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Let f be an analytic function in the unit disc D. The Volterra integral operator I, is defined as follows: I;(h)(z) =

IOZ f(w)H (w)dw, h € HD), z € D. In this paper, we compute the norm of I; on some analytic function spaces.

1. Introduction

Let D = {z : |z| < 1} be the unit disk of complex plane C and
H(D) the class of functions analytic in D. Denote by do the
normalized Lebesgue area measure in D and g(a, z) the Green
function with logarithmic singularity at a; that is, g(a,z) =
—log lg,(2)|, where ¢,(z) = (a — z)/(1 — az) is the Mdobius
transformation of D.

Let 0 < p < co. The Q, is the space of all functions f €
H(D) such that

71, = 1r OF

)
+ sup JD 1 @[ (1~ g @) do (2) < co.

aeD

From [1, 2], we see that Q, = BMOA, the space of all analytic
functions of bounded mean oscillation. When p > 1, the
space Q,, is the same and equal to the Bloch space B, which
consists of all f € H(D) for which

Il =17 O] + igg 'f' (z)| (1 - |z|2) < 00. @)

See [3, 4] for the theory of Bloch functions.

For « > 0, the a-Bloch space, denoted by B, is the space
of all f € H(D) such that

[l = 1.7 O] +sup If @|(1-12)" <c0.  (3)

Itis clear that 8" ¢ B ¢ B2 for0< o; < 1< @, < 00.
Let1 < g < coandlet 0 < a < 1. The mean Lipschitz
space A(g, «) consists of those functions f € H(D) for which

£l = 1 @]+ sup (1)
1 (> ! ip\|1 Ha w
x <% L |f (re"P)| d(p) < 0.

It is obvious that A(co,0) is just the Bloch space 8B, which
is contained in A(g,0) for every 1 < g < oco. Note that
A(g, 1/q) increases with q € (1, 00). We refer to [5] for more
information of mean Lipschitz spaces.

For 0 < s < co, we say that an f € H(D) belongs to the
growth space H;* if

Il = Sup £ (re”)| (1-7*) < co. (5)

It is easy to see that H;° = H™.



For-1 < a < 00,an f € H(D) is said to belong to the Z“
space if

17 =1r @F + [ |F @[ (1= 12P) do @) < 0. (@

For 1 < p < 0o, the Besov space %, is defined to be the
space of all analytic functions f in D such that

71, = 17 @F + [ |f' @[ (1- 1) do @) < .
(7)

Let f € H(D). The Volterra integral operators I ¥ and J ¥
are defined as follows:

L@ = | (W f w)dw,

T @ = [ hw) 7 w)dw, ®)
(z e D).

It is easy to see that

(I + ) b+ £ )1 (0) = My (h), ©)

where My denotes the multiplication operator; that is,
Mg(h) = fh.If f is a constant, then all results about I,
Jf» or My are trivial. In this paper, we assume that f is
a nonconstant. Both operators have been studied by many
authors. See [6-23] and the references therein.

Norms of some special operators, such as composition
operator, weighted composition operator, and some integral
operators, have been studied by many authors. The interested
readers can refer [13, 24-32], for example. Recently, Liu and
Xiong studied the norm of integral operators I and J; on the
Bloch space, Dirichlet space, BMOA space, and so on in [13].
In this paper, we study the norm of integral operator I; on
some function spaces in the unit disk.

2. Main Results

In this section, we state and prove our main results. In order
to formulate our main results, we need some auxiliary results
which are incorporated in the following lemmas.

Lemma 1 (see [5, page 144]). If f € H? (0 < p < o), then
lf(z)l < (1- |z|2)_1/p||f||p, |z| < 1, and the inequality is sharp
for each fixed z.

Lemma 2. Let -1 < o« < coand 0 < p < oo. Forany f €
H(D), the following one has:

2+a
(1-lal’)
4+2a

(1-121%)"do (2),
(10)

If @I < (ot 1)] If @I
D

|1 —az|

where a is any point in D.
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Proof. For any f € H(D), taking z = re” and the subhar-
monicity of | f(2)|?, we get

2n .
lF O < % L |f (re?)[ e, (1)

and so

1 1 27 ;
FOF <@ |17 ()
X (1 - rz)“der dr (12)

=(a+1) |f(z)|P(1 - |z|2)ado (2).
D

Foranya € D, let ¢,(z) = (a — z)/(1 — az). Replacing f by
f °¢,(2z) and applying the change of variable formula give the
following:

|f(@]f < (a+1) JD If o 90 )| (1 - 121*) do (2)

«(1-1aP)’

- @+ [ [F@P(-lpo@F) @
o (1-1217)°
:(0(+1)J[D 1f @ (1-1al?)’ ﬁ o(z).
(13)
The proof is complete. O

