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The main objective of the present paper is to investigate some interesting properties on convolution and generalized convolution
of functions for the classes 𝑅(𝑛, 𝛼) and 𝑅(𝑛, 𝛼). Our results improve the results of previous authors.

1. Introduction

Let 𝐴 denote the class of functions 𝑓 of the form

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑘=2

𝑎
𝑘
𝑧
𝑘

, (1)

which are analytic in the open unit disk 𝑈 = {𝑧 : 𝑧 ∈ 𝐶
and |𝑧| < 1} and satisfy the normalization condition 𝑓(0) =
𝑓
󸀠

(0)−1 = 0. Let 𝑆 be the subclass of𝐴 consisting of functions
of the form (1) which are also univalent in 𝑈. Further, 𝑇
denote the subclass of 𝐴 consisting of functions 𝑓(𝑧) of the
form

𝑓 (𝑧) = 𝑧 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘

. (2)

Now for 0 ≤ 𝛼 < 1, 𝑛 ∈ 𝑁 = {1, 2, 3, . . .}, and 𝑧 ∈ 𝑈,
suppose that 𝑅(𝑛, 𝛼) denotes the family of analytic univalent
functions 𝑓 of the form (1) such that

Re{
𝐷
𝑛

𝑓 (𝑧)

𝑧
} > 𝛼, (3)

where 𝐷𝑛 stands for the Salagean operator introduced by
Salagean in [1].

Further, let the subclass 𝑅(𝑛, 𝛼) consist of functions 𝑓 in
𝑅(𝑛, 𝛼) such that 𝑓(𝑧) is of the form (2).

Clearly, if 0 ≤ 𝛼
1
≤ 𝛼
2
< 1, then

𝑅 (𝑛, 𝛼
2
) ⊆ 𝑅 (𝑛, 𝛼

1
) , (4)

and for𝑚, 𝑛 ∈ 𝑁, such that𝑚 ≥ 𝑛, then
𝑅 (𝑚, 𝛼) ⊆ 𝑅 (𝑛, 𝛼) . (5)

TheHadamard product of two functions𝑓(𝑧) of the form
(1) and 𝑔(𝑧) is of the form

𝑔 (𝑧) = 𝑧 +

∞

∑

𝑘=2

𝑏
𝑘
𝑧
𝑘 (6)

as

(𝑓 ∗ 𝑔) (𝑧) = 𝑓 (𝑧) ∗ 𝑔 (𝑧) = 𝑧 +

∞

∑

𝑘=2

𝑎
𝑘
𝑏
𝑘
𝑧
𝑘

, (7)

and for the modified Hadamard product (quasi-convolution)
of two functions 𝑓(𝑧) of the form (2) and

𝑔 (𝑧) = 𝑧 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘

, (8)

we define their convolution as

(𝑓 ∗ 𝑔) (𝑧) = 𝑓 (𝑧) ∗ 𝑔 (𝑧) = 𝑧 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘𝑏𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘

. (9)

In the present paper, we obtain a number of results on
convolution and generalized convolution for the classes
𝑅(𝑛, 𝛼) and 𝑅(𝑛, 𝛼). It is worthy to note that our results are
quite new and not explored in the literature.

Hindawi Publishing Corporation
ISRN Mathematical Analysis
Volume 2014, Article ID 190898, 4 pages
http://dx.doi.org/10.1155/2014/190898

http://dx.doi.org/10.1155/2014/190898


2 ISRNMathematical Analysis

2. Main Results

We first mention a sufficient condition for the function 𝑓
of the form (1) belonging to the class 𝑅(𝑛, 𝛼) given by the
following result which can be established easily.

Theorem1. Let the function𝑓(𝑧) be given by (1). Furthermore,
let

∞

∑

𝑘=2

𝑘
𝑛 󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼, (10)

where 0 ≤ 𝛼 < 1 and 𝑛 ∈ 𝑁. Then 𝑓 ∈ 𝑅(𝑛, 𝛼).

