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The existence of the endpoints and approximate endpoints are studied in a general setting for the operators satisfying various
contractive conditions. Some recent results are also derived as special cases.

1. Introduction

Among several generalizations of celebrated Banach fixed
point theorem, one interesting extension is Nadler’s [1] fixed
point theorem formultivalued contraction.He exactly proved
that a multivalued contraction has a fixed point in a complete
metric space. Subsequently, it received great attention in
applicablemathematics andwas extended and generalized on
various settings. Indeed, these extensions and generalizations
have been influenced by the applications of the multivalued
fixed point theory in mathematical economics, game the-
ory, differential inclusions, interval arithmetic, Hammerstein
equations, convex optimization, duality theory in optimiza-
tion, variational inequalities and control theory, nonlinear
evolution equations and nonlinear semigroups, quasivaria-
tional inequalities, and elasticity and plasticity theory (see,
for instance, [2–8] and several references thereof).The results
related to existence of endpoints or strict fixed-points were
first given by Rus [9] in 2003. Thereafter, a number of
authors established interesting results concerning existence
and uniqueness of endpoints for multivalued contractions
in different settings; see, for example, [10–15]. The main
purpose of this paper is to establish some existence and
uniqueness results for endpoints using different multivalued
contractions. Our results include some recent results.

2. Preliminaries

Let 𝑇 : 𝑋 → 2
𝑋 be a multivalued mapping. An element

𝑥 ∈ 𝑋 is said to be an endpoint of 𝑇 if 𝑇𝑥 = {𝑥}. We say that

a multivalued mapping 𝑇 : 𝑋 → 2
𝑋 has the approximate

endpoint property (AEPP) if inf
𝑥∈𝑋

sup
𝑦∈𝑇𝑥

𝑑(𝑥, 𝑦) = 0 (also
see [3, 10]). Throughout the paper, let (𝑋, 𝑑) be a 𝑏-metric
space, and let 𝑃(𝑋) denote the family of all nonempty subsets
of 𝑋 and 𝐶𝑙(𝑋) the family of all nonempty closed subsets of
𝑋. For any 𝐴, 𝐵 ∈ 𝑃(𝑋), the Hausdorff metric is defined as

𝐻(𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝑏, 𝐴)} , (1)

where 𝑑(𝑎, 𝐵) = inf{𝑑(𝑎, 𝑏) : 𝑏 ∈ 𝐵} is the distance from the
point 𝑎 to the set 𝐵.

Let 𝐼 : 𝑋 → 𝑋 be a single-valued mapping and 𝑇 : 𝑋 →

𝐶𝑙(𝑋) a multivalued contraction. We say that the mappings 𝐼
and 𝑇 have an AEPP provided inf

𝑥∈𝑋
sup
𝑦∈𝑇𝑥

𝑑(𝐼𝑥, 𝑦) = 0.
A point 𝑥 ∈ 𝑋 is called an endpoint of 𝐼 and 𝑇 if

𝑇𝑥 = {𝐼𝑥}. For each 𝜀 > 0, let 𝐸
𝜀
(𝐼, 𝑇) = {𝑥 ∈ 𝑋 :

sup
𝑦∈𝑇𝑥

𝑑(𝐼𝑥, 𝑦) ≤ 𝜀} be the set of all approximate endpoints
of the mappings 𝐼 and 𝑇.

Example 1. Let𝑋 = (−∞,∞) with Euclidean norm. Assume
that𝐾 = [0, 𝑐] and 𝑇 : 𝐾 → 𝐶𝑙(𝐾) defined by

𝑇𝑥 =

{{{

{{{

{

[𝑥, 𝑐 − 𝑥] , 𝑥 ∈ [0,
𝑐

2
)

[𝑐 − 𝑥, 𝑥] , 𝑥 ∈ [
𝑐

2
, 𝑐] ,

(2)

where 𝑐 is a positive constant. Clearly, Fix(𝑇) = [0, 𝑐] and
End(𝑇) = {𝑐/2}.
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Definition 2 (see [16]). Let 𝑋 be a nonempty set and 𝑏 ≥ 1

a given real number. A function 𝑑 : 𝑋 × 𝑋 → R
+
(set of

nonnegative real numbers) is said to be a 𝑏-metric iff for all
𝑥, 𝑦, 𝑧 ∈ 𝑋 the following conditions are satisfied:

(i) 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦,
(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),
(iii) 𝑑(𝑥, 𝑧) ≤ 𝑏[𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)].

A pair (𝑋, 𝑑) is called a 𝑏-metric space.

The class of 𝑏-metric spaces is effectively larger than that
ofmetric spaces, since a 𝑏-metric space is ametric spacewhen
𝑏 = 1 in the above condition (iii). The following example
shows that a 𝑏-metric on 𝑋 need not be a metric on 𝑋 (see
also [16, page 264]).

Example 3 (see [17]). Let𝑋 = {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
} and 𝑑(𝑥

1
, 𝑥
2
) =

𝑘 ≥ 2, 𝑑(𝑥
1
, 𝑥
3
) = 𝑑(𝑥

1
, 𝑥
4
) = 𝑑(𝑥

2
, 𝑥
3
) = 𝑑(𝑥

2
, 𝑥
4
) =

𝑑(𝑥
3
, 𝑥
4
) = 1, 𝑑(𝑥

𝑖
, 𝑥
𝑗
) = 𝑑(𝑥

𝑗
, 𝑥
𝑖
) for all 𝑖, 𝑗 = 1, 2, 3, 4 and

𝑑(𝑥
𝑖
, 𝑥
𝑖
) = 0, 𝑖 = 1, 2, 3, 4. Then,

𝑑 (𝑥
𝑖
, 𝑥
𝑗
) ≤

𝑘

2
[𝑑 (𝑥
𝑖
, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑗
)]

for 𝑛, 𝑖, 𝑗 = 1, 2, 3, 4,

(3)

and if 𝑘 > 2, the ordinary triangle inequality does not hold.

