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the existence of positive solutions for a fourth-order boundary value problem with a sign-changing nonlinear term is investigated.
By using Krasnoselskii’s fixed point theorem, sufficient conditions that guarantee the existence of at least one positive solution are
obtained. An example is presented to illustrate the application of our main results.

1. Introduction

In this paper, we consider the existence of positive solutions to
the following fourth-order boundary value problem (BVP):

𝑢
(4)
(𝑡) − 𝜆 [𝑓 (𝑡, 𝑢) + 𝑝 (𝑡)] = 0, a.e. 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠󸀠
(0) = 𝑢

󸀠󸀠
(1) = 0,

(1)

where 𝜆 is a positive parameter, 𝑓 : (0, 1) × [0,∞) → [0,∞)

is continuous and may be singular at 𝑡 = 0, 1, and 𝑝 :

(0, 1) → (−∞,∞) is Lebesgue integrable and has finitely
many singularities in [0, 1].

Boundary value problems for ordinary differential equa-
tions play a very important role in both theory and applica-
tions. They are used to describe a large number of physical,
biological, and chemical phenomena. The work of Timo-
shenko [1] on elasticity, the monograph by Soedel [2] on
deformation of structures, and the work of Dulcska [3] on the
effects of soil settlement are rich sources of such applications.
There has been a great deal of research work on BVPs for
second and higher order differential equations, and we cite as
recent contributions the papers of Anderson and Davis [4],
Baxley and Haywood [5], and Hao et al. [6]. For surveys of
known results and additional references, we refer the readers
to the monographs by Agarwal et al. [7, 8].

Many authors have studied the existence of positive solu-
tions for fourth-order boundary value problems where the
nonlinearity takes nonnegative values, see [9–13]. However,

for problems with sign-changing nonlinearities, only a few
studies have been reported.

Owing to the importance of high order differential equa-
tions in physics, the existence andmultiplicity of the solutions
to such problems have been studied by many authors, see
[9, 12–17]. They obtained the existence of positive solutions
provided 𝑓 is superlinear or sublinear in 𝑢 by employing the
cone expansion-compression fixed point theorem.

In [18], by using the stronglymonotone operator principle
and the critical point theory to discuss BVP

𝑢
(4)
(𝑡) − 𝑓 (𝑡, 𝑢) = 0, 𝑡 ∈ [0, 1] ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠󸀠
(0) = 𝑢

󸀠󸀠
(1) = 0,

(2)

the authors established some sufficient conditions for 𝑓 to
guarantee that the problem has a unique solution, at least one
nonzero solution, or infinitely many solutions.

In [10], Feng andGe considered the fourth-order singular
differential equation

𝑢
(4)
(𝑡) − 𝜆𝑔 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) , (3)

subject to one of the following boundary conditions:

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠󸀠
(0) = 𝑢

󸀠󸀠
(1) = 0,

𝑢 (0) = 𝑢
󸀠
(1) = 𝑢

󸀠󸀠
(0) = 𝑢

󸀠󸀠󸀠
(1) = 0,

(4)

where 𝜆 > 0. By using a fixed point index theorem in
cones and the upper and lower solutions method, the authors
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discussed the existence of positive solutions for the above
BVP.

However, most papers only focus on attention to the
case where the nonlinearity has no singularities or/and takes
nonnegative values on [0, 1] and 𝑝(𝑡) = 0. Inspired by the
work of the above papers, our aim in the present paper is to
investigated the existence of positive solutions to BVP (1) by
employing the fixed point theorem of cone expansion and
compression of norm type. Some well-known results in the
literature are generalized and improved.

By singularity we mean that the function 𝑓(𝑡, 𝑢), 𝑝(𝑡) in
BVP (1) are allowed to be unbounded at some point. In the
paper, BVP (1) is allowed to have finitely many singularities
in [0, 1]. In BVP(1), 𝑝(𝑡) are allowed to change sign and tend
to negative infinity. An element 𝑢 ∈ 𝐶[0, 1] for a.e. 𝑡 ∈ [0, 1]
is called a positive solution of BVP (1) if it satisfies BVP (1)
and 𝑢(𝑡) ≥ 0 for any 𝑡 ∈ [0, 1].