In the following theorem, it is proved that the condition
(10) is also necessary for functions 𝑓(𝑧) of the form (2).

Theorem 2. Let 𝑓(𝑧) be given by (2). Then 𝑓 ∈ 𝑅(𝑛, 𝛼), if and
only if

∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1, (11)

where 0 ≤ 𝛼 < 1 and 𝑛 ∈ 𝑁.

Proof. The if part follows fromTheorem 1, so we only need to
prove the “only if ” part of the theorem. To this end, for
functions 𝑓 of the form (2), we notice that the condition

Re{
𝐷
𝑛

𝑓 (𝑧)

𝑧
} > 𝛼 (12)

is equivalent to

Re{1 −
∞

∑

𝑘=2

𝑘
𝑛 󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−1

} > 𝛼. (13)

The above required condition must hold for all values of
𝑧 in𝑈. Upon choosing the values of 𝑧 on the positive real axis
and making 𝑧 → 1−, we must have

1 −

∞

∑

𝑘=2

𝑘
𝑛 󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≥ 𝛼 (14)

which is the required condition.

Several authors such as [2–6] studied the convolution
properties for the functions with negative as well as positive
coefficients only. Their results do not say anything for the
function of the form (1). It is therefore natural to ask whether
their results can be improved for function of the form (1).
In our next theorem, we establish a result on convolution
which improves the results of previous authors [2–6] to the
case when 𝑓 is of the form (1). It is worth mentioning that
the technique employed by us is entirely different from the
previous authors. For this, we will require the following
definition and lemmas.

Definition 3. A sequence {𝑐
𝑘
}
∞

0
of nonnegative numbers is

said to be a convex null sequence if 𝑐
𝑘
→ 0 as 𝑘 → ∞ and

𝑐
0
− 𝑐
1
≥ 𝑐
1
− 𝑐
2
≥ ⋅ ⋅ ⋅ ≥ 𝑐

𝑘
− 𝑐
𝑘+1
≥ ⋅ ⋅ ⋅ ≥ 0. (15)

Lemma 4. Let {𝑐
𝑘
}
∞

0
be a convex null sequence.Then the func-

tion

𝑞
1
(𝑧) =

𝑐
0

2
+

∞

∑

𝑘=1

𝑐
𝑘
𝑧
𝑘 (16)

is analytic in 𝑈 and Re 𝑞
1
(𝑧) > 0, 𝑧 ∈ 𝑈.

Lemma5. Let𝑃(𝑧) be analytic in𝑈,𝑃(0) = 1, andRe{𝑃(𝑧)} >
(1/2) in 𝑈. For functions 𝐹 analytic in 𝑈, the convolution
function 𝑃 ∗ 𝐹 takes values in the convex hull of the image on
𝑈 under 𝐹.

Lemma 4 is due to Fejér [7]. The assertion of Lemma 5
readily follows by using the Herglotz representation for 𝑃(𝑧).

Lemma 6. For 0 ≤ 𝛼 < 1, 𝑛 ∈ 𝑁 − {1}, let 𝑓(𝑧) ∈ 𝑅(𝑛, 𝛼).
Then

Re{
𝑓 (𝑧)

𝑧
} >
1

2
, 𝑧 ∈ 𝑈. (17)

Proof. Let 𝑓(𝑧) be given by (1). Since 𝑓(𝑧) ∈ 𝑅(𝑛, 𝛼), hence,
by definition

Re{
𝐷
𝑛

𝑓 (𝑧)

𝑧
} > 𝛼, 𝑧 ∈ 𝑈, (18)

which is equivalent to

Re{1 − 𝛼 +
∞

∑

𝑘=2

𝑘
𝑛

𝑎
𝑘
𝑧
𝑘−1

} > 0, (19)

and hence,

Re{1 + 1
2

∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼
𝑎
𝑘
𝑧
𝑘−1

} >
1

2
. (20)