Definition 4 (see [16]). Let (𝑋, 𝑑) be a 𝑏-metric space. Then,
a sequence {𝑥

𝑛
}
𝑛∈𝑁

in𝑋 is called

(a) convergent if and only if there exists 𝑥 ∈ 𝑋 such that
𝑑(𝑥
𝑛
, 𝑋) → 0 as 𝑛 → ∞. In this case, one writes

lim
𝑛→∞

𝑥
𝑛
= 𝑥,

(b) Cauchy if and only if 𝑑(𝑥
𝑛
, 𝑥
𝑚
) → 0 as𝑚, 𝑛 → ∞.

Remark 5 (see [16]). In a 𝑏-metric space (𝑋, 𝑑), the following
assertions hold.

(i) A convergent sequence has a unique limit.
(ii) Each convergent sequence is Cauchy.
(iii) In general, a 𝑏-metric is not continuous.

Definition 6 (see [16]). Let (𝑋, 𝑑) be a 𝑏-metric space. If 𝑌 is
a nonempty subset of 𝑋, then the closure 𝑌 of 𝑌 is the set of
limits of all convergent sequences of points in 𝑌, i.e.,

𝑌 = {𝑥 ∈ 𝑋 : there exists a sequence {𝑥
𝑛
}
𝑛∈𝑁

such that lim
𝑛→∞

𝑥
𝑛
= 𝑥} .

(4)

Definition 7 (see [16]). Let (𝑋, 𝑑) be a 𝑏-metric space. Then,
a subset 𝑌 ⊂ 𝑋 is called

(a) closed if and only if for each sequence {𝑥
𝑛
}
𝑛∈𝑁

in 𝑌

which converges to an element 𝑥, one has 𝑥 ∈ 𝑌,
(b) compact if and only if for every sequence of elements

of 𝑌, there exists a subsequence that converges to an
element of 𝑌,

(c) bounded if and only if 𝛿(𝑌) = sup{𝑑(𝑎, 𝑏) : 𝑎, 𝑏 ∈ 𝑌} <

∞.

Definition 8 (see [16]). The 𝑏-metric space (𝑋, 𝑑) is complete
iff every Cauchy sequence in𝑋 converges.

Definition 9. Let 𝑋 and 𝑌 be two Hausdorff topological
spaces and 𝑇 : 𝑋 → 𝑃(𝑌), a multivaluedmapping with non-
empty values. Then, 𝑇 is said to be

(i) upper semicontinuous (u.s.c.) if, for each closed set
𝐵 ⊂ 𝑌, 𝑇−1(𝐵) = {𝑥 ∈ 𝑋 : 𝑇(𝑥) ∩ 𝐵 ̸= 𝜙} is closed in
𝑋;

(ii) lower semicontinuous (l.s.c.) if, for each open set 𝐵 ⊂

𝑌, 𝑇−1(𝐵) = {𝑥 ∈ 𝑋 : 𝑇(𝑥) ∩ 𝐵 ̸= 𝜙} is open in𝑋;

(iii) continuous if it is both u.s.c. and l.s.c.;

(iv) closed if its graph Gr(𝑇) = {(𝑥, 𝑦) ∈ 𝑋×𝑌 : 𝑦 ∈ 𝑇(𝑥)}

is closed;

(v) compact if closure of 𝑇(𝑋) is a compact subset of 𝑌.

Definition 10 (see [5]). Let 𝐼 : 𝑋 → 𝑋 be a single-valued
mapping and 𝑇 : 𝑋 → 𝐶𝑙(𝑋) a multivalued mapping. Then,
𝑇 is called

(i) a multivalued 𝐼-contraction if there exists a number
𝛼 ∈ (0, 1) :

𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑 (𝐼𝑥, 𝐼𝑦) , ∀ 𝑥, 𝑦 ∈ 𝑋, (I-mc)

(ii) a multivalued 𝐼-Kannan contraction if there exists a
number 𝛽 ∈ (0, 1/2) :

𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝛽 [𝑑 (𝐼𝑥, 𝑇𝑥) + 𝑑 (𝐼𝑦, 𝑇𝑦)] ,

∀𝑥, 𝑦 ∈ 𝑋,

(I-mkc)

(iii) a multivalued 𝐼-Chatterjea contraction if there exists
a number 𝛾 ∈ (0, 1/2) :

𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝛾 [𝑑 (𝐼𝑥, 𝑇𝑦) + 𝑑 (𝐼𝑦, 𝑇𝑥)] ,

∀𝑥, 𝑦 ∈ 𝑋,

(I-mcc)

(iv) a multivalued 𝐼-quasi-contraction if

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑘 ⋅max {𝑑 (𝐼𝑥, 𝐼𝑦) , 𝑑 (𝐼𝑥, 𝑇𝑥) , 𝑑 (𝐼𝑦, 𝑇𝑦) ,

𝑑 (𝐼𝑥, 𝑇𝑦) , 𝑑 (𝐼𝑦, 𝑇𝑥)}

(I-mqc)

for some 0 ≤ 𝑘 < 1 and all 𝑥, 𝑦 in𝑋,

(v) a multivalued 𝐼-weak or almost contraction if there
exist 𝛼 ∈ (0, 1) and 𝐿 ≥ 0 :

𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑 (𝐼𝑥, 𝐼𝑦) + 𝐿𝑑 (𝐼𝑦, 𝑇𝑥) , ∀ 𝑥, 𝑦 ∈ 𝑋,

(I-mac)
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(vi) a multivalued generalized 𝐼-almost contraction if
there exists a function 𝛼 : [0,∞) → [0, 1) satisfying
lim sup

𝑟→ 𝑡
+𝛼(𝑟) < 1 for every 𝑡 ∈ [0,∞) such that

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑑 (𝐼𝑥, 𝐼𝑦)) 𝑑 (𝐼𝑥, 𝐼𝑦) + 𝐿𝑑 (𝐼𝑦, 𝑇𝑥) ,

∀ 𝑥, 𝑦 ∈ 𝑋.