Theorem 3. Let f € H(D). The integral operator I ; is bound-
ed on A(1,1) if and only if f € H*. Moreover, one has

1] = 1 e (14)

Proof. If f € H®, by (4), we have

1 2 ; ;
Il = s (55 [, 17 ()0 ()|
1 2 , ;
<l 0 (5 [, 4 ()] o)

< | g Ml

(15)

Thus || Tp | < || fllpzeo-
On the other hand, denote ¢ = sup, .| f(2)|. Given any
€ > 0, there exists z, € D such that | f(z;)| > ¢ — €. Let

-z (16)
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Then we have [|h] ;1) = 1. In fact, taking z; = re® and
z = re’* and using Poisson integral, we get

1 2 ;
Uil = sup (5 [ ()] o)

- (5 Jh e S (17)
OST’EI 21 Jo |1—rrlei(‘P"P1)|2 ¢

2
1-r]

su

o<ra1 1 — 7217

=1

Taking z, = r€'?*, we obtain

00 > 1> f17h]

sup (o [ |5 (v (7)) )

Osr<1 0

2m i (18)
= sup <%J’ 'f (re“p)|

0<r<1 0

So fh' € H" and f € H'. Thus Theorem 2.6 in [5] yields

1 2 ; 1- 2
b= (3 [ et ). o

By Theorem 2.12 in [5], we have

"If" >|f(z)|>c-e (20)

so the arbitrariness of € gives ||I = Sl e and the proof is
complete.

Lemma 3 in [13] gives the norm of I ¢ on Dirichlet space.
Here, we consider the norm of I on a-Dirichlet space D,

Theorem 4. Let f € H(D) and -1 < « < oo. Then Iy is
bounded on 2 if and only if f € H®. Moreover, one has

”If" = £l o (21)

Proof. First, we assume that f € H®. Let h € 2%. Then (6)
gives

ez ; = j@ |f @1 @] (1-12)"do (2)
W [ W@ (-l do@ @

< | F e WAl e

and so we have [[1 ]| < || fl oo

Now we need only to show the reverse inequality. Denote
¢ = sup,plf(2)|. Given any € > 0, there exists z; € D such
that | f(z,)| > c — €. Let

&, (23)

where I'(z) is any path in D from 0 to z. By Theorem 13.11 in
[33, page 274], we know h; is an analytic function in D and
H(z) =1~z )2 (1 — Z,2)*. Also it is easy to check
that || h, IISZW = 1/(a + 1). Indeed, by using the method of the
proof of Lemma 4.2.2 in [4], we have

2+a
(1-=]")
Iy e = J e

D |1-Zz

(1-12*)"do (2)

=(1—|21|2)2+“J o do (2)
D

|1 _ z12:|4+20(

B (1—|z |2)2+¢x Fa+1) QIPn+2+a) |z |2n
B ! I?(a+2)Znl(n+2+a) !

(1 - |Z1|2)2M°Z°:F(n+2+oc)

_ |z1|2n
a+1 = onll (a+2)
2+
-
B a+1

(1 3 |Z1|2)2+a - P 1.

(24)

Let h(z) = h,(2)/[Ih | g«> and so ||l g« = 1. Thus by Lemma 2

we have

5l = 1 @

_ JD If @K @[ (1-121*)"do ()

_ (R
= (a+1) j@ |f (2)] W(lﬂzl ) do(2)

|1-zz

> |f (z1)|2 > (c—¢)

(25)

Since € is arbitrary, we get
12 g T (26)
which implies the desired result. O

Theorem 5. Let f € H(D) and let 1 < p < oo. The integral
operator I is bounded on B , ifand only if f € H>. Moreover,
one has

1] = 1 o (27)



Proof. If f € H*, then by (7), we have
[l = [ I @1 @[ (1= 1) do )
P ; Pry o2\P72 (28)
<l [ W @[ (1= 12P) o2

<A1 IRl

and so [[1¢|l < [l f | pgeo-

Now we need only to show the reverse inequality. Denote
¢ = sup,plf(2)]. Given any € > 0, there exists z; € D such
that | f(z,)| > c — €. Let

hy (z) = 21

-z, ze€D.
P (29)

We see that ||h1||P@P =1/(p —1). Indeed,

(1=

It = |, 3 (1) @
_ 2\P (1—|Z|2)1772
= (1 |z ) JD Wﬂla (2)

(1Y R =D Kl o)

2n
2 (p) ,,:On!F(n+p)|Zl| (30)

P
_ (1 - |z1|2) il"(ﬂ*‘}))lz |2n
p-1 Snr(p
p
=)
P=1 (1-|g})" p-1
Let h(z) = hy(2)/|h, ”%' Then ||h||93P = 1. Thus by Lemma 2,
we have

| = e (Z)“;P = JD If @ @[ (1-12)" do (2)

2\P
- [ replEl)

1 _21Z|2P

X (1 - |z|2)P_2da (2)
> |f (2)f > (c-¢).
©)

Since € is arbitrary, we get [I| > | fllge. The proof is
complete. O

Theorem 6. Let f € H(D) and let 0 < o < 3 < oco. The
integral operator I, is bounded from B* to B8P if and only if
f € Hg .. Moreover, one has

[l = suplf @I (1 o) (32)
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Proof. 1f f € Hgf‘x, then by (3), we have
|14 = sup|f @ H @] (1122’
zeD
<l sup|p' @] (1-12F)"  (33)
P zeD

< 1l Wik

Hence || I || < |l fIIHEg“.