2. Preliminaries and Several
Important Lemmas

Let𝐸 = 𝐶[0, 1] be equippedwith norm ‖𝑢‖ = max𝑡∈[0,1]|𝑢(𝑡)|,
then (𝐸, ‖ ⋅ ‖) is a real Banach space.

Definition 1. We define a ordering in 𝐸 by 𝑢 ≼ V for 𝑢, V ∈ 𝐸
if and only if

𝑢 (𝑡) ≤ V (𝑡) , 𝑡 ∈ [0, 1] . (5)

In the following, let us define a cone 𝑃 in 𝐸 by

𝑃 = {𝑢 ∈ 𝐸 : 𝑢 ≥ 𝐺 (𝑡, 𝑡) ⋅ ‖𝑢‖ for 𝑡 ∈ [0, 1]} , (6)

where

𝐺 (𝑡, 𝑠) = {
𝑠 (1 − 𝑡) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
(7)

is the Green’s function of the following BVP

−𝑢
󸀠󸀠
(𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0.
(8)

Obviously

𝐺 (𝑡, 𝑠) ≤ 𝐺 (𝑡, 𝑡) , 𝐺 (𝑡, 𝑠) ≤ 𝐺 (𝑠, 𝑠) , 𝐺 (𝑡, 𝑠) ≤
1

4
,

for any 𝑡 ∈ [0, 1] , 𝑠 ∈ [0, 1] .
(9)

For convenience, we list the following assumptions:

(𝐻1) 𝑓 : (0, 1) × [0,∞) → [0,∞) is continuous and there
exist constants 𝛼, 𝛽, 0 < 𝛼 < 𝛽 < +∞, such that for
any (𝑡, 𝑢) ∈ (0, 1) × [0,∞),

𝑐
𝛽
𝑓 (𝑡, 𝑢) ≤ 𝑓 (𝑡, 𝑐𝑢) ≤ 𝑐

𝛼
𝑓 (𝑡, 𝑢) if 0 ≤ 𝑐 ≤ 1, (10)

(𝐻2) 𝑝 : (0, 1) → (−∞,∞) is Lebesgue integrable
such that

0 < ∫
1

0

𝑝− (𝑠) d𝑠 = 𝑟 < +∞,

0 < ∫
1

0

𝐺 (𝑠, 𝑠) [𝑓 (𝑠, 1) + 𝑝+ (𝑠)] d𝑠 = 𝑙 < +∞,
(11)

where 𝑝+(𝑠) = max{𝑝(𝑠), 0}, 𝑝−(𝑠) = max{−𝑝(𝑠), 0}.

Remark 2. The inequality (10) is equivalent to the following
inequality:

𝑐
𝛼
𝑓 (𝑡, 𝑢) ≤ 𝑓 (𝑡, 𝑐𝑢) ≤ 𝑐

𝛽
𝑓 (𝑡, 𝑢) if 𝑐 ≥ 1. (12)

For any 𝑥 ∈ 𝐶[0, 1], let us define a function [⋅]∗ by

[𝑥 (𝑡)]
∗
= {

𝑥 (𝑡) , 𝑥 (𝑡) ≥ 0,

0, 𝑥 (𝑡) < 0.
(13)

Let 𝑤(𝑡) = ∫
1

0
d𝑠 ∫1
0
𝜆𝐺(𝑡, 𝑠)𝐺(𝑠, 𝜏)𝑝−(𝜏)d𝜏, 𝑡 ∈ [0, 1].

Obviously 𝑤(𝑡) is continuous on [0, 1]. By (𝐻2), we obtain

0 < 𝑤 (𝑡) = ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑠) 𝐺 (𝑠, 𝜏) 𝑝− (𝜏) d𝜏

≤
1

16
𝜆∫
1

0

𝑝− (𝜏) d𝜏 < +∞,
(14)

so 𝑤(𝑡) is well defined in 𝐸. By direct computation, we have

𝑤
(4)
(𝑡) − 𝜆𝑝− (𝑡) = 0, a.e. 𝑡 ∈ (0, 1) ,

𝑤 (0) = 𝑤 (1) = 𝑤
󸀠󸀠
(0) = 𝑤

󸀠󸀠
(1) = 0,

(15)

which imply that 𝑤(𝑡) is a positive solutions of the following
BVP:

𝑢
(4)
(𝑡) − 𝜆𝑝− (𝑡) = 0, a.e. 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠󸀠
(0) = 𝑢

󸀠󸀠
(1) = 0.