(I-gmac)

Remark 11. Amultivalued mapping 𝑇 : 𝑋 → 𝐶𝑙(𝑋) is called
a multivalued 𝐼-Zamfirescu (I-mzc) operator if it satisfies at
least one of the conditions (i), (ii), and (iii).

We have used following Cantor’s intersection theorem in
our results.

Theorem 12. Let 𝑋 be a compact space, and let 𝐶
1
⊃ 𝐶
2
⊃

𝐶
3
⋅ ⋅ ⋅ be a nested chain of nonempty closed subsets of𝑋. Then,

∩ 𝐶
𝑛

̸= 𝜙.

3. Main Results

Lemma 13. Let (𝑋, 𝑑) be a 𝑏-metric space with the 𝑏-metric as
a continuous functional. Let 𝐼 : 𝑋 → 𝑋 be a single-valued
mapping such that 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦) for all 𝑥, 𝑦 ∈ 𝑋, where
𝑟 > 0 is a constant. If 𝑇 : 𝑋 → 𝐶𝑙(𝑋) satisfies (I-mc) with
𝑟𝛼𝑏
2
< 1, then

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀 (1 + 𝑏)

𝑟 (1 − 𝛼𝑏2)
, ∀𝜀 > 0. (5)

Proof. For any 𝑥, 𝑦 ∈ 𝐸
𝜀
(𝐼, 𝑇), we have

𝑑 (𝐼𝑥, 𝐼𝑦) = 𝐻 ({𝐼𝑥} , {𝐼𝑦})

≤ 𝑏 [𝐻 ({𝐼𝑥} , 𝑇𝑥) + 𝐻 (𝑇𝑥, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
[𝐻 (𝑇𝑥, 𝑇𝑦) + 𝐻 (𝑇𝑦, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
𝐻(𝑇𝑥, 𝑇𝑦) + 𝑏

2
𝜀

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝛼𝑏

2
𝑑 (𝐼𝑥, 𝐼𝑦) .

(6)

So,

𝑑 (𝐼𝑥, 𝐼𝑦) ≤
𝑏𝜀 (1 + 𝑏)

1 − 𝛼𝑏2
. (7)

Since 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦), we have

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀 (1 + 𝑏)

𝑟 (1 − 𝛼𝑏2)
, ∀𝜀 > 0. (8)

Lemma 14. Let (𝑋, 𝑑) be a 𝑏-metric space with the 𝑏-metric
as a continuous functional. Let 𝐼 : 𝑋 → 𝑋 be a continuous
single-valued mapping. If 𝑇 : 𝑋 → 𝐶𝑙(𝑋) is a lower
semicontinuous multivalued mapping. Then, for each 𝜀 >

0, 𝐸
𝜀
(𝐼, 𝑇) is closed.

Proof. Theproof follows fromLemma 16 ofHussain et al. [11].

Theorem 15. Let (X, d) be a complete 𝑏-metric space with
the 𝑏-metric as a continuous functional. Let 𝐼 : 𝑋 → 𝑋

be a continuous single-valued mapping such that 𝑟𝑑(𝑥, 𝑦) ≤

𝑑(𝐼𝑥, 𝐼𝑦), where 𝑟 > 0 is a constant. Let 𝑇 : 𝑋 → 𝐶𝑙(𝑋) be
a lower semicontinuous map satisfying (I-mc). Then, 𝐼 and 𝑇

have a unique endpoint if and only if 𝐼 and 𝑇 have the AEPP.

Proof. It is clear that if 𝐼 and 𝑇 have an endpoint, then 𝐼 and
𝑇 have the AEPP.

Then,

𝐶
𝑛
= {𝑥 ∈ 𝑋 : sup

𝑦∈𝑇𝑥

𝑑 (𝐼𝑥, 𝑦) ≤
1

𝑛
} ̸= 𝜙, ∀𝑛 ∈ 𝑁. (9)

Also, we have for each 𝑛 ∈ 𝑁, 𝐶
𝑛
⊇ 𝐶
𝑛+1

. By Lemma 14, 𝐶
𝑛

is closed for each 𝑛 ∈ 𝑁. Since 𝐼 and 𝑇 satisfy AEPP, then
𝐶
𝑛

̸= 𝜙 for each 𝑛 ∈ 𝑁. Now, we show that lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0.

To show this, let 𝑥, 𝑦 ∈ 𝐶
𝑛
. Then, from Lemma 13,

𝛿 (𝐶
𝑛
) = 𝛿 (𝐸

1/𝑛 (𝐼, 𝑇)) ≤
𝑏 (1 + 𝑏) (1/𝑛)

𝑟 (1 − 𝛼 𝑏2)
(10)

and so lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0. It follows from the Cantor

intersection theorem that

⋂

𝑛∈𝑁

𝐶
𝑛
= {𝑥
0
} . (11)

Thus, 𝑥
0
is the unique endpoint of 𝐼 and 𝑇.

