
Research Article
Multiple Periodic Solutions of Generalized Gause-Type
Predator-Prey Systems with Nonmonotonic Numerical
Responses and Impulse

Zhenguo Luo,1,2 Liping Luo,1 and Yunhui Zeng1

1 Department of Mathematics, Hengyang Normal University, Hengyang, Hunan 421008, China
2Department of Mathematics, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Zhenguo Luo; robert186@163.com

Received 2 October 2013; Accepted 20 November 2013; Published 17 February 2014

Academic Editors: N. Shanmugalingam and T. Tran

Copyright © 2014 Zhenguo Luo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider an impulsive periodic generalized Gause-type predator-prey model with nonmonotonic numerical responses. Using
the continuation theorem of coincidence degree theory, we present an easily verifiable sufficient condition on the existence of
multiple periodic solutions. As corollaries, some applications are listed. In particular, our results extend and improve some known
criteria.

1. Introduction

One of the powerful and effective methods on the existence
of periodic solutions to periodic systems is the continuation
method, which gives easily verifiable sufficient conditions.
See Gaines and Mawhin [1] for detailed description of this
method. In [2], Chen studied the following periodic predator-
prey system with a Holling type IV functional response:

𝑥
󸀠

(𝑡) = 𝑥 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

−

𝑏 (𝑡) 𝑥 (𝑡 − 𝜎
1
(𝑡))

(𝑥
2
(𝑡) /𝑚) + 𝑥 (𝑡) + 𝑛

] ,

𝑦
󸀠

(𝑡) = 𝑦 (𝑡) [ − 𝑑 (𝑡)

+

𝑐 (𝑡) 𝑥 (𝑡 − 𝜎
2
(𝑡))

((𝑥
2
(𝑡 − 𝜎

2
(𝑡))) /𝑚) + 𝑥 (𝑡 − 𝜎

2
(𝑡)) + 𝑛

] ,

(1)

where 𝑟, 𝑑, 𝜏, 𝜎
1
, 𝜎
2
∈ 𝐶(𝑅, 𝑅) and 𝑎, 𝑏, 𝑐 ∈ 𝐶(𝑅, 𝑅

+
) are

𝜔-periodic functions with ∫

𝜔

0
𝑟(𝑡)d𝑡 > 0 and ∫

𝜔

0
𝑑(𝑡)d𝑡 > 0,

and𝑚, 𝑛 are positive constants.The results on the existence of
multiple periodic solutions have been obtained by employing
the continuation method. There are some works following
this direction. See, for example, [3–6].

To generalize Chen’s results, Ding and Jiang [4] consid-
ered the following periodic Gause-type predator-prey system
with time delays:

𝑥
󸀠

(𝑡) = 𝑥 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡)))

− 𝑔 (𝑡, 𝑥 (𝑡)) 𝑦 (𝑡 − 𝜎
1
(𝑡)) ,

𝑦
󸀠

(𝑡) = 𝑦 (𝑡) [−𝑑 (𝑡) + ℎ (𝑡, 𝑥 (𝑡 − 𝜎
2
(𝑡)))] ,

(2)

where 𝜏, 𝜎
1
, 𝜎
2
, and 𝑑 are continuous 𝜔-periodic functions

with ∫

𝜔

0
𝑑(𝑡)d𝑡 > 0. They also afforded verifiable criteria for

the existence of multiple positive periodic solutions for the
system (2) when the numerical response function ℎ is nonm-
onotonic. Their results improve and supplement those in [2].

As we know, in population dynamics, many evolution-
ary processes experience short-time rapid change after undr-
going relatively long smooth variation. For example, the harv-
esting and stocking occur at fixed time, and some species usu-
ally immigrate at the same time every year. Incorporating
these phenomena gives us impulsive differential equations.
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For theory of impulsive differential equations, we refer to [7–
16].

Based on the previous ideas, in [17],Wang, Dai, and Chen
considered the following impulse predator-prey system with
a Holling type IV functional response:

𝑥
󸀠

(𝑡) = 𝑥 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

−

𝑏 (𝑡) 𝑥 (𝑡 − 𝜎
1
(𝑡))

(𝑥
2
(𝑡) /𝑚) + 𝑥 (𝑡) + 𝑛

] ,

𝑦
󸀠

(𝑡) = 𝑦 (𝑡) [ − 𝑑 (𝑡)

+

𝑐 (𝑡) 𝑥 (𝑡 − 𝜎
2
(𝑡))

((𝑥
2
(𝑡 − 𝜎

2
(𝑡))) /𝑚) + 𝑥 (𝑡 − 𝜎

2
(𝑡)) + 𝑛

] ,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) = 𝑥 (𝑡
+
) − 𝑥 (𝑡) = 𝑐

1𝑘
𝑥 (𝑡) ,

Δ𝑦 (𝑡) = 𝑦 (𝑡
+
) − 𝑦 (𝑡) = 𝑐

2𝑘
𝑦 (𝑡) , 𝑡 = 𝑡

𝑘
,

(3)

where the assumptions on 𝑟, 𝑑, 𝜏, 𝜎
1
, 𝜎
2
, 𝑎, 𝑏, 𝑐, 𝑚, 𝑛 are the

same as (1), 𝑐
𝑗𝑘

∈ (−1,∞) (𝑗 = 1, 2, 𝑘 ∈ 𝑁 = {1, 2, . . .}),
{𝑡
𝑘
}
𝑘∈𝑁

is a strictly increasing sequence with 𝑡
1

> 0, and
lim
𝑘→∞

𝑡
𝑘

= ∞. Further, there exist a 𝑞 ∈ 𝑁 such that
𝑐
𝑗(𝑘+𝑞)

= 𝑐
𝑗𝑘

(𝑗 = 1, 2) and 𝑡
𝑘+𝑞

= 𝑡
𝑘
+ 𝜔 for 𝑘 ∈ 𝑁. By

employing the continuation theorem, they presented suffi-
cient conditions on the existence of two positive periodic
solutions to system (3).
In this paper, we will consider the following Gause-type
predator-prey systems with impulse and time delays:

𝑥
󸀠

(𝑡) = 𝑥 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡 − 𝜏 (𝑡))) − 𝑔 (𝑡, 𝑥 (𝑡)) 𝑦 (𝑡 − 𝜎
1
(𝑡)) ,

𝑦
󸀠

(𝑡) = 𝑦 (𝑡) [−𝑑 (𝑡) + ℎ (𝑡, 𝑥 (𝑡 − 𝜎
2
(𝑡)))] , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥 (𝑡) = 𝑥 (𝑡
+
) − 𝑥 (𝑡) = 𝑐

1𝑘
𝑥 (𝑡) ,

Δ𝑦 (𝑡) = 𝑦 (𝑡
+
) − 𝑦 (𝑡) = 𝑐

2𝑘
𝑦 (𝑡) , 𝑡 = 𝑡

𝑘
,

(4)

where the assumptions on 𝑑, 𝜏, 𝜎
1
, 𝜎
2
, 𝑐
𝑗𝑘
, and 𝑡

𝑘
are the

same as (3). 𝑥 and 𝑦 are the prey and the predator population
size, respectively. The function 𝑓 is the growth rate of the
prey in the absence of the predator and 𝑑 is the death rate
of the predator. The function 𝑔, called functional response
of predator to prey, describes the change in the rate of
exploitation of prey by a predator as a result of a change in
the prey density. The function ℎ, called numerical response
of predator to prey, describes the change in reproduction rate
with change in the prey density.

In general, the response function is monotone (see [18–
20]). However, there is nonmonotonic response occurrence;
see Kuang and Beretta [21]. The so-called Monod-Haldane
function in (5)

ℎ (𝑢) =

𝑐𝑢

(𝑢
2
+ 𝑚𝑢 + 𝑛)

, (5)

has been proposed and used to model; see [22]. Sokol and
Howell [23] proposed a simplified Monod-Haldane function
of the form in (6)

𝑓 (𝑢) =

𝑐𝑢

(𝑚
2
+ 𝑢
2
)

. (6)

Throughout this paper, we assume the following:

(𝐻
1
) 𝑓(𝑡, 𝑢), 𝑔(𝑡, 𝑢), and ℎ(𝑡, 𝑢) are continuous functions
and 𝜔-periodic with respect to 𝑡; 𝜕𝑓/𝜕𝑢, 𝜕𝑔/𝜕𝑢, and
𝜕ℎ/𝜕𝑢 are also continuous functions;

(𝐻
2
) there exists a positive constant 𝛼 such that ∫𝜔

0
𝑓(𝑡, 𝑢)d

𝑡 > 0 for 𝑢 ∈ (0, 𝛼); there also exists a continuous
𝜔-periodic function 𝑟(𝑡) such that ∫𝜔

0
𝑟(𝑡)d𝑡 > 0 and

𝑓(𝑡, 𝑢) ≤ 𝑟(𝑡) for 𝑡 ∈ 𝑅, 𝑢 ≥ 0;

(𝐻
3
) 𝑔(𝑡, 0) = 0, 𝑔(𝑡, 𝑢) > 0 for 𝑡 ∈ 𝑅, 𝑢 > 0; there exists
a positive constant 𝜇 such that 𝑔(𝑡, 𝑢) ≤ 𝜇𝑢 for 𝑡 ∈ 𝑅,
𝑢 > 0;

(𝐻
4
) ℎ(𝑡, 0) = 0, lim

𝑢→∞
ℎ(𝑡, 𝑢) = 0; there exists a positive

constant 𝑝 such that (𝑢 − 𝑝)(𝜕ℎ/𝜕𝑢) < 0 for 𝑡 ∈

𝑅, 𝑢 ̸= 𝑝;

(𝐻
5
) ∫

𝜔

0
𝑑(𝑡)d𝑡 − ∑

𝑞

𝑘=1
ln(1 + 𝑐

2𝑘
) < sup

𝑢≥0
∫

𝜔

0
ℎ(𝑡, 𝑢)d𝑡;

(𝐻
6
) inf

𝑢∈(0,𝛼)
∫

𝜔

0
𝑓(𝑡, 𝑢)𝑑𝑡 + ∑

𝑞

𝑘=1
ln(1 + 𝑐

1𝑘
) > 0.

Remark 1. Theassumption (𝐻
4
) demonstrates that numerical

response function ℎ is non-monotonic. The function in
(5) and the function 𝑓 in (6) both satisfy the condition
(𝐻
4
).
The main purpose of the present paper is, by using the

coincidence theory developed by Gaines and Mawhin [1],
to establish the sufficient conditions for the existence of
multiple positive periodic solutions of system (4) when ℎ is a
nonmonotonic numerical response function. As corollaries,
some applications are listed. In particular, our results extend
and improve some known criteria.

2. Preliminaries

Themethod to be used in this paper involves the applications
of the continuation theorem of coincidence degree. For the
readers’ convenience, we introduce a few concepts and results
about the coincidence degree as follows.

Let𝑋,𝑍 be two real Banach spaces, let 𝐿 : Dom𝐿 ⊂ 𝑋 →

𝑍 be a linear mapping, and let𝑁 : 𝑋 → 𝑍 be a continuous
mapping. The mapping 𝐿 will be called a Fredholm mapping
of index zero if dimKer𝐿 = condimIm𝐿 < +∞ and Im 𝐿 is
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closed in 𝑍. If 𝐿 is a Fredholm mapping of index zero and
there exist continuous projectors 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑍 →

𝑍 such that Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄), it
follows that 𝐿|Dom𝐿∩Ker𝑃 : (𝐼 − 𝑃)𝑋 → Im 𝐿 is invertible;
we denote the inverse of that map by 𝐾

𝑝
. If Ω is an open

bounded subset of𝑋, themapping𝑁will be called L-compact
on Ω if 𝑄𝑁(Ω) is bounded and 𝐾

𝑝
(𝐼 − 𝑄)𝑁 : Ω → 𝑋

is compact. Since Im𝑄 is isomorphic to Ker 𝐿, there exist
isomorphisms 𝐽 : Im𝑄 → Ker 𝐿. Let 𝑃𝐶

𝜔
denote the space

of 𝜔-periodic periodic functions Ψ : 𝐽 → 𝑅 which are
continuous for 𝑡 ̸= 𝑡

𝑘
, are continuous from the left for 𝑡 ∈ 𝑅,

and have discontinuities of the first kind at point 𝑡 = 𝑡
𝑘
. We

also denote 𝑃𝐶1
𝜔
= {Ψ ∈ 𝑃𝐶

𝜔
: Ψ
󸀠
∈ 𝑃𝐶

𝜔
}.