(16)

Now, we consider the following BVP:

𝑢
(4)
(𝑡)−𝜆 [𝑓 (𝑡, [𝑢 (𝑡)−𝑤 (𝑡)]

∗
)+ 𝑝+ (𝑡)] = 0, a.e. 𝑡∈(0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠󸀠
(0) = 𝑢

󸀠󸀠
(1) = 0.

(17)

It is well known that 𝑢 ∈ 𝐶[0, 1] for a.e. 𝑡 ∈ (0, 1) is a solution
of BVP (17) if and only if 𝑢 is a solution of the following
nonlinear integral equation:

𝑢 (𝑡) = ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑠) 𝐺 (𝑠, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+ 𝑝+ (𝜏)] d𝜏 , 𝑡 ∈ [0, 1] .

(18)
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Define an operator 𝑇 : 𝐸 → 𝐸 as

𝑇𝑢 (𝑡) = ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑠) 𝐺 (𝑠, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+ 𝑝+ (𝜏)] d𝜏 , 𝑡 ∈ [0, 1] .

(19)

Obviously, the existence of solutions of the BVP (17) is
equivalent to the existence of fixed points of the operator 𝑇
in the real Banach space 𝐸.

Lemma3. Suppose that (𝐻1) holds, then𝑓(𝑡, 𝑢) is nondecreas-
ing in 𝑢 in [0, +∞), for any fixed 𝑡 ∈ (0, 1).

Proof. For any fixed 𝑡 ∈ (0, 1) and for any 𝑢1, 𝑢2 ∈ [0, +∞),
without the loss of the generality, let 0 ≤ 𝑢1 ≤ 𝑢2. If 𝑢2 = 0,
obviously the equation 𝑓(𝑡, 𝑢1) = 𝑓(𝑡, 𝑢2) = 𝑓(𝑡, 0) holds. If
𝑢2 ̸= 0, let 𝑐0 = 𝑢1/𝑢2, then we obtain 0 ≤ 𝑐0 ≤ 1. It follows
from (10) that

𝑓 (𝑡, 𝑢1) = 𝑓 (𝑡, 𝑐0𝑢2) ≤ 𝑐
𝛼

0 𝑓 (𝑡, 𝑢2) ≤ 𝑓 (𝑡, 𝑢2) , (20)

that is, 𝑓(𝑡, 𝑢) is nondecreasing in 𝑢 in [0, +∞).

Lemma 4. If V with 𝑤 ≤ V is a positive solution of the BVP
(17), then V − 𝑤 is a positive solution of BVP (1).

Proof. Assume that V is a positive solution of BVP (17) such
that 𝑤 ≤ V, then from (17) and the definition of [⋅]∗, we have

V(4) (𝑡) − 𝜆 [𝑓 (𝑡, [V (𝑡) − 𝑤 (𝑡)]∗)

+ 𝑝+ (𝑡)] = 0, a.e. 𝑡 ∈ (0, 1) ,

V (0) = V (1) = V󸀠󸀠 (0) = V󸀠󸀠 (1) = 0.

(21)

Let 𝑥(𝑡) = V(𝑡) − 𝑤(𝑡), then 𝑥(4)(𝑡) = V(4)(𝑡) − 𝑤(4)(𝑡) for a.e.
𝑡 ∈ (0, 1), which imply that

V(4) (𝑡) = 𝑥(4) (𝑡) + 𝜆𝑝− (𝑡) for a.e. 𝑡 ∈ (0, 1) . (22)

Thus, (21) becomes

𝑥
(4)
(𝑡) − 𝜆 [𝑓 (𝑡, 𝑥 (𝑡)) + 𝑝+ (𝑡) − 𝑝− (𝑡)] = 0,

a.e. 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠󸀠
(0) = 𝑥

󸀠󸀠
(1) = 0.

(23)

Notice that 𝑝(𝑡) = 𝑝+(𝑡) − 𝑝−(𝑡) and (23), we know that 𝑥(𝑡)
is a positive solution of BVP (1), that is, V − 𝑤 is a positive
solution of BVP (1).