We observe that the sequence {𝑐
𝑘
}
∞

0
defined by 𝑐

0
= 1 and

𝑐
𝑘
= 2(1 −𝛼)/(𝑘 + 1)

𝑛, 𝑘 ≥ 1, 𝑛 ≥ 2, is a convex null sequence;
we have in view of Lemma 4 that

Re{1 + 2
∞

∑

𝑘=2

1 − 𝛼

𝑘𝑛
𝑎
𝑘
𝑧
𝑘−1

} >
1

2
. (21)

Now

𝑓 (𝑧)

𝑧
= [1 +

1

2

∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼
𝑎
𝑘
𝑧
𝑘−1

] ∗ [1 + 2

∞

∑

𝑘=2

1 − 𝛼

𝑘𝑛
𝑧
𝑘−1

]

(22)

and making use of (20), (21), and Lemma 5, we conclude that

Re{
𝑓 (𝑧)

𝑧
} >
1

2
. (23)

Theorem 7. If 𝑓(𝑧) = 𝑧 + ∑∞
𝑘=2
𝑎
𝑘
𝑧
𝑘

∈ 𝑅(𝑛, 𝛼) and 𝑔(𝑧) =
𝑧 + ∑

∞

𝑘=2
𝑏
𝑘
𝑧
𝑘

∈ 𝑅(𝑚, 𝛽), where 0 ≤ 𝛽 ≤ 𝛼 < 1, 𝑛 ∈ 𝑁, 𝑚 ∈
𝑁 − {1}, then so does their Hadamard product (convolution)

ℎ (𝑧) = (𝑓 ∗ 𝑔) (𝑧) = 𝑧 +

∞

∑

𝑘=2

𝑎
𝑘
𝑏
𝑘
𝑧
𝑘

∈ 𝑅 (𝑛, 𝛼) . (24)
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Proof. To prove that ℎ(𝑧) ∈ 𝑅(𝑛, 𝛼) we have to show that

Re{𝐷
𝑛

ℎ (𝑧)

𝑧
} > 𝛼, (25)

which is equivalent to

Re{1 − 𝛼 +
∞

∑

𝑘=2

𝑘
𝑛

𝑎
𝑘
𝑏
𝑘
𝑧
𝑘−1

} > 0 (26)

or

Re{1 + 1
2

∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼
𝑎
𝑘
𝑏
𝑘
𝑧
𝑘−1

} >
1

2
. (27)

Since 𝑓 ∈ 𝑅(𝑛, 𝛼) from (20) we have

Re{1 + 1
2

∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼
𝑎
𝑘
𝑧
𝑘−1

} >
1

2
(28)

and since 𝑔 ∈ 𝑅(𝑚, 𝛽), from Lemma 6, we have

Re{
𝑔 (𝑧)

𝑧
} >
1

2
(29)

or

Re{1 +
∞

∑

𝑘=2

𝑏
𝑘
𝑧
𝑘−1

} >
1

2
. (30)

From (28), (30), and Lemma 5 we immediately have (27).
This establishes the proof of Theorem 7.

In our next result we improve the results ofTheorem 7 for
functions of the form (2).

Theorem 8. Let the functions 𝑓(𝑧), 𝑔(𝑧) defined by (2), (8) be
in the classes 𝑅(𝑛, 𝛼), 𝑅(𝑚, 𝛽), respectively, where 𝑚, 𝑛 ∈ 𝑁,
0 ≤ 𝛽 < 1, and 0 ≤ 𝛼 < 1; then 𝑓 ∗ 𝑔 defined by (9) is in the
class 𝑅(𝑚 + 𝑛, 𝜂), where 𝜂 = 𝛼 + 𝛽 − 𝛼𝛽.

Proof. Since 𝑓(𝑧) ∈ 𝑅(𝑛, 𝛼), then, by Theorem 2, we have
∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1. (31)

Similarly, since 𝑔(𝑧) ∈ 𝑅(𝑚, 𝛽), we have
∞

∑

𝑘=2

𝑘
𝑚

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨 ≤ 1. (32)

Therefore, from (31), we have

𝑘
𝑛

1 − 𝛼

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1, 𝑘 = 2, 3, . . . .