Lemma 2 (see continuation theorem [1]). Let𝑋 and𝑍 be two
Banach spaces and let 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑍 be a Fredholm
operator with index zero. Ω ⊂ 𝑋 is an open bounded set, and
let𝑁 : Ω → 𝑍 be L-compact on Ω. Suppose that

(a) 𝑥 of 𝐿𝑥 = 𝜆𝑁𝑥 for such 𝜆 ∈ (0, 1), and 𝑥 ∉

𝜕Ω⋂Dom𝐿;

(b) 𝑄𝑁𝑥 ̸= 0 for each 𝑥 ∈ 𝜕Ω ∩ ker 𝐿;

(c) deg{𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0.

Then, the equation 𝐿𝑥 = 𝑁𝑥 has at least one solution lying in
Dom𝐿 ∩ Ω.

Lemma 3 (see [12, 17]). Suppose that 𝜓 ∈ 𝑃𝐶
1

𝜔
, [0, 𝜔] ∩ {𝑡

𝑘
} =

𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑞
. Then

sup
𝑠∈[0,𝜔]

𝜓 (𝑠) − inf
𝑠∈[0,𝜔]

𝜓 (𝑠)

≤

1

2

[∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
𝜓̇ (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠 +

𝑞

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
Δ𝜓 (𝑡

𝑘
)
󵄨
󵄨
󵄨
󵄨
] .

(7)

For convenience, we make change of variables 𝑥(𝑡) =

exp{𝑥
1
(𝑡)}, 𝑦(𝑡) = exp{𝑥

2
(𝑡)}, and the system (4) is reformu-

lated as

𝑥
󸀠

1
(𝑡) = 𝑓 (𝑡, 𝑒

𝑥
1
(𝑡−𝜏(𝑡))

) − 𝑔 (𝑡, 𝑒
𝑥
1
(𝑡)
) 𝑒
𝑥
2
(𝑡−𝜎
1
(𝑡))−𝑥

1
(𝑡)
,

𝑥
󸀠

2
(𝑡) = ℎ (𝑡, 𝑒

𝑥
1
(𝑡−𝜎
2
(𝑡))

) − 𝑑 (𝑡) , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
1
(𝑡) = ln (1 + 𝑐

1𝑘
) ,

Δ𝑥
2
(𝑡) = ln (1 + 𝑐

2𝑘
) , 𝑡 = 𝑡

𝑘
.

(8)

It is easy to see that if system (8) has one 𝜔-periodic
solution (𝑥

∗

1
(𝑡), 𝑥

∗

2
(𝑡))
𝑇, then (𝑥

∗
(𝑡), 𝑦

∗
(𝑡))
𝑇

= (exp{𝑥∗
1
(𝑡)},

exp{𝑥∗
2
(𝑡)})

𝑇 is a positive 𝜔-periodic solution of system (4).
Therefore, to complete the proof, it suffices to show that
system (8) has multiple 𝜔-periodic solutions.

We take

𝑋 = {𝑥 = (𝑥
1
, 𝑥
2
)
𝑇

| 𝑥
𝑖
∈ 𝑃𝐶

𝜔
, 𝑖 = 1, 2} ,

𝑍 = 𝑋 × 𝑅
2𝑞
,

(9)

and define

‖𝑥‖
𝑋
=

2

∑

𝑖=1

sup
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
, 𝑥 = (𝑥

1
, 𝑥
2
)
𝑇

∈ 𝑋,

‖𝑧‖
𝑍
= ‖𝑥‖

𝑋
+
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
, 𝑧 = (𝑥, 𝑦) ∈ 𝑍,

(10)

where ‖ ⋅ ‖ is the Euclidean norm of 𝑅2𝑞. Then 𝑋 and 𝑍 are
Banach spaces.

Let

Dom𝐿 = {𝑥 = (𝑥
1
, 𝑥
2
)
𝑇

| 𝑥
𝑖
∈ 𝑃𝐶

1

𝜔
, 𝑖 = 1, 2} ,

𝐿 : Dom𝐿 ⊂ 𝑋 󳨀→ 𝑍, 𝐿𝑥 = (𝑥
󸀠
, Δ𝑥 (𝑡

1
) , . . . , Δ𝑥 (𝑡

𝑞
)) ,

(11)

and𝑁 : 𝑋 → 𝑍 with

𝑁𝑥 = ([

𝑓 (𝑡, 𝑒
𝑥
1
(𝑡−𝜏(𝑡))

) − 𝑔 (𝑡, 𝑒
𝑥
1
(𝑡)
) 𝑒
𝑥
2
(𝑡−𝜎
1
(𝑡))−𝑥

1
(𝑡)

ℎ (𝑡, 𝑒
𝑥
1
(𝑡−𝜎
2
(𝑡))

) − 𝑑 (𝑡)

] , {(

ln (1 + 𝑐
1𝑘
)

ln (1 + 𝑐
2𝑘
)
)}

𝑞

𝑘=1

) . (12)

It is not difficult to show that

Ker 𝐿 = {𝑥 ∈ 𝑋 | 𝑥 = 𝜑 ∈ 𝑅
2
} ,

Im 𝐿 = {𝑧 = (𝜑, 𝑐
1
, . . . , 𝑐

𝑞
) ∈ 𝑍 | ∫

𝜔

0

𝜑 (𝑠) 𝑑𝑠 +

𝑞

∑

𝑘=1

𝑐
𝑘
= 0} ,

(13)

and dimKer 𝐿 = 2 = codimIm𝐿. So, Im 𝐿 is closed in 𝑍,
and 𝐿 is a Fredholm mapping of index zero. Take

𝑃𝑥 =

1

𝜔

∫

𝜔

0

𝑥 (𝑡) 𝑑𝑡, 𝑥 ∈ 𝑋;

𝑄𝑧 = 𝑄 (𝜑, 𝑐
1
, . . . , 𝑐

𝑞
)

= (

1

𝜔

[∫

𝜔

0

𝜑 (𝑠) 𝑑𝑠 +

𝑞

∑

𝑘=1

𝑐
𝑘
] , (0, 0, . . . , 0)

2×𝑞
) .