Lemma5. Assume that (𝐻1) and (𝐻2) hold.Then,𝑇 : 𝑃 → 𝑃

is well defined and 𝑇 : 𝑃 → 𝑃 is a completely continuous
operator.

Proof. For any 𝑢 ∈ 𝑃, choose 0 < 𝜎 < 1 such that 𝜎‖𝑢‖ < 1,
then we obtain 𝜎[𝑢(𝑡) − 𝑤(𝑡)]∗ ≤ 𝜎𝑢(𝑡) ≤ 𝜎‖𝑢‖ < 1. Thus, by
(10), (12), and Lemma 3, we have

𝑓 (𝑡, [𝑢 (𝑡) − 𝑤 (𝑡)]
∗
) = 𝑓(𝑡,

1

𝜎
⋅ 𝜎[𝑢 (𝑡) − 𝑤 (𝑡)]

∗
)

≤ (
1

𝜎
)
𝛽

𝑓 (𝑡, 𝜎[𝑢 (𝑡) − 𝑤 (𝑡)]
∗
)

≤ 𝜎
−𝛽
𝑓 (𝑡, 𝜎 ‖𝑢‖)

≤ 𝜎
𝛼−𝛽
‖𝑢‖
𝛼
𝑓 (𝑡, 1) .

(24)

Hence, for any 𝑡 ∈ [0, 1], we get

𝑇𝑢 (𝑡) = ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑠) 𝐺 (𝑠, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+𝑝+ (𝜏)] d𝜏

≤ ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑡) 𝐺 (𝜏, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+𝑝+ (𝜏)] d𝜏

≤
1

4
𝜆∫
1

0

𝐺 (𝜏, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
) + 𝑝+ (𝜏)] d𝜏

≤ 𝐾1 ∫
1

0

𝐺 (𝜏, 𝜏) [𝑓 (𝜏, 1) + 𝑝+ (𝜏)] d𝜏 < +∞,

(25)

where 𝐾1 = (1/4)𝜆 ⋅ max{𝜎𝛼−𝛽‖𝑢‖𝛼, 1}. Thus, 𝑇 : 𝑃 → 𝐸 is
well defined.

Next, for any 𝑢 ∈ 𝑃, let V(𝑡) = 𝑇𝑢(𝑡). Then, there exists
𝑡0 ∈ [0, 1] such that ‖V‖ = V(𝑡0). Since

𝐺 (𝑡, 𝑠)

𝐺 (𝑡0, 𝑠)

=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑠 (1 − 𝑡)

𝑠 (1 − 𝑡0)
=
1 − 𝑡

1 − 𝑡0
≥ 1 − 𝑡 ≥ 𝑡 (1 − 𝑡) , 𝑠 ≤ 𝑡0, 𝑡,

𝑠 (1 − 𝑡)

𝑡0 (1 − 𝑠)
≥
𝑠 (1 − 𝑡)

𝑠 (1 − 𝑠)
=
1 − 𝑡

1 − 𝑠

≥ 1 − 𝑡 ≥ 𝑡 (1 − 𝑡) , 𝑡0 ≤ 𝑠 ≤ 𝑡,

𝑡 (1 − 𝑠)

𝑠 (1 − 𝑡0)
≥
𝑡 (1 − 𝑡0)

𝑠 (1 − 𝑡0)
=
𝑡

𝑠

≥ 𝑡 ≥ 𝑡 (1 − 𝑡) , 𝑡 ≤ 𝑠 ≤ 𝑡0,

𝑡 (1 − 𝑠)

𝑡0 (1 − 𝑠)
=
𝑡

𝑡0
≥ 𝑡 ≥ 𝑡 (1 − 𝑡) , 𝑡, 𝑡0 ≤ 𝑠,

(26)

we obtain

𝐺 (𝑡, 𝑠) ≥ 𝐺 (𝑡, 𝑡) 𝐺 (𝑡0, 𝑠) . (27)
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Hence, we have

V (𝑡) = ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑠) 𝐺 (𝑠, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+ 𝑝+ (𝜏)] d𝜏

≥ ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡0, 𝑠) 𝐺 (𝑡, 𝑡) 𝐺 (𝑠, 𝜏)

× [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
) + 𝑝+ (𝜏)] d𝜏

= 𝐺 (𝑡, 𝑡) V (𝑡0) = 𝐺 (𝑡, 𝑡) ‖V‖ , 𝑡 ∈ [0, 1] .