(33)

Now, for the convolution function 𝑓 ∗ 𝑔 we have
∞

∑

𝑘=2

𝑘
𝑚+𝑛

1 − 𝜂

󵄨󵄨󵄨󵄨𝑎𝑘𝑏𝑘
󵄨󵄨󵄨󵄨 ≤

∞

∑

𝑘=2

𝑘
𝑚

1 − 𝛽

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨 , (using (33))

≤ 1, (using (32)) .

(34)

Thus, the proof of Theorem 8 is established.

Remark 9. From (4) and (5), we see that

𝑅 (𝑚 + 𝑛, 𝜂) ⊆ 𝑅 (𝑛, 𝛼) ,

𝑅 (𝑚 + 𝑛, 𝜂) ⊆ 𝑅 (𝑚, 𝛽) .

(35)

Thus, the result of Theorem 8 provides smaller class in
comparison to the class given byTheorem 7.

Theorem 10. Let the functions 𝑓
𝑖
(𝑧) defined as

𝑓
𝑖
(𝑧) = 𝑧 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘,𝑖
󵄨󵄨󵄨󵄨 𝑧
𝑘

, (36)

belong to the class 𝑅(𝑛
𝑖
, 𝛼
𝑖
) for every 𝑖 = 1, 2, . . . , 𝑞; then the

convolution 𝑓
1
∗ 𝑓
2
∗ ⋅ ⋅ ⋅ 𝑓

𝑞
belongs to the class 𝑅(∑𝑞

𝑖=1
𝑛
𝑖
, 𝜖),

where 𝜖 = 1 − ∏𝑞
𝑖=1
(1 − 𝛼

𝑖
).

Proof. Theproof of the above theorem is much akin to that of
Theorem 8. Hence, we omit the details involved.

For any real numbers 𝑝 and 𝑞, we define that the
generalized convolution for functions 𝑓(𝑧) and 𝑔(𝑧) is of the
form (2) and (8) as

(𝑓Δ𝑔) (𝑝, 𝑞; 𝑧) = 𝑧 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘,1
󵄨󵄨󵄨󵄨

𝑝󵄨󵄨󵄨󵄨𝑎𝑘,2
󵄨󵄨󵄨󵄨

𝑞

𝑧
𝑘

. (37)

In the special case, if we take 𝑝 = 𝑞 = 1, then we have

(𝑓Δ𝑔) (1, 1; 𝑧) = (𝑓 ∗ 𝑔) (𝑧) , (𝑧 ∈ 𝑈) . (38)

Theorem 11. If the functions 𝑓(𝑧) and 𝑔(𝑧) defined by (2) and
(8) are in the classes 𝑅(𝑛, 𝛼

1
) and 𝑅(𝑛, 𝛼

2
), respectively, then

(𝑓Δ𝑔) (
1

𝑝
,
1

𝑞
; 𝑧) ∈ 𝑅 (𝑛, 𝛼) , (39)

where 𝑝 > 1, (1/𝑝) + (1/𝑞) = 1 and 𝛼 = 1 − (1 − 𝛼
1
)
1/𝑝

(1 −

𝛼
2
)
1/𝑞.

Proof. Since 𝑓(𝑧) ∈ 𝑅(𝑛, 𝛼
1
), by usingTheorem 2, we have

∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼
1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1. (40)

From (40) we have

{

∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼
1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨}

1/𝑝

≤ 1. (41)

Similarly for 𝑔 ∈ 𝑅(𝑛, 𝛼
2
) we have

{

∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼
2

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨}

1/𝑞

≤ 1. (42)
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Now

∞

∑

𝑘=2

(
𝑘
𝑛

1 − 𝛼
1

)

1/𝑝

(
𝑘
𝑛

1 − 𝛼
2

)

1/𝑞

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

1/𝑝󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

1/𝑞

≤ {

∞

∑

𝑘=2

(
𝑘
𝑛

1 − 𝛼
1

)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨}

1/𝑝

{

∞

∑

𝑘=2

(
𝑘
𝑛

1 − 𝛼
2

)
󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨}

1/𝑞

(using Hölder’s inequality)

≤ 1, (using (41) and (42)) .