(14)
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It is trivial to show that 𝑃, 𝑄 are continuous projectors
such that

Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿 = Im (𝐼 − 𝑄) , (15)

and, hence, the generalized inverse 𝐾
𝑃
exists. In the follow-

ing part, we first devote ourselves to deriving the explicit
expression of 𝐾

𝑃
: Im 𝐿 → Ker𝑃 ∩ Dom𝐿. Taking 𝑧 =

(𝜑, 𝑐
1
, . . . , 𝑐

𝑞
) ∈ Im 𝐿, then exists an 𝑥 ∈ Dom𝐿 ⊂ 𝑋 such

that

𝑥
󸀠

(𝑡) = 𝜑 (𝑡) , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) = 𝑐
𝑘
, 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . , 𝑞.

(16)

Then direct integration produces

𝑥 (𝑡) = ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠 + ∑

𝑡>𝑡
𝑘

𝑐
𝑘
+ 𝑥 (0) . (17)

Note that 𝑥(𝑡) ∈ Ker𝑃; that is, ∫𝜔
0
𝑥(𝑠)𝑑𝑠 = 0, which, together

with (17), implies

∫

𝜔

0

∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠 𝑑𝑡 + ∫

𝜔

0

∑

𝑡>𝑡
𝑘

𝑐
𝑘
𝑑𝑡 + 𝜔𝑥 (0) = 0, (18)

then

𝑥 (𝑡) = ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠 + ∑

𝑡>𝑡
𝑘

𝑐
𝑘
−

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠 𝑑𝑡

−

𝑞

∑

𝑘=1

𝑐
𝑘
+

1

𝜔

𝑞

∑

𝑘=1

𝑐
𝑘
𝑡
𝑘
,

(19)

that is,

𝐾
𝑃
𝑧 = ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠 + ∑

𝑡>𝑡
𝑘

𝑐
𝑘
−

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠 𝑑𝑡

−

𝑞

∑

𝑘=1

𝑐
𝑘
+

1

𝜔

𝑞

∑

𝑘=1

𝑐
𝑘
𝑡
𝑘
.

(20)

Thus, for 𝑥 ∈ 𝑋,

𝑄𝑁𝑥 =

(

(

(

(

(

(

(

(

1

𝜔

∫

𝜔

0

[𝑓 (𝑡, 𝑒
𝑥
1
(𝑡−𝜏(𝑡))

) − 𝑔 (𝑡, 𝑒
𝑥
1
(𝑡)
) 𝑒
𝑥
2
(𝑡−𝜎
1
(𝑡))−𝑥

1
(𝑡)
] 𝑑𝑡

+

1

𝜔

𝑞

∑

𝑘=1

ln (1 + 𝑐
1𝑘
)

1

𝜔

∫

𝜔

0

[ℎ (𝑡, 𝑒
𝑥
1
(𝑡−𝜎
2
(𝑡))

) − 𝑑 (𝑡)] 𝑑𝑡 +

1

𝜔

𝑞

∑

𝑘=1

ln (1 + 𝑐
2𝑘
)

)

)

)

)

,{(

0

0
)}

𝑞

𝑘=1

)

)

)

)

,

𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑥 =

(

(

(

∫

𝑡

0

[𝑓 (𝑢, 𝑒
𝑥
1
(𝑢−𝜏(𝑢))

) − 𝑔 (𝑢, 𝑒
𝑥
1
(𝑢)
) 𝑒
𝑥
2
(𝑢−𝜎
1
(𝑢))−𝑥

1
(𝑢)
] 𝑑𝑢

+∑

𝑡>𝑡
𝑘

ln (1 + 𝑐
1𝑘
)

∫

𝑡

0

[ℎ (𝑢, 𝑒
𝑥
1
(𝑢−𝜎
2
(𝑢))

) − 𝑑 (𝑢)] 𝑑𝑢 + ∑

𝑡>𝑡
𝑘

ln (1 + 𝑐
2𝑘
)

)

)

)

−

(

(

(

(

(

(

(

1

𝜔

∫

𝜔

0

∫

𝑡

0

[𝑓 (𝑢, 𝑒
𝑥
1
(𝑢−𝜏(𝑢))

) − 𝑔 (𝑢, 𝑒
𝑥
1
(𝑢)
) 𝑒
𝑥
2
(𝑢−𝜎
1
(𝑢))−𝑥

1
(𝑢)
] 𝑑𝑢 𝑑𝑡

𝑞

∑

𝑘=1

ln (1 + 𝑐
1𝑘
)

−

1

𝜔

𝑞

∑

𝑘=1

ln (1 + 𝑐
1𝑘
) 𝑡
𝑘

1

𝜔

∫

𝜔

0

∫

𝑡

0

[ℎ (𝑢, 𝑒
𝑥
1
(𝑢−𝜎
2
(𝑢))

) − 𝑑 (𝑢)] 𝑑𝑢 𝑑𝑡 +

𝑞

∑

𝑘=1

ln (1 + 𝑐
2𝑘
) −

1

𝜔

𝑞

∑

𝑘=1

ln (1 + 𝑐
2𝑘
) 𝑡
𝑘

)

)

)

)

)

)

)

−

(

(

(

(

(

(

(

𝑡

𝜔

−

1

2

)∫

𝜔

0

[𝑓 (𝑢, 𝑒
𝑥
1
(𝑢−𝜏(𝑢))

) − 𝑔 (𝑢, 𝑒
𝑥
1
(𝑢)
) 𝑒
𝑥
2
(𝑢−𝜎
1
(𝑢))−𝑥

1
(𝑢)
] 𝑑𝑢

+ (

𝑡

𝜔

−

1

2

)

𝑞

∑

𝑘=1

ln (1 + 𝑐
1𝑘
)

(

𝑡

𝜔

−

1

2

)∫

𝜔

0

[ℎ (𝑢, 𝑒
𝑥
1
(𝑢−𝜎
2
(𝑢))

) − 𝑑 (𝑢)] 𝑑𝑢 + (

𝑡

𝜔

−

1

2

)

𝑞

∑

𝑘=1

ln (1 + 𝑐
2𝑘
)

)

)

)

)

)

)

.