(28)

So, we conclude that 𝑇𝑃 ⊂ 𝑃.
Let𝐷 ⊂ 𝑃 be any bounded set, then there exists a constant

𝐿 > 0 such that ‖𝑢‖ ≤ 𝐿 for any 𝑢 ∈ 𝐷, 𝑡 ∈ [0, 1], we have

[𝑢 (𝑡) − 𝑤 (𝑡)]
∗
≤ 𝑢 (𝑡) ≤ ‖𝑢‖ ≤ 𝐿 ≤ 𝐿 + 1. (29)

By (12), (29) and Lemma 3, for any 𝑢 ∈ 𝐷, 𝑡 ∈ [0, 1], we have

𝑓 (𝑡, [𝑢 (𝑡) − 𝑤 (𝑡)]
∗
) ≤ 𝑓 (𝑡, 𝐿 + 1) ≤ (𝐿 + 1)

𝛽
𝑓 (𝑡, 1) .

(30)

From (9), (30), (𝐻2) and Lemma 3, for any 𝑢 ∈ 𝐷, we have

𝑇𝑢 (𝑡) = ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑠) 𝐺 (𝑠, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+ 𝑝+ (𝜏)] d𝜏

≤ ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑡) 𝐺 (𝜏, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+ 𝑝+ (𝜏)] d𝜏

≤
1

4
𝜆∫
1

0

𝐺 (𝜏, 𝜏) [(𝐿 + 1)
𝛽
𝑓 (𝜏, 1) +𝑝+ (𝜏)] d𝜏

≤ 𝐾2 ∫
1

0

𝐺 (𝜏, 𝜏) [𝑓 (𝜏, 1) +𝑝+ (𝜏)] d𝜏 < +∞,

(31)

where 𝐾2 = (1/4)𝜆 ⋅ max{(𝐿 + 1)𝛽, 1}. Therefore, 𝑇(𝐷) is
uniformly bounded.

Since 𝐺(𝑡, 𝑠) is continuous in [0, 1] × [0, 1], 𝐺(𝑡, 𝑠) is
uniformly continuous. Hence, for any 𝜀 > 0, there exists 𝛿 > 0
such that |𝑡1 − 𝑡2| < 𝛿, for any 𝑠 ∈ [0, 1] we have

󵄨󵄨󵄨󵄨𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝜀(𝜆max {(𝐿 + 1)𝛽, 1} 𝑙)

−1
, (32)

from (30), (32) and (𝐻2), for any 𝑢 ∈ 𝐷, we obtain

󵄨󵄨󵄨󵄨𝑇𝑢 (𝑡1) − 𝑇𝑢 (𝑡2)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
1

0

𝜆 (𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)) d𝑠

×∫
1

0

𝐺 (𝑠, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
) + 𝑝+ (𝜏)] d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
1

0

𝜆
󵄨󵄨󵄨󵄨𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)

󵄨󵄨󵄨󵄨 d𝑠

× ∫
1

0

𝐺 (𝜏, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
) + 𝑝+ (𝜏)] d𝜏

≤ 𝜆∫
1

0

󵄨󵄨󵄨󵄨𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)
󵄨󵄨󵄨󵄨 d𝑠 ⋅max {(𝐿 + 1)𝛽, 1}

× ∫
1

0

𝐺 (𝜏, 𝜏) [𝑓 (𝜏, 1) + 𝑝+ (𝜏)] d𝜏 < 𝜀.

(33)

Therefore, 𝑇(𝐷) is equicontinuous on [0, 1]. According to the
Ascoli-Arzela Theorem, 𝑇(𝐷) is a relatively compact set.

At the end, Let𝑢𝑛 (𝑛 = 1, 2, 3, . . .), 𝑢0 ∈ 𝑃, 𝑢𝑛 → 𝑢0 (𝑛 →

+∞). Then, 𝑢𝑛 is bounded, let 𝐿2 = sup{‖𝑢𝑛‖, 𝑛 = 0, 1, 2, . . .},
for any 𝑡 ∈ [0, 1], we have

[𝑢𝑛 (𝑡) − 𝑤 (𝑡)]
∗
≤ 𝑢𝑛 (𝑡) ≤

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 ≤ 𝐿2 ≤ 𝐿2 + 1. (34)

By (12), (34) and Lemma 3, we get

𝑓 (𝑡, [𝑢𝑛 (𝑡) − 𝑤 (𝑡)]
∗
) ≤ 𝑓 (𝑡, 𝐿2 + 1) ≤ (𝐿2 + 1)

𝛽
𝑓 (𝑡, 1) .