Lemma 16. Let (𝑋, 𝑑) be a 𝑏-metric space with the 𝑏-metric as
a continuous functional. Let 𝐼 : 𝑋 → 𝑋 be a single-valued
mapping such that 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦) for all 𝑥, 𝑦 ∈ 𝑋, where
𝑟 > 0 is a constant. If 𝑇 : 𝑋 → 𝐶𝑙(𝑋) satisfies (I-mkc), then

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀

𝑟
(1 + 𝑏 + 2𝛽𝑏) , ∀𝜀 > 0. (12)

Proof. For any 𝑥, 𝑦 ∈ 𝐸
𝜀
(𝐼, 𝑇), we have

𝑑 (𝐼𝑥, 𝐼𝑦) = 𝐻 ({𝐼𝑥} , {𝐼𝑦})

≤ 𝑏 [𝐻 ({𝐼𝑥} , 𝑇𝑥) + 𝐻 (𝑇𝑥, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
[𝐻 (𝑇𝑥, 𝑇𝑦) + 𝐻 (𝑇𝑦, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
𝐻(𝑇𝑥, 𝑇𝑦) + 𝑏

2
𝜀

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑏
2
𝛽 [𝑑 (𝐼𝑥, 𝑇𝑥) + 𝑑 (𝐼𝑦, 𝑇𝑦)]

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑏
2
2𝛽𝜀

≤ 𝑏𝜀 (1 + 𝑏 + 2𝛽𝑏) .

(13)

So,

𝑑 (𝐼𝑥, 𝐼𝑦) ≤ 𝑏𝜀 (1 + 𝑏 + 2𝛽𝑏) . (14)

Since 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦), we have

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀

𝑟
(1 + 𝑏 + 2𝛽𝑏) , ∀𝜀 > 0. (15)
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Theorem 17. Let (𝑋, 𝑑) be a complete 𝑏-metric space with
the 𝑏-metric as a continuous functional. Let 𝐼 : 𝑋 → 𝑋

be a continuous single-valued mapping such that 𝑟𝑑(𝑥, 𝑦) ≤

𝑑(𝐼𝑥, 𝐼𝑦), where 𝑟 > 0 is a constant. Let 𝑇 : 𝑋 → 𝐶𝑙(𝑋) be
a lower semicontinuous map satisfying (I-mkc). Then, 𝐼 and 𝑇
have a unique endpoint if and only if 𝐼 and 𝑇 have the AEPP.

Proof. It is clear that if 𝐼 and 𝑇 have an endpoint, then 𝐼 and
𝑇 have AEPP. Then,

𝐶
𝑛
= {𝑥 ∈ 𝑋 : sup

𝑦∈𝑇𝑥

𝑑 (𝐼𝑥, 𝑦) ≤
1

𝑛
} ̸= 𝜙, ∀𝑛 ∈ 𝑁. (16)

Also, we have for each 𝑛 ∈ 𝑁, 𝐶
𝑛
⊇ 𝐶
𝑛+1

. By Lemma 14, 𝐶
𝑛

is closed for each 𝑛 ∈ 𝑁. Since 𝐼 and 𝑇 satisfy AEPP, then
𝐶
𝑛

̸= 𝜙 for each 𝑛 ∈ 𝑁. Now, we show that lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0.

To show this, let 𝑥, 𝑦 ∈ 𝐶
𝑛
. Then, from Lemma 16,

𝛿 (𝐶
𝑛
) = 𝛿 (𝐸

1/𝑛 (𝐼, 𝑇)) ≤
𝑏 (1/𝑛)

𝑟
(1 + 𝑏 + 2𝛽𝑏) (17)

and so lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0. It follows from the Cantor

intersection theorem that

⋂

𝑛∈𝑁

𝐶
𝑛
= {𝑥
0
} . (18)

Thus, 𝑥
0
is the unique endpoint of 𝐼 and 𝑇.

Lemma 18. Let (𝑋, 𝑑) be a 𝑏-metric space with the 𝑏-metric as
a continuous functional. Let 𝐼 : 𝑋 → 𝑋 be a single-valued
mapping such that 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦) for all 𝑥, 𝑦 ∈ 𝑋, where
𝑟 > 0 is a constant. If 𝑇 : 𝑋 → 𝐶𝑙(𝑋) satisfies (I-mcc) with
2𝑏
2
𝑟𝛾 < 1, then

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀 (1 + 𝑏 + 2𝛾𝑏)

𝑟 (1 − 2𝑏2𝛾)
, ∀𝜀 > 0. (19)

Proof. For any 𝑥, 𝑦 ∈ 𝐸
𝜀
(𝐼, 𝑇), we have

𝑑 (𝐼𝑥, 𝐼𝑦) = 𝐻 ({𝐼𝑥} , {𝐼𝑦})

≤ 𝑏 [𝐻 ({𝐼𝑥} , 𝑇𝑥) + 𝐻 (𝑇𝑥, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
[𝐻 (𝑇𝑥, 𝑇𝑦) + 𝐻 (𝑇𝑦, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
𝐻(𝑇𝑥, 𝑇𝑦) + 𝑏

2
𝜀

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑏
2
𝛾 [𝑑 (𝐼𝑥, 𝑇𝑦) + 𝑑 (𝐼𝑦, 𝑇𝑥)]

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑏
2
𝛾 [𝑑 (𝐼𝑥, 𝐼𝑦) + 𝑑 (𝐼𝑦, 𝑇𝑦)]

+ 𝑏
2
𝛾 [𝑑 (𝐼𝑦, 𝐼𝑥) + 𝑑 (𝐼𝑥, 𝑇𝑥)]

= 𝑏𝜀 + 𝑏
2
𝜀 + 𝑏
2
𝛾 [𝐻 ({𝐼𝑥} , {𝐼𝑦}) + 𝐻 ({𝐼𝑦} , 𝑇𝑦)]

+ 𝑏
2
𝛾 [𝐻 ({𝐼𝑦} , {𝐼𝑥}) + 𝐻 ({𝐼𝑥} , 𝑇𝑥)]

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 2𝑏

2
𝛾𝐻 ({𝐼𝑥} , {𝐼𝑦}) + 2𝑏

2
𝛾𝜀

= 𝑏𝜀 + 𝑏
2
𝜀 + 2𝑏

2
𝛾𝑑 (𝐼𝑥, 𝐼𝑦) + 2𝑏

2
𝛾𝜀

≤
𝑏𝜀 (1 + 𝑏 + 2𝛾 𝑏)

1 − 2𝑏2 𝛾
.