(21)
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Clearly, 𝑄𝑁 and 𝐾
𝑃
(𝐼 − 𝑄)𝑁 are continuous. By applying

Ascoli-Arzela theorem, one can easily show that 𝑄𝑁(Ω),
𝐾
𝑃
(𝐼 −𝑄)𝑁(Ω) are relatively compact for any open bounded

setΩ ⊂ 𝑋. Moreover, 𝑄𝑁(Ω) is obviously bounded. Thus,𝑁
is 𝐿-compact onΩ for any open bounded setΩ ⊂ 𝑋.

In what follows, we shall use the notations

𝑎 =

1

𝜔

∫

𝜔

0

𝑎 (𝑡) 𝑑𝑡, |𝑎| =

1

𝜔

∫

𝜔

0

|𝑎 (𝑡)| 𝑑𝑡,

𝐵 (𝑢) =

1

𝜔

∫

𝜔

0

𝑏 (𝑡, 𝑢) 𝑑𝑡,

(22)

where 𝑎(𝑡) is a continuous 𝜔-periodic function, 𝑏(𝑡, 𝑢) is a
continuous function, and 𝜔-periodic with respect to 𝑡.

We also set

𝐷 = 𝑑 + |𝑑|, 𝑅 = 𝑟 + |𝑟|, 𝑐
𝑗
=

𝑞

∑

𝑘=1

ln (1 + 𝑐
𝑗𝑘
) ,

𝑗 = 1, 2,

𝜌
1
=

𝑞

∑

𝑘=1

[ln (1 + 𝑐
1𝑘
) +

󵄨
󵄨
󵄨
󵄨
ln (1 + 𝑐

1𝑘
)
󵄨
󵄨
󵄨
󵄨
] ,

𝜌
2
=

𝑞

∑

𝑘=1

[− ln (1 + 𝑐
2𝑘
) +

󵄨
󵄨
󵄨
󵄨
ln (1 + 𝑐

2𝑘
)
󵄨
󵄨
󵄨
󵄨
] .

(23)

3. Existence of Multiple Positive
Periodic Solutions

By (𝐻
2
) and (𝐻

4
), we have

(𝑢 − 𝑝)𝐻
󸀠

(𝑢) =

1

𝜔

∫

𝜔

0

(𝑢 − 𝑝)

𝜕ℎ

𝜕𝑢

(𝑡, 𝑢) < 0,

𝐻 (0) = 0, lim
𝑢→∞

𝐻(𝑢) = 0.

(24)

Then𝐻(𝑢) is strictly increasing on [0, 𝑝] and strictly decreas-
ing on [𝑝, +∞). By (𝐻

4
) and (𝐻

5
), if

(𝐻
7
) 𝑑𝜔 − 𝑐

2
> 0,

then, the equation

𝐻(𝑢) = 𝑑 −

𝑐
2

𝜔

(25)

has two distinct positive solutions, namely, 𝑢
−
, 𝑢
+
. Without

loss of generality, we suppose that 𝑢
−
< 𝑢

+
, and then 𝑢

−
<

𝑝 < 𝑢
+
.

Now, we are ready to state and prove our main result.

Theorem 4. In addition to the conditions (𝐻
1
)–(𝐻

7
), suppose

further that the following conditions hold:

(𝐻
8
) 𝑢
−
𝑒
𝑅𝜔+𝜌

1
< 𝑢
+
;

(𝐻
9
) 𝑢
+
𝑒
(1/2)(𝑅𝜔+𝜌

1
)
< 𝛼.

Then, system (4) has at least two 𝜔-periodic solutions
with strictly positive components.

Proof. By Lemma 2, we need to search for two appropriate
open bounded subsets Ω

𝑖
⊂ 𝑋(𝑖 = 1, 2). Considering the

corresponding operator equation 𝐿𝑥 = 𝜆𝑁𝑥, 𝜆 ∈ (0, 1), we
have

𝑥
󸀠

1
(𝑡) = 𝜆 [𝑓 (𝑡, 𝑒

𝑥
1
(𝑡−𝜏(𝑡))

) − 𝑔 (𝑡, 𝑒
𝑥
1
(𝑡)
) 𝑒
𝑥
2
(𝑡−𝜎
1
(𝑡))−𝑥

1
(𝑡)
] ,

𝑥
󸀠

2
(𝑡) = 𝜆 [ℎ (𝑡, 𝑒

𝑥
1
(𝑡−𝜎
2
(𝑡))

) − 𝑑 (𝑡)] , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
1
(𝑡) = 𝜆 ln (1 + 𝑐

1𝑘
) ,

Δ𝑥
2
(𝑡) = 𝜆 ln (1 + 𝑐

2𝑘
) , 𝑡 = 𝑡

𝑘
.

(26)

Let 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡))
𝑇

∈ 𝑋 be a 𝜔-periodic solution of
system (26) for a certain 𝜆 ∈ (0, 1), integrating both sides of
the first and second equations of (26) over the interval [0, 𝜔];
we obtain

∫

𝜔

0

𝑓 (𝑡, 𝑒
𝑥
1
(𝑡−𝜏(𝑡))

) − 𝑔 (𝑡, 𝑒
𝑥
1
(𝑡)
) 𝑒
𝑥
2
(𝑡−𝜎
1
(𝑡))−𝑥

1
(𝑡)
𝑑𝑡 = −𝑐

1
,

∫

𝜔

0

ℎ (𝑡, 𝑒
𝑥
1
(𝑡−𝜎
2
(𝑡))

) 𝑑𝑡 = 𝑑𝜔 − 𝑐
2
.

(27)

From the first equation of (27), we have

∫

𝜔

0

[𝑟 (𝑡) − 𝑓 (𝑡, 𝑒
𝑥
1
(𝑡−𝜏(𝑡))

) +𝑔 (𝑡, 𝑒
𝑥
1
(𝑡)
) 𝑒
𝑥
2
(𝑡−𝜎
1
(𝑡))−𝑥

1
(𝑡)
] 𝑑𝑡

= 𝑟𝜔 + 𝑐
1
.