(35)

From (35), the continuity of 𝑓 and Lebesgue dominated
convergence theorem, we have

󵄨󵄨󵄨󵄨𝑇𝑢𝑛 (𝑡) − 𝑇𝑢0 (𝑡)
󵄨󵄨󵄨󵄨

= 𝜆∫
1

0

𝐺 (𝑡, 𝑠) d𝑠 ∫
1

0

𝐺 (𝑠, 𝜏)
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜏, [𝑢𝑛 (𝜏) − 𝑤 (𝜏)]

∗
)

−𝑓 (𝜏, [𝑢0 (𝜏) − 𝑤 (𝜏)]
∗
)
󵄨󵄨󵄨󵄨󵄨
d𝜏

≤
1

4
𝜆∫
1

0

𝐺 (𝜏, 𝜏)
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜏, [𝑢𝑛 (𝜏) − 𝑤 (𝜏)]

∗
)

−𝑓 (𝜏, [𝑢0 (𝜏) − 𝑤 (𝜏)]
∗
)
󵄨󵄨󵄨󵄨󵄨
d𝜏 󳨀→ 0.

(36)

Therefore, 𝑇 : 𝑃 → 𝑃 is continuous. So 𝑇 : 𝑃 → 𝑃 is a
completely continuous operator.

The proof of our main result is based upon an application
of the following fixed point theorem in a cone.

Theorem 6 (see [11]). Let 𝐸 be a Banach space, and 𝐾 ⊂

𝐸 be a cone. Assume Ω1, Ω2 are open bounded subsets of E
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with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let 𝑇 : 𝐾 ∩ (Ω2 \ Ω1) → 𝐾

be a completely continuous operator such that

(i) ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ 𝐾 ∩ 𝜕Ω1, and ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ 𝐾 ∩
𝜕Ω2; or

(ii) ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ 𝐾 ∩ 𝜕Ω1, and ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ 𝐾 ∩
𝜕Ω2.

Then, 𝑇 has at least one fixed point in 𝐾 ∩ (Ω2 \ Ω1).

3. The Main Results and Proofs

Theorem 7. Suppose that (𝐻1) and (𝐻2) hold. Assume that
there exist constants 0 < 𝜉 < 𝜂 < 1 and Γ such that

min
𝑡∈[𝜉,𝜂]

𝑓 (𝑡, 𝑢)

𝑢
≥ Γ, if 𝑢 ≥ 𝑟𝜉 (1 − 𝜂) , (37)

where

Γ = 2[𝜆𝜉 (1 − 𝜂) (𝜂 − 𝜉) ∫
1

0

𝐺 (𝜉, 𝑠) 𝐴 (𝑠) d𝑠]
−1

,

𝐴 (𝑠) = min {𝑠 (1 − 𝜂) , 𝜉 (1 − 𝑠)} .

(38)

Then, for 𝜆 sufficiently small, BVP (1) has at least one positive
solution 𝑢 ∈ 𝐶[0, 1] for a.e. 𝑡 ∈ [0, 1] in P.

Proof. Set

Ω𝑑 = {𝑢 ∈ 𝑃 : ‖𝑢‖ < 𝑑} , 𝜕Ω𝑑 = {𝑢 ∈ 𝑃 : ‖𝑢‖ = 𝑑} .