(20)

So,

𝑑 (𝐼𝑥, 𝐼𝑦) ≤
𝑏𝜀 (1 + 𝑏 + 2𝛾𝑏)

1 − 2𝑏2𝛾
. (21)

Since 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦), we have

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀 (1 + 𝑏 + 2𝛾𝑏)

𝑟 (1 − 2𝑏2𝛾)
, ∀𝜀 > 0. (22)

Theorem 19. Let (𝑋, 𝑑) be a complete 𝑏-metric space with
the 𝑏-metric as a continuous functional. Let 𝐼 : 𝑋 → 𝑋

be a continuous single-valued mapping such that 𝑟𝑑(𝑥, 𝑦) ≤

𝑑(𝐼𝑥, 𝐼𝑦), where 𝑟 > 0 is a constant. Let 𝑇 : 𝑋 → 𝐶𝑙(𝑋) be
a lower semicontinuous map satisfying (I-mcc). Then, 𝐼 and 𝑇
have a unique endpoint if and only if 𝐼 and 𝑇 have the AEPP.

Proof. It is clear that if 𝐼 and 𝑇 have an endpoint, then 𝐼 and
𝑇 have the AEPP.

Then,

𝐶
𝑛
= {𝑥 ∈ 𝑋 : sup

𝑦∈𝑇𝑥

𝑑 (𝐼𝑥, 𝑦) ≤
1

𝑛
} ̸= 𝜙, ∀𝑛 ∈ 𝑁. (23)

Also, we have for each 𝑛 ∈ 𝑁, 𝐶
𝑛
⊇ 𝐶
𝑛+1

. By Lemma 14, 𝐶
𝑛

is closed for each 𝑛 ∈ 𝑁. Since 𝐼 and 𝑇 satisfy AEPP, then
𝐶
𝑛

̸= 𝜙 for each 𝑛 ∈ 𝑁. Now, we show that lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0.

To show this, let 𝑥, 𝑦 ∈ 𝐶
𝑛
. Then, from Lemma 18,

𝛿 (𝐶
𝑛
) = 𝛿 (𝐸

1/𝑛 (𝐼, 𝑇)) ≤
𝑏 (1/𝑛) (1 + 𝑏 + 2𝛾𝑏)

𝑟 (1 − 2𝑏2𝛾)
(24)

and so lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0. It follows from the Cantor

intersection theorem that

⋂

𝑛∈𝑁

𝐶
𝑛
= {𝑥
0
} . (25)

Thus, 𝑥
0
is the unique endpoint of 𝐼 and 𝑇.

Lemma 20. Let (𝑋, 𝑑) be a 𝑏-metric space with the 𝑏-metric
as a continuous functional. Let 𝐼 : 𝑋 → 𝑋 be a single-valued
mapping such that 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦) for all 𝑥, 𝑦 ∈ 𝑋, where
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𝑟 > 0 is a constant. If 𝑇 : 𝑋 → 𝐶𝑙(𝑋) satisfies (I-mzc)
with 𝛿 = max{𝛼, 𝛽𝑏/(1 − 𝛽𝑏

2
), 𝛽(1 + 𝑏

2
)/2(1 − 𝛽𝑏

2
), 𝛾𝑏/(1 −

𝛾𝑏)}, 𝑟𝛿 < 1, then

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀 (1 + 𝑏 + 2𝛿𝑏)

𝑟 (1 − 𝛿)
, ∀𝜀 > 0. (26)

Proof. Suppose that 𝑇 satisfies (I-mkc), then we have

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛽 [𝑑 (𝐼𝑥, 𝑇𝑥) + 𝑑 (𝐼𝑦, 𝑇𝑦)]

≤ 𝛽 [𝐻 (𝐼𝑥, 𝑇𝑥) + 𝐻 (𝐼𝑦, 𝑇𝑦)]

≤ 𝛽𝐻 (𝐼𝑥, 𝑇𝑥) + 𝛽𝑏𝐻 (𝐼𝑦, 𝐼𝑥) + 𝛽𝑏𝐻 (𝐼𝑥, 𝑇𝑦)

≤ 𝛽𝐻 (𝐼𝑥, 𝑇𝑥) + 𝛽𝑏𝐻 (𝐼𝑦, 𝐼𝑥)

+ 𝛽𝑏
2
𝐻(𝐼𝑥, 𝑇𝑥) + 𝛽𝑏

2
𝐻(𝑇𝑥, 𝑇𝑦)

≤ (𝛽 + 𝛽𝑏
2
)𝐻 (𝐼𝑥, 𝑇𝑥)

+ 𝛽𝑏𝑑 (𝐼𝑦, 𝐼𝑥) + 𝛽𝑏
2
𝐻(𝑇𝑥, 𝑇𝑦) .

(27)

So, we have

𝐻(𝑇𝑥, 𝑇𝑦) ≤

(𝛽 + 𝛽𝑏
2
)

1 − 𝛽𝑏2
𝐻(𝐼𝑥, 𝑇𝑥) +

𝛽𝑏

1 − 𝛽𝑏2
𝑑 (𝐼𝑥, 𝐼𝑦) .