(28)

It follows from (26)–(28) that

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠

1
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≤ 𝑅𝜔 + 𝑐

1
,

∫

𝜔

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠

2
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑡 ≤ 𝐷𝜔 − 𝑐

2
.

(29)

Note that 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡)) ∈ 𝑋; then there exist 𝜉

𝑖
, 𝜂
𝑖
∈

[0, 𝜔] (𝑖 = 1, 2) such that

𝑥
𝑖
(𝜉
𝑖
) = inf

𝑡∈[0,𝜔]

𝑥
𝑖
(𝑡) , 𝑥

𝑖
(𝜂
𝑖
) = sup

𝑡∈[0,𝜔]

𝑥
𝑖
(𝑡) , 𝑖 = 1, 2.

(30)

By (27), (30), and the monotonicity of ℎ and 𝐻, we will
show that 𝑥

1
(𝜉
1
) and 𝑥

1
(𝜂
1
) can not simultaneously lie in

(−∞, ln 𝑢
−
), (ln 𝑢

−
, ln 𝑢

+
), or (ln 𝑢

+
, +∞). In fact, if 𝑥

1
(𝜉
1
) ≤

𝑥
1
(𝜂
1
) < ln 𝑢

−
, then

𝑑 −

𝑐
2

𝜔

=

1

𝜔

∫

𝜔

0

ℎ (𝑡, 𝑒
𝑥
1
(𝑡−𝜎
2
(𝑡))

) 𝑑𝑡

≤ 𝐻 (𝑒
𝑥
1
(𝜂
1
)
) < 𝐻 (𝑢

−
) = 𝑑 −

𝑐
2

𝜔

.

(31)
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This is a contradiction. If ln 𝑢
+
< 𝑥
1
(𝜉
1
) ≤ 𝑥

1
(𝜂
1
), then

𝑑 −

𝑐
2

𝜔

=

1

𝜔

∫

𝜔

0

ℎ (𝑡, 𝑒
𝑥
1
(𝑡−𝜎
2
(𝑡))

) 𝑑𝑡

≤ 𝐻 (𝑒
𝑥
1
(𝜉
1
)
) < 𝐻 (𝑢

+
) = 𝑑 −

𝑐
2

𝜔

.

(32)

This is a contradiction. If In 𝑢
−
< 𝑥

1
(𝜉
1
) ≤ 𝑥

1
(𝜂
1
) < ln 𝑢

+
,

then

𝑑 −

𝑐
2

𝜔

=

1

𝜔

∫

𝜔

0

ℎ (𝑡, 𝑒
𝑥
1
(𝑡−𝜎
2
(𝑡))

) 𝑑𝑡

≥ min {𝐻 (𝑒
𝑥
1
(𝜉
1
)
) ,𝐻 (𝑒

𝑥
1
(𝜂
1
)
)} > 𝐻 (𝑢

±
)

= 𝑑 −

𝑐
2

𝜔

.

(33)

This is also a contradiction. Consequently, the distributions
of 𝑥

1
(𝜉
1
) and 𝑥

1
(𝜂
1
) only have the following two cases.

Case 1 (𝑥
1
(𝜉
1
) ≤ ln 𝑢

−
≤ 𝑥

1
(𝜂
1
)). From the first equation of

(29) and Lemma 3, we have

𝑥
1
(𝑡) ≥ 𝑥

1
(𝜂
1
) −

1

2

(𝑅𝜔 + 𝜌
1
) ≥ ln 𝑢

−
−

1

2

(𝑅𝜔 + 𝜌
1
) := 𝛼

1
,

𝑥
1
(𝑡) ≤ 𝑥

1
(𝜉
1
) +

1

2

(𝑅𝜔 + 𝜌
1
) ≤ ln 𝑢

−
+

1

2

(𝑅𝜔 + 𝜌
1
) := 𝛼

2
.

(34)

Case 2 (𝑥
1
(𝜉
1
) ≤ In 𝑢

+
≤ 𝑥
1
(𝜂
1
)). From the first equation of

(29) and Lemma 3, we also have

𝑥
1
(𝑡) ≥ 𝑥

1
(𝜂
1
) −

1

2

(𝑅𝜔 + 𝜌
1
) ≥ ln 𝑢

+
−

1

2

(𝑅𝜔 + 𝜌
1
) := 𝛼

3
,

𝑥
1
(𝑡) ≤ 𝑥

1
(𝜉
1
) +

1

2

(𝑅𝜔 + 𝜌
1
) ≤ ln 𝑢

+
+

1

2

(𝑅𝜔 + 𝜌
1
) := 𝛼

4
.

(35)

By (𝐻
8
), we know

𝛼
1
< In 𝑢

−
< 𝛼
2
< 𝛼
3
< ln 𝑢

+
< 𝛼
4
. (36)

Denote that

𝐹
𝑀

= max
𝑢∈[𝑒
𝛼1 ,𝑒
𝛼4 ]

𝐹 (𝑢) , 𝐹
𝑚
= min
𝑢∈[𝑒
𝛼1 ,𝑒
𝛼4 ]

𝐹 (𝑢) ,

𝑔
𝑚
= min
𝑡∈[0,𝜔], 𝑢∈[𝑒

𝛼1 ,𝑒
𝛼4 ]

𝑔 (𝑡, 𝑢) .