(39)

Let

𝜌 > 𝑟, 𝜆0 = min {1, 4𝜌 ⋅ {[(max {𝜌, 1})𝛽 + 1] 𝑙}
−1

} ,

(40)

where 𝑟, 𝑙 are defined in (𝐻2). For any 𝑢 ∈ 𝜕Ω𝜌, we have ‖𝑢‖ =
𝜌, since

𝑤 (𝑡) = ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑠) 𝐺 (𝑠, 𝜏) 𝑝− (𝜏) d𝜏

≤
1

4
𝜆𝐺 (𝑡, 𝑡) ∫

1

0

𝑝− (𝜏) d𝜏

≤ 𝜆𝑟𝐺 (𝑡, 𝑡) , 𝑡 ∈ [0, 1] ,

and 𝑢 (𝑡) ≥ 𝐺 (𝑡, 𝑡) ‖𝑢‖ ≥ 𝑟𝐺 (𝑡, 𝑡) ,

(41)

for any 𝜆 ∈ (0, 𝜆0] and 𝑢 ∈ 𝜕Ω𝜌, we have

𝑢 (𝑡) − 𝑤 (𝑡) ≥ 𝑟𝐺 (𝑡, 𝑡) − 𝜆𝑟𝐺 (𝑡, 𝑡) ≥ 0, 𝑡 ∈ [0, 1]. (42)

Noting that

0 ≤ 𝑢 (𝑡) − 𝑤 (𝑡) ≤ 𝑢 (𝑡) ≤ ‖𝑢‖ = 𝜌 ≤ max {𝜌, 1} ,

𝑡 ∈ [0, 1] .
(43)

From Lemma 3, we get

𝑓 (𝑡, [𝑢 (𝑡) − 𝑤 (𝑡)]
∗
) ≤ 𝑓 (𝑡,max {𝜌, 1})

≤ (max {𝜌, 1})𝛽𝑓 (𝑡, 1) .
(44)

Then, for any 𝜆 ∈ (0, 𝜆0] and 𝑢 ∈ 𝜕Ω𝜌, we have

𝑇𝑢 (𝑡)

= ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑠) 𝐺 (𝑠, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+ 𝑝+ (𝜏)] d𝜏

≤ ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝑡, 𝑡) 𝐺 (𝜏, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+𝑝+ (𝜏)] d𝜏

≤
1

4
𝜆0 [(max {𝜌, 1})𝛽 + 1]∫

1

0

𝐺 (𝜏, 𝜏) [𝑓 (𝜏, 1) + 𝑝+ (𝜏)] d𝜏

=
1

4
𝜆0 [(max {𝜌, 1})𝛽 + 1] 𝑙 ≤ 𝜌 = ‖𝑢‖ .

(45)

Thus, we obtain that

‖𝑇𝑢‖ ≤ ‖𝑢‖ , ∀𝑢 ∈ 𝜕Ω𝜌. (46)

Let𝑅 > max{𝜌, 2𝑟}. For 𝑡 ∈ [𝜉, 𝜂], 𝑢 ∈ 𝜕Ω𝑅 and 𝜆∈(0, 𝜆0],
we have

𝑢 (𝑡) − 𝑤 (𝑡) ≥ 𝑅𝐺 (𝑡, 𝑡) − 𝜆𝑟𝐺 (𝑡, 𝑡) ≥ 𝑅𝐺 (𝑡, 𝑡) − 𝜆
𝑅

2
𝐺 (𝑡, 𝑡)

≥ 𝑅𝐺 (𝑡, 𝑡) −
𝑅

2
𝐺 (𝑡, 𝑡) =

𝑅

2
𝐺 (𝑡, 𝑡) ≥

𝑅

2
𝜉 (1 − 𝜂)

> 𝑟𝜉 (1 − 𝜂) > 0.

(47)

Hence, by (37) and (47), for any 𝑢 ∈ 𝜕Ω𝑅 and 𝜆 ∈ (0, 𝜆0], we
have

𝑇𝑢 (𝜉) = ∫
1

0

d𝑠 ∫
1

0

𝜆𝐺 (𝜉, 𝑠) 𝐺 (𝑠, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+𝑝+ (𝜏)] d𝜏

≥ ∫
1

0

d𝑠 ∫
𝜂

𝜉

𝜆𝐺 (𝜉, 𝑠) 𝐺 (𝑠, 𝜏) [𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
)

+𝑝+ (𝜏)] d𝜏
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≥ ∫
1

0

𝜆𝐺 (𝜉, 𝑠) 𝐴 (𝑠) d𝑠 ∫
𝜂

𝜉

𝑓 (𝜏, [𝑢 (𝜏) − 𝑤 (𝜏)]
∗
) d𝜏

≥ ∫
1

0

𝜆𝐺 (𝜉, 𝑠) 𝐴 (𝑠) d𝑠 ⋅ Γ ⋅ ∫
𝜂

𝜉

[𝑢 (𝜏) − 𝑤 (𝜏)] d𝜏

≥ ∫
1

0

𝜆𝐺 (𝜉, 𝑠) 𝐴 (𝑠) d𝑠 ⋅ Γ ⋅ 𝑅
2
𝜉 (1 − 𝜂) (𝜂 − 𝜉)

= 𝑅 = ‖𝑢‖ .