(43)

Since

(𝑓Δ𝑔) (
1

𝑝
,
1

𝑞
; 𝑧) = 𝑧 −

∞

∑

𝑘=2

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

1/𝑝󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

1/𝑞

𝑧
𝑘

, (44)

it suffices to show that (𝑓Δ𝑔)((1/𝑝), (1/𝑞); 𝑧) ∈ 𝑅(𝑛, 𝛼) if

∞

∑

𝑘=2

(
𝑘
𝑛

1 − 𝛼
)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

1/𝑝󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

1/𝑞

≤ 1. (45)

For this we have to show that L.H.S. of (45) is bounded
by

∞

∑

𝑘=2

(
𝑘
𝑛

1 − 𝛼
1

)

1/𝑝

(
𝑘
𝑛

1 − 𝛼
2

)

1/𝑞

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

1/𝑝󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

1/𝑞

, (46)

which is equivalent to 𝛼 ≤ 1 − (1 − 𝛼
1
)
1/𝑝

(1 − 𝛼
2
)
1/𝑞.

In our next result we improve the result ofTheorem 11 for
the case when 𝑝 and 𝑞 are any real numbers such that 𝑝 > 0,
𝑞 > 1.

Theorem 12. For 0 ≤ 𝛼
1
≤ 𝛼
2
< 1, 𝑝 > 0, 𝑞 > 1, let 𝑓(𝑧) and

𝑔(𝑧) of the form (2) and (8) belong to the classes 𝑅(𝑛, 𝛼
1
) and

𝑅(𝑛, 𝛼
2
), respectively; then

(𝑓Δ𝑔) (𝑝, 𝑞; 𝑧) ∈ 𝑅 (𝑛, 𝛼
2
) ⊆ 𝑅 (𝑛, 𝛼

1
) . (47)

Proof. Since 𝑓(𝑧) ∈ 𝑅(𝑛, 𝛼
1
), by usingTheorem 2, we have

∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼
1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 (48)

or |𝑎
𝑘
| ≤ 1, 𝑘 ≥ 2.

Equivalently, |𝑎
𝑘
|
𝑝

≤ 1, 𝑘 ≥ 2, and since 𝑔(𝑧) ∈ 𝑅(𝑛, 𝛼
2
),

we have
∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼
2

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨 ≤ 1 (49)

or

{

∞

∑

𝑘=2

𝑘
𝑛

1 − 𝛼
1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨}

𝑞

≤ 1. (50)

Now
∞

∑

𝑘=2

(
𝑘
𝑛

1 − 𝛼
2

)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

𝑝󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

𝑞

≤

∞

∑

𝑘=2

(
𝑘
𝑛

1 − 𝛼
2

)
󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

𝑞

≤

∞

∑

𝑘=2

(
𝑘
𝑛

1 − 𝛼
2

)

𝑞

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑘+𝑝,2

󵄨󵄨󵄨󵄨󵄨

𝑞

, (𝑞 > 1)

≤ {

∞

∑

𝑘=2

(
𝑘
𝑛

1 − 𝛼
2

)
󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨}

𝑞

≤ 1.

(51)

Therefore, (𝑓Δ𝑔)(𝑟, 𝑠; 𝑧) ∈ 𝑅(𝑛, 𝛼
2
).

Remark 13. Herewe give some open problems for the readers.
(1) Find inf 𝑝, 𝑞 ∈ 𝑅 and sup𝛼 ∈ [0, 1) such that

Theorem 12 holds.
(2) The result of Theorem 12 holds only for functions of

the form (2); that is, the coefficients of expansion are negative.
Therefore, it is natural to ask what is the analogue results for
the function of the form (1).
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