(37)

By (𝐻
2
), (𝐻

3
), and (𝐻

9
), one can easily see that 𝐹𝑀, 𝐹𝑚, and

𝑔
𝑚 are positive constants. Noticing that

𝑒
𝛼
1
≤ 𝑒
𝑥
1
(𝑡−𝜏(𝑡))

≤ 𝑒
𝛼
4
, (38)

it follows from the first equation of (27), (30), and (𝐻
3
) that

𝐹
𝑚
≤

1

𝜔

∫

𝜔

0

𝑓 (𝑡, 𝑒
𝑥
1
(𝑡−𝜏(𝑡))

) 𝑑𝑡

≤

𝑒
𝑥
2
(𝜂
2
)

𝜔

∫

𝜔

0

𝑔 (𝑡, 𝑒
𝑥
1
(𝑡)
) 𝑒
−𝑥
1
(𝑡)
𝑑𝑡

−

𝑐
1

𝜔

≤ 𝜇𝑒
𝑥
2
(𝜂
2
)
−

𝑐
1

𝜔

,

(39)

which implies, by (𝐻
6
),

𝑥
2
(𝜂
2
) ≥ In 𝐹

𝑚
+ 𝑐
1
/𝜔

𝜇

. (40)

Similarly, we also obtain

𝐹
𝑀

≥

1

𝜔

∫

𝜔

0

𝑓 (𝑡, 𝑒
𝑥
1
(𝑡−𝜏(𝑡))

) 𝑑𝑡

≥

𝑒
𝑥
2
(𝜉
2
)−𝑥
1
(𝜂
1
)

𝜔

∫

𝜔

0

𝑔 (𝑡, 𝑒
𝑥
1
(𝑡)
) 𝑑𝑡

−

𝑐
1

𝜔

≥ 𝑔
𝑚
𝑒
𝑥
2
(𝜉
2
)−𝑥
1
(𝜂
1
)
−

𝑐
1

𝜔

,

(41)

which implies

𝑥
2
(𝜉
2
) ≤ ln 𝐹

𝑀
+ 𝑐
1
/𝜔

𝑔
𝑚

+ 𝑥
1
(𝜂
1
) ≤ ln 𝐹

𝑀
+ 𝑐
1
/𝜔

𝑔
𝑚

+ 𝛼
4
.

(42)

It follows from the second equation of (29), (40), (42), and
Lemma 3 that

𝑥
2
(𝑡) ≥ 𝑥

2
(𝜂
2
) −

1

2

(𝐷𝜔 + 𝜌
2
)

≥ ln 𝐹
𝑚
+ 𝑐
1
/𝜔

𝜇

−

1

2

(𝐷𝜔 + 𝜌
2
) := 𝛼

5
,

𝑥
2
(𝑡) ≤ 𝑥

2
(𝜉
2
) +

1

2

(𝑅𝜔 + 𝜌
2
)

≤ ln 𝐹
𝑀
+ 𝑐
1
/𝜔

𝑔
𝑚

+ 𝛼
4
+

1

2

(𝐷𝜔 + 𝜌
2
) := 𝛼

6
.

(43)

In view of (43), we have

max
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
𝑥
2
(𝑡)

󵄨
󵄨
󵄨
󵄨
≤ max {󵄨󵄨󵄨

󵄨
𝛼
5

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝛼
6

󵄨
󵄨
󵄨
󵄨
} := 𝛼

7
. (44)

Clearly, 𝛼
1
, 𝛼
2
, 𝛼
3
, 𝛼
4
, and 𝛼

7
are independent of 𝜆.

It is easy to show that algebraic equations
𝑐
1

𝜔

+ 𝐹 (𝑒
𝑥
1
) − 𝐺 (𝑒

𝑥
1
) 𝑒
𝑥
2
−𝑥
1
= 0,

−𝑑 +

c
2

𝜔

+ 𝐻 (𝑒
𝑥
1
) = 0

(45)

have two distinct solutions𝑥
±
= (ln 𝑢

±
, ln[𝑢

±
(𝐹(𝑢

±
)+𝑐
1
/𝜔)]−

In 𝐺(𝑢
±
))
𝑇. Choose 𝛼

0
such that

𝛼
0
≥ max {

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ln [𝑢
−
(𝐹 (𝑢

−
) +

𝑐
1

𝜔

)] − ln𝐺 (𝑢
−
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ln [𝑢
+
(𝐹 (𝑢

+
) +

𝑐
1

𝜔

)] − ln𝐺 (𝑢
+
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

} .

(46)

We now define

Ω
1
= {(𝑥

1
(𝑡) , 𝑥

2
(𝑡))
𝑇

∈ 𝑋

: 𝑥
1
(𝑡) ∈ (𝛼

1
, 𝛼
2
) ,
󵄨
󵄨
󵄨
󵄨
𝑥
2
(𝑡)

󵄨
󵄨
󵄨
󵄨
< 𝛼
7
+ 𝛼
0
} ,

Ω
2
= {(𝑥

1
(𝑡) , 𝑥

2
(𝑡))
𝑇

∈ 𝑋

: 𝑥
1
(𝑡) ∈ (𝛼

3
, 𝛼
4
) ,
󵄨
󵄨
󵄨
󵄨
𝑥
2
(𝑡)

󵄨
󵄨
󵄨
󵄨
< 𝛼
7
+ 𝛼
0
} .

(47)
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Then both Ω
1
and Ω

2
are bounded open subsets of 𝑋. It

follows from (36) and (46) that 𝑥
±
∈ Ω

𝑖
(𝑖 = 1, 2), and Ω

1
∩

Ω
2
= 𝜙. With the help of (34), (35), (44), and (46), it is easy

to see that Ω
𝑖
(𝑖 = 1, 2) satisfies condition (𝑎) in Lemma 2.

When (𝑥
1
(𝑡), 𝑥

2
(𝑡))
𝑇
∈ 𝜕Ω

𝑖
∩ Dom𝐿 = 𝜕Ω

𝑖
∩ 𝑅

2
(𝑖 = 1, 2),

(𝑥
1
(𝑡), 𝑥

2
(𝑡))
𝑇 is a constant vector in 𝑅

2. Thus, we have

𝑄𝑁𝑥 = (

𝑐
1

𝜔

+ 𝐹 (𝑒
𝑥
1
) − 𝐺 (𝑒

𝑥
1
) 𝑒
𝑥
2
−𝑥
1

−𝑑 +

𝑐
2

𝜔

+ 𝐻 (𝑒
𝑥
1
)

, {(

0

0
)}

𝑞

𝑘=1

)

̸= 0,

(48)

that is, the condition (𝑏) in Lemma 2 holds. In order to
verify the condition (𝑐) in Lemma 2 and since the algebraic
equations (45) have only one root in Ω

𝑖
(𝑖 = 1, 2), let 𝐽 :

Im𝑄 → Ker 𝐿 given by (𝑥, (0, 0, . . . , 0)
2×𝑞

) → 𝑥, where
𝑥 ∈ 𝑅

2; in view of the assumptions in Theorem 4, it is easy
to see that

𝐽𝑄𝑁𝑥 = (

𝑐
1

𝜔

+ 𝐹 (𝑒
𝑥
1
) − 𝐺 (𝑒

𝑥
1
) 𝑒
𝑥
2
−𝑥
1

−𝑑 +

𝑐
2

𝜔

+ 𝐻 (𝑒
𝑥
1
)

) , (49)

and a direct computation gives

deg {𝐽𝑄𝑁𝑥,Ω
𝑖
∩ Ker 𝐿, (0, 0)𝑇}

= (−1)
𝑖+1

̸= 0, 𝑖 = 1, 2.