(48)

Thus, we get

‖𝑇𝑢‖ ≥ 𝑇𝑢 (𝜉) ≥ ‖𝑢‖ , ∀𝑢 ∈ 𝜕Ω𝑅. (49)

By Theorem 6, we know that 𝑇 has at least a fixed point
𝑢∗ ∈ Ω𝑅 \ Ω𝜌 with ‖𝑢

∗‖ ≥ 𝜌.
Thus, for any 𝜆 ∈ (0, 𝜆0], we have

𝑢
∗
(𝑡) − 𝑤 (𝑡) ≥ 𝐺 (𝑡, 𝑡)

󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 − 𝜆𝐺 (𝑡, 𝑡) ∫

1

0

𝑝− (𝜏) d𝜏

≥ 𝜌𝐺 (𝑡, 𝑡) − 𝜆𝑟𝐺 (𝑡, 𝑡)

≥ 𝜌𝐺 (𝑡, 𝑡) − 𝜆𝑟𝐺 (𝑡, 𝑡) ≥ 0, 𝑡 ∈ [0, 1] .

(50)

It follows from Lemma 4 that 𝑢∗ − 𝑤 is a positive solution of
BVP (1).

Corollary 8. Suppose that (𝐻1) and (𝐻2) hold. Assume that
there exist constants 0 < 𝜉1 < 𝜂1 < 1 and Γ such that

lim
𝑢→+∞

min
𝑡∈[𝜉
1
,𝜂
1
]

𝑓 (𝑡, 𝑢)

𝑢
= +∞, (51)

Then, for 𝜆 adequately small, BVP (1) has at least one positive
solution 𝑢 ∈ 𝐶[0, 1] for a.e. 𝑡 ∈ [0, 1] in P.

Proof. Obviously, (51) implies that (37) is satisfied. Thus, by
Theorem 7, we know that Corollary 8 holds.

4. An Example

Now, we present an example to illustrate the main result.

Example 1. Consider the following BVP

𝑢
(4)
(𝑡) − 𝜆 [𝑡 (1 − 𝑡) 𝑢

3/2
+
1

2
(

1

√1 − 𝑡
−
1

√𝑡
)] = 0,

a.e. 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠󸀠
(0) = 𝑢

󸀠󸀠
(1) = 0,

(52)

where 𝜆 is positive parameter, clearly

𝑓 (𝑡, 𝑢) = 𝑡 (1 − 𝑡) 𝑢
3/2
, 𝑝 (𝑡) =

1

2
(

1

√1 − 𝑡
−
1

√𝑡
) .

(53)

Let

𝛼 =
1

2
, 𝛽 = 2, (54)

then (𝐻1) holds. By calculating, it is easy to obtain that

𝑟 = ∫
1

0

𝑝− (𝑠) d𝑠 = √2 − 1,

𝑙 = ∫
1

0

𝐺 (𝑠, 𝑠) [𝑓 (𝑠, 1) + 𝑝+ (𝑠)] d𝑠 =
7

60
(√2 − 1) ,

(55)

thus (𝐻2) holds. Obviously, for any fixed 𝜃 ∈ (0, 1/2), we have

lim
𝑢→+∞

min
𝑡∈[𝜃,1−𝜃]

𝑓 (𝑡, 𝑢)

𝑢
= +∞. (56)

Let

𝜌 = 2 > 𝑟, (57)

then

𝜆0 = min {1, 4𝜌 ⋅ {[(max {𝜌, 1})𝛽 + 1] 𝑙}
−1

} = 1, (58)

for any 𝜆 ∈ (0, 𝜆0]. By Corollary 8, we know that BVP (52)
has at least one positive solution 𝑢 ∈ 𝐶[0, 1] for a.e. 𝑡 ∈ [0, 1]
in 𝑃.
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