(28)

If 𝑇 satisfies (I-mcc), then we have

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛾 [𝑑 (𝐼𝑥, 𝑇𝑦) + 𝑑 (𝐼𝑦, 𝑇𝑥)]

≤ 𝛾 [𝐻 (𝐼𝑥, 𝑇𝑦) + 𝐻 (𝐼𝑦, 𝑇𝑥)]

≤ 𝛾𝑏 [𝐻 (𝐼𝑥, 𝑇𝑥) + 𝐻 (𝑇𝑥, 𝑇𝑦)]

+ 𝛾𝑏 [𝐻 (𝐼𝑦, 𝐼𝑥) + 𝐻 (𝐼𝑥, 𝑇𝑥)]

≤ 2𝛾𝑏𝐻 (𝐼𝑥, 𝑇𝑥) + 𝛾𝑏𝑑 (𝐼𝑥, 𝐼𝑦)

+ 𝛾𝑏𝐻 (𝑇𝑥, 𝑇𝑦)𝐻 (𝑇𝑥, 𝑇𝑦)

≤
2𝛾𝑏

1 − 𝛾 𝑏
𝐻 (𝐼𝑥, 𝑇𝑥) +

𝛾𝑏

1 − 𝛾 𝑏
𝑑 (𝐼𝑥, 𝐼𝑦) .

(29)

Let 𝛿 = max{𝛼, (𝛽𝑏)/(1 − 𝛽𝑏
2
), (𝛽(1 + 𝑏

2
))/(2(1 − 𝛽𝑏

2
)),

(𝛾𝑏)/(1 − 𝛾𝑏)}. Then,

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 2𝛿𝐻 (𝐼𝑥, 𝑇𝑥) + 𝛿𝑑 (𝐼𝑥, 𝐼𝑦) . (30)

Thus, for any 𝑥, 𝑦 ∈ 𝐸
𝜀
(𝐼, 𝑇), we have

𝑑 (𝐼𝑥, 𝐼𝑦) = 𝐻 ({𝐼𝑥} , {𝐼𝑦})

≤ 𝑏 [𝐻 ({𝐼𝑥} , 𝑇𝑥) + 𝐻 (𝑇𝑥, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
[𝐻 (𝑇𝑥, 𝑇𝑦) + 𝐻 (𝑇𝑦, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
𝐻(𝑇𝑥, 𝑇𝑦) + 𝑏

2
𝜀

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑏
2
2𝛿𝑑 (𝐼𝑥, 𝑇𝑥) + 𝛿𝑑 (𝐼𝑥, 𝐼𝑦)

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑏
2
2𝛿𝜀 + 𝛿𝑑 (𝐼𝑥, 𝐼𝑦) .

(31)

So,

𝑑 (𝐼𝑥, 𝐼𝑦) ≤
𝑏𝜀 (1 + 𝑏 + 2𝛿𝑏)

1 − 𝛿
. (32)

Since 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦), we have

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀 (1 + 𝑏 + 2𝛿𝑏)

𝑟 (1 − 𝛿)
, ∀𝜀 > 0. (33)

Theorem 21. Let (𝑋, 𝑑) be a complete 𝑏-metric space with
the 𝑏-metric as a continuous functional. Let 𝐼 : 𝑋 → 𝑋

be a continuous single-valued mapping such that 𝑟𝑑(𝑥, 𝑦) ≤

𝑑(𝐼𝑥, 𝐼𝑦), where 𝑟 > 0 is a constant. Let 𝑇 : 𝑋 → 𝐶𝑙(𝑋) be
a lower semicontinuous map satisfying (I-mzc). Then, 𝐼 and 𝑇

have a unique endpoint if and only if 𝐼 and 𝑇 have the AEPP.

Proof. It is clear that if 𝐼 and 𝑇 have an endpoint, then 𝐼 and
𝑇 have the AEPP. Then,

𝐶
𝑛
= {𝑥 ∈ 𝑋 : sup

𝑦∈𝑇𝑥

𝑑 (𝐼𝑥, 𝑦) ≤
1

𝑛
} ̸= 𝜙, ∀𝑛 ∈ 𝑁. (34)

Further, we have for each 𝑛 ∈ 𝑁, 𝐶
𝑛
⊇ 𝐶
𝑛+1

. By Lemma 14,
𝐶
𝑛
is closed for each 𝑛 ∈ 𝑁. Since 𝐼 and 𝑇 satisfy AEPP, then

𝐶
𝑛

̸= 𝜙 for each 𝑛 ∈ 𝑁. Now, we show that lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0.

To show this, let 𝑥, 𝑦 ∈ 𝐶
𝑛
. Then, from Lemma 20,

𝛿 (𝐶
𝑛
) = 𝛿 (𝐸

1/𝑛 (𝐼, 𝑇)) ≤
𝑏 (1/𝑛) (1 + 𝑏 + 2𝛿𝑏)

𝑟 (1 − 𝛿)
. (35)

and so lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0. It follows from the Cantor

intersection theorem that
⋂

𝑛∈𝑁

𝐶
𝑛
= {𝑥
0
} . (36)

Thus, 𝑥
0
is the unique endpoint of 𝐼 and 𝑇.

