p|1,'t|2dx
< ||Pu”Lz "u”L’l ”VUHLZH/(’I*Z)

+ CIVdl Vit s | VO, ] (29)
+CIVdivw] . + Clldivul? +C

2 2 2
€ J plil“dx + Cllull}, IVull;> + €l Vull s

+ CIVAIE, IVul + €| Vo,

+ CIVAIE, 1AdI + Clldivul? + C
<Ce J i dx + Ce|[Vadlfs + Cllull, Vel

+CIvdllE, (IVul: +1Ad]3:) +C.

Combining (21), (25), and (29), taking € small enough,
and using the Gronwall inequality, we conclude that

||”||L°°(0,T;H‘) + ||d||L°°(0,T;H2) + ||d"L2(0,T;H3)

) (30)
+| \//_J”HLZ(O,T;LZ) <C.



Now by the same calculations as those in [3, 5], we prove
that

lolzo oy + 19l ooy < Co
VPOl oo 22y + 0t 20 ey < C
lall zoogo,7:2) + el 20, w20y < G (D
ldll Loy < Cs
19:| oo o721ty < C-

This completes the proof.
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