For the converse, denote ¢ = sup,pl f(2)I(1 - |z|2)ﬁ_“.
Given any € > 0, there exists z; € D such that |f(z))|(1 -

Izllz)ﬁ_“ > ¢ — €. Set
1- |z, )"
_ j- ( |ZI| 3 d(, (34)
@) (1-2z,0)"

where I'(z) is any path in D from 0 to z. By Theorem 13.11 in
[33, page 274], we know that A is an analytic function in D and
hi(z) = (1 - |z,|)%/(1 - Z,2)**, and it is easy to check that
[Allg« = 1. Thus

[0 = 17l s

= sup|f @K @) (1 1er)’

> | ) ()] (1~ )
> ()] ((11||—||))(1 ~fal)’

= |f (Zl)l (1 - |Z1|2)ﬁ7“ >c—e.

Since e is arbitrary, we obtain the desired result. The proof is
complete. O

Theorem 7. Let f € H(D). The integral operator I is bound-
ed from A(1,1) to B if and only if f € H®. Moreover, one has

2l = 1l (36)
Proof. If f € H*, then by Lemma 1, we have

[17h = sup | @1 @] (1~ 12F)
< Wil ysup(1 - )" (1- 1) 1f @ (37)

= ||hllp1,1ySup |f (Z)| >
zeD

and hence [[I¢]| < [l fllgeo-
For the converse, denote ¢ = sup, | f(2)|. Given any € >
0, there exists z; € D such that | f(z;)| > ¢ — €. Let

z, -z

h(z) = 1-2zz

-z, ze€D. (38)
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Then by the proof of Theorem 3, we see that [|A]l 5 ;) = 1. In

the meantime, we know that Ih'(zl)l(l - Izllz) = 1, which
gives

5] = 1m
= sup 'f (2) W (Z)l (1 - |Z|2)
zeD (39)
>|f ()W ()| (1-|a])
= lf(zl)| >Cc-¢€
Since € is arbitrary, we get the desired result. The proof is
complete. =

Finally, we consider the norm of I ¥ from A(oco, 1) to some
Banach spaces.

Theorem 8. If f € H(D), then the following assertions hold.

(1) Let 0 < p < oo. The integral operator I, is bounded
from A(co, 1) space to Q,, space if and only if f satisfies

sup [ 1£ @F(1-lo. @) do @) <o a0
aeD JD
Moreover, one has

I =sup | [f@F(1-lp.@f) do(z).  (an)
aeD JD

(2) Let0 < « < 1 and let 0 < q < 0o. The integral operator
I is bounded from A(co, 1) space to A(q, «) space if
and only if f satisfies

n 1
sup (1 - rz)l_a< ! Jz |f (rei‘p)|qd(p) ' <oo. (42)
0

o<r<1 21

Moreover, one has

Il = s (1) (s [ (e
27 0 (43)

0<r<1

(3) Let 0 < a < ©00. The integral operator I is bounded
from A(00, 1) space to B space if and only if f satisfies
sup,plf(2)I(1 - |z|?)* < co. Moreover, one has

1] = supls @ (1 - 127" (44)

(4) Let -1 < & < 00. The integral operator I is bounded
from A(00, 1) space to D* space if and only if f satisfies
ID |f(z)|2(1 — |z|))%do(z) < co. Moreover, one has

"If" = JD |f(z)|2(1 - |Z|2)“d0 (). (45)

Proof. The assertion (1) will be proved only here, and the
conclusions of (2), (3), and (4) follow by using the similar
arguments to that used in proving (1), and so the proofs are
omitted.

If h € A(oo, 1), then by (1), we have

[t =sup | |7 @ @[ (1~ loa @) do )

< Wil o 50p JD 1f @F(1 - |p. @) do (2),

(46)
and so

[ <5 [ Ir @F(-lea @) do@. (@)

For the converse, let hi(z) = z. It is easy to see that

"h”A(oo,l) = 1. Thus
bl > I,
S JD [f @K @ (1-19. @F) do @) (4g)

- sup jD 1f @1 - o, @) do ).

The desired result follows by (47) and (48). The proof is
complete. O
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