Lemma 22. Let (𝑋, 𝑑) be a 𝑏-metric space with the 𝑏-metric
as a continuous functional. Let 𝐼 : 𝑋 → 𝑋 be a single-valued
mapping such that 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦) for all 𝑥, 𝑦 ∈ 𝑋, where
𝑟 > 0 is a constant. If 𝑇 : 𝑋 → 𝐶𝑙(𝑋) satisfies (I-mqc) with
𝑘 < 1/(𝑟(𝑏

2
+ 𝑏)), then

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀 (1 + 𝑏 + 𝑘𝑏)

𝑟 (1 − 𝑘𝑏2)
, ∀𝜀 > 0. (37)

Proof. For any 𝑥, 𝑦 ∈ 𝐸
𝜀
(𝐼, 𝑇), we have

𝑑 (𝐼𝑥, 𝐼𝑦) = 𝐻 ({𝐼𝑥} , {𝐼𝑦})

≤ 𝑏 [𝐻 ({𝐼𝑥} , 𝑇𝑥) + 𝑑 (𝑇𝑥, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
[𝐻 (𝑇𝑥, 𝑇𝑦) + 𝐻 (𝑇𝑦, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
𝐻(𝑇𝑥, 𝑇𝑦) + 𝑏

2
𝜀

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑘𝑏

2

⋅max {𝑑 (𝐼𝑥, 𝐼𝑦) , 𝑑 (𝐼𝑥, 𝑇𝑥) , 𝑑 (𝐼𝑦, 𝑇𝑦) ,
𝑑 (𝐼𝑥, 𝑇𝑦) , 𝑑 (𝐼𝑦, 𝑇𝑥)}

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑘𝑏

2
{𝑑 (𝐼𝑥, 𝐼𝑦) + 𝜀} .

(38)



6 ISRNMathematical Analysis

So,

𝑑 (𝐼𝑥, 𝐼𝑦) ≤
𝑏𝜀 (1 + 𝑏 + 𝑘𝑏)

1 − 𝑘𝑏2
. (39)

Since 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦), we have

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀 (1 + 𝑏 + 𝑘𝑏)

𝑟 (1 − 𝑘𝑏2)
, ∀𝜀 > 0. (40)

Theorem 23. Let (𝑋, 𝑑) be a complete 𝑏-metric space with
the 𝑏-metric as a continuous functional. Let 𝐼 : 𝑋 → 𝑋

be a continuous single-valued mapping such that 𝑟𝑑(𝑥, 𝑦) ≤

𝑑(𝐼𝑥, 𝐼𝑦), where 𝑟 > 0 is a constant. Let 𝑇 : 𝑋 → 𝐶𝑙(𝑋) be
a lower semicontinuous map satisfying (I-mqc). Then, 𝐼 and 𝑇
have a unique endpoint if and only if 𝐼 and 𝑇 have the AEPP.

Proof. It is clear that if 𝐼 and 𝑇 have an endpoint, then 𝐼 and
𝑇 have the AEPP.

Then,

𝐶
𝑛
= {𝑥 ∈ 𝑋 : sup

𝑦∈𝑇𝑥

𝑑 (𝐼𝑥, 𝑦) ≤
1

𝑛
} ̸= 𝜙, ∀𝑛 ∈ 𝑁. (41)

Also, it is clear that, for each 𝑛 ∈ 𝑁, 𝐶
𝑛

⊇ 𝐶
𝑛+1

. By the
above Lemma 14, 𝐶

𝑛
is closed for each 𝑛 ∈ 𝑁. Since 𝐼 and

𝑇 satisfy AEPP, then 𝐶
𝑛

̸= 𝜙 for each 𝑛 ∈ 𝑁. Now, we show
that lim

𝑛→∞
𝛿(𝐶
𝑛
) = 0. To show this, let 𝑥, 𝑦 ∈ 𝐶

𝑛
. Then,

from Lemma 22,

𝛿 (𝐶
𝑛
) = 𝛿 (𝐸

1/𝑛 (𝐼, 𝑇)) ≤
𝑏 (1/𝑛) (1 + 𝑏 + 𝑘𝑏)

𝑟 (1 − 𝑘𝑏2)
(42)

and so lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0. It follows from the Cantor

intersection theorem that

⋂

𝑛∈𝑁

𝐶
𝑛
= {𝑥
0
} . (43)

Thus, 𝑥
0
is the unique endpoint of 𝐼 and 𝑇.

Lemma 24. Let (𝑋, 𝑑) be a 𝑏-metric space and 𝐼 : 𝑋 → 𝑋

a single-valued mapping such that 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦) for all
𝑥, 𝑦 ∈ 𝑋, where 𝑟 > 0 is a constant. If𝑇 : 𝑋 → 𝐶𝑙(𝑋) satisfies
(I-mac) with 𝑟𝑏

2
(𝛼 + 𝑏𝐿) < 1, then

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀 (1 + 𝑏 + 𝐿𝑏
2
)

𝑟 (1 − 𝑏2 (𝛼 + 𝑏𝐿))
, ∀𝜀 > 0. (44)

Proof. For any 𝑥, 𝑦 ∈ 𝐸
𝜀
(𝐼, 𝑇), we have

𝑑 (𝐼𝑥, 𝐼𝑦) = 𝐻 ({𝐼𝑥} , {𝐼𝑦})

≤ 𝑏 [𝐻 ({𝐼𝑥} , 𝑇𝑥) + 𝑑 (𝑇𝑥, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
[𝐻 (𝑇𝑥, 𝑇𝑦) + 𝐻 (𝑇𝑦, {𝐼𝑦})]

≤ 𝑏𝜀 + 𝑏
2
𝐻(𝑇𝑥, 𝑇𝑦) + 𝑏

2
𝜀

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑏
2
[𝛼𝑑 (𝐼𝑥, 𝐼𝑦) + 𝐿𝑑 (𝐼𝑦, 𝑇𝑥)]

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑏
2
𝛼𝑑 (𝐼𝑥, 𝐼𝑦)

+ 𝑏
3
𝐿 [𝑑 (𝐼𝑥, 𝐼𝑦) + 𝑑 (𝐼𝑥, 𝑇𝑥)]

≤ 𝑏𝜀 + 𝑏
2
𝜀 + 𝑏
2
𝛼𝑑 (𝐼𝑥, 𝐼𝑦)

+ 𝑏
3
𝐿𝑑 (𝐼𝑥, 𝐼𝑦) + 𝑏

3
𝐿𝜀

≤ 𝑏𝜀 (1 + 𝑏 + 𝐿𝑏
2
) + 𝑏
2
(𝛼 + 𝑠𝐿) 𝑑 (𝐼𝑥, 𝐼𝑦) .

(45)

So,

𝑑 (𝐼𝑥, 𝐼𝑦) ≤

𝑏𝜀 (1 + 𝑏 + 𝐿𝑏
2
)

1 − 𝑏2 (𝛼 + 𝑏𝐿)
. (46)

Since 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦), we have

𝛿 (𝐸
𝜀 (𝐼, 𝑇)) ≤

𝑏𝜀 (1 + 𝑏 + 𝐿𝑏
2
)

𝑟 (1 − 𝑏2 (𝛼 + 𝑏𝐿))
, ∀𝜀 > 0. (47)

Theorem 25. Let (𝑋, 𝑑) be a complete 𝑏-metric space with
the 𝑏-metric as a continuous functional. Let 𝐼 : 𝑋 → 𝑋

be a continuous single-valued mapping such that 𝑟𝑑(𝑥, 𝑦) ≤

𝑑(𝐼𝑥, 𝐼𝑦), where 𝑟 > 0 is a constant. Let 𝑇 : 𝑋 → 𝐶𝑙(𝑋) be
a lower semicontinuous map satisfying (I-mac).Then, 𝐼 and 𝑇
have a unique endpoint if and only if 𝐼 and 𝑇 have the AEPP.

Proof. It is clear that if 𝐼 and 𝑇 have an endpoint, then 𝐼 and
𝑇 have the AEPP. Then,

𝐶
𝑛
= {𝑥 ∈ 𝑋 : sup

𝑦∈𝑇𝑥

𝑑 (𝐼𝑥, 𝑦) ≤
1

𝑛
} ̸= 𝜙, ∀𝑛 ∈ 𝑁. (48)

Also, we have for each 𝑛 ∈ 𝑁, 𝐶
𝑛
⊇ 𝐶
𝑛+1

. By Lemma 14, 𝐶
𝑛

is closed for each 𝑛 ∈ 𝑁. Since 𝐼 and 𝑇 satisfy AEPP, then
𝐶
𝑛

̸= 𝜙 for each 𝑛 ∈ 𝑁. Now, we show that lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0.

To show this, let 𝑥, 𝑦 ∈ 𝐶
𝑛
. Then, from Lemma 24,

𝛿 (𝐶
𝑛
) = 𝛿 (𝐸

1/𝑛 (𝐼, 𝑇)) ≤

𝑏 (1/𝑛) (1 + 𝑏 + 𝐿𝑏
2
)

𝑟 (1 − 𝑏2 (𝛼 + 𝑏𝐿))

(49)

and so lim
𝑛→∞

𝛿(𝐶
𝑛
) = 0. It follows from the Cantor

intersection theorem that

⋂

𝑛∈𝑁

𝐶
𝑛
= {𝑥
0
} . (50)

Thus, 𝑥
0
is the unique endpoint of 𝐼 and 𝑇.
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On putting 𝑏 = 1 in the aboveTheorem 25, we obtain the
following result of [11].

Corollary 26 (see [11]). Let (𝑋, 𝑑) be a complete metric space.
Let 𝐼 : 𝑋 → 𝑋 be a continuous single-valued mapping such
that 𝑟𝑑(𝑥, 𝑦) ≤ 𝑑(𝐼𝑥, 𝐼𝑦), where 𝑟 > 0 is a constant. Let
𝑇 : 𝑋 → 𝐶𝑙(𝑋) be a lower semicontinuous map satisfying
(I-mac). Then, 𝐼 and 𝑇 have a unique endpoint if and only if 𝐼
and 𝑇 have the AEPP.

If 𝐼 is the identitymapping on𝑋 and 𝑏 = 1, then the above
result reduces to the following results:

Corollary 27 (see [11, Corollary 3.5]). Let (𝑋, 𝑑) be a metric
space, and let 𝑇 : 𝑋 → 𝐶𝑙(𝑋) satisfy (I-mac) with 𝛼 + 𝐿 < 1.
Then, for each 𝜀 > 0,

𝛿 (𝐸
𝜀 (𝑇)) ≤

𝜀 (2 + 𝐿)

1 − (𝛼 + 𝐿)
, (51)

where 𝐸
𝜀
(𝑇) = {𝑥 ∈ 𝑋 : sup

𝑦∈𝑇𝑥
𝑑(𝑥, 𝑦) ≤ 𝜀}.

Corollary 28 (see [11, Corollary 3.6]). Let (𝑋, 𝑑) be a complete
metric space. Let 𝑇 : 𝑋 → 𝐶𝑙(𝑋) be a lower semicontinuous
map satisfying (I-mac) with 𝛼 + 𝐿 < 1. Then, 𝑇 has a unique
endpoint if and only if 𝑇 has the AEPP.

If 𝐿 = 0, in almost contraction, then we have following
result in metric space.

Corollary 29 ([10, Corollary 2.2]). Let (𝑋, 𝑑) be a complete
metric space. Let 𝑇 : 𝑋 → 𝐶𝑙(𝑋) satisfy (mc). Then, 𝑇 has a
unique endpoint if and only if 𝑇 has the AEPP.
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