(50)

By now we have proved that Ω
𝑖
(𝑖 = 1, 2) satisfies all the

requirements of Lemma 2. Consequently, the system (8) has
at least two 𝜔-periodic solutions in Dom𝐿 ∩ Ω

𝑖
(𝑖 = 1, 2),

that is (𝑥∗
1
, 𝑥
∗

2
), and (𝑥

1
, 𝑥
2
), respectively. Set 𝑥∗(𝑡) = 𝑒

𝑥
∗

1
(𝑡),

𝑦
∗
(𝑡) = 𝑒

𝑥
∗

2
(𝑡); 𝑥(𝑡) = 𝑒

𝑥
1
(𝑡), 𝑦(𝑡) = 𝑒

𝑥
2
(𝑡); then (𝑥

∗
(𝑡), 𝑦

∗
(𝑡))
𝑇,

(𝑥(𝑡), 𝑦(𝑡))
𝑇 are two positive 𝜔-periodic solutions of the

system (4). This completes the proof.

In a weaker condition, we have the following result for the
existence of one positive periodic solution.

Theorem5. In addition to (𝐻
1
)–(𝐻

7
), suppose further that the

following holds:

(𝐻
10
) 𝑢
−
𝑒
1/2(𝑅𝜔+𝜌

1
)
< min{𝑢

+
, 𝛼}.

Then, system (4) has at least one 𝜔-periodic solution with
strictly positive components.

Proof. The proof is similar to the proof of Theorem 4. Under
condition (𝐻

10
), (36) is no longer true and Ω

1
∩ Ω

2
̸= 𝜙. So,

we have to make a corresponding change. By (𝐻
10
), we can

know that

𝛼
1
< ln 𝑢

−
< 𝛼
2
< ln 𝑢

+
. (51)

Denote that

𝐹
𝐿
= max
𝑢∈[𝑒
𝛼1 ,𝑒
𝛼2 ]

𝐹 (𝑢) , 𝐹
𝑙
= min
𝑢∈[𝑒
𝛼1 ,𝑒
𝛼2 ]

𝐹 (𝑢) ,

𝑔
𝑙
= min
𝑡∈[0,𝜔],𝑢∈[𝑒

𝛼1 ,𝑒
𝛼2 ]

𝑔 (𝑡, 𝑢) .

(52)

By (𝐻
2
), (𝐻

3
), and (𝐻

10
), one can easily see that 𝐹𝐿, 𝐹𝑙, and

𝑔
𝑙 are positive constants. By a similar analysis as that in

Theorem 4, when 𝑥
1
(𝑡) ∈ (𝛼

1
, 𝛼
2
), we have

𝑥
2
(𝑡) ≥ 𝑥

2
(𝜂
2
) −

1

2

(𝐷𝜔 + 𝜌
2
)

≥ ln 𝐹
𝑙
+ 𝑐
1
/𝜔

𝜇

−

1

2

(𝐷𝜔 + 𝜌
2
) := 𝛼

8
,

(53)

𝑥
2
(𝑡) ≤ 𝑥

2
(𝜉
2
) +

1

2

(𝑅𝜔 + 𝜌
2
)

≤ ln 𝐹
𝐿
+ 𝑐
1
/𝜔

𝑔
𝑙

+ 𝛼
2
+

1

2

(𝐷𝜔 + 𝜌
2
) := 𝛼

9
.

(54)

Thus,

max
𝑡∈[0,𝜔]

󵄨
󵄨
󵄨
󵄨
𝑥
2
(𝑡)

󵄨
󵄨
󵄨
󵄨
≤ max {󵄨󵄨󵄨

󵄨
𝛼
8

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝛼
9

󵄨
󵄨
󵄨
󵄨
} := 𝛼

10
. (55)

Clearly, 𝛼
1
, 𝛼
2
, and 𝛼

10
are independent of 𝜆.

It is easy to show that algebraic equations (45) have
at least one solution 𝑥

−
= (ln 𝑢

−
, ln[𝑢

−
(𝐹(𝑢

−
) + 𝑐

1
/𝜔)] −

ln𝐺(𝑢
−
))
𝑇. We now take Ω = {(𝑥

1
(𝑡), 𝑥

2
(𝑡))
𝑇
∈ 𝑋 : 𝑥

1
(𝑡) ∈

(𝛼
1
, 𝛼
2
), |𝑥

2
(𝑡)| < 𝛼

10
+ 𝛼
0
}. It follows from (46) and (51) that

𝑥
−
∈ Ω. By a similar analysis as that inTheorem 4, it is easy to

see thatΩ satisfies condition (𝑎) and (𝑏) in Lemma 2. In order
to verify the conditions (𝑐) in Lemma 2, a direct calculation
shows that

deg {𝐽𝑄𝑁𝑥,Ω ∩ Ker 𝐿, (0, 0)𝑇} = 1 ̸= 0. (56)

Hence, Ω satisfies all the requirements in Lemma 2. Conse-
quently, the system (8) has at least one 𝜔-periodic solution
in Dom𝐿 ∩ Ω, say (𝑥∗

1
, 𝑥
∗

2
). Set 𝑥∗(𝑡) = 𝑒

𝑥
∗

1
(𝑡)
, 𝑦
∗
(𝑡) = 𝑒

𝑥
∗

2
(𝑡);

then (𝑥
∗
(𝑡), 𝑦

∗
(𝑡))
𝑇 is one positive 𝜔-periodic solution of the

system (4). This completes the proof.

Remark 6. When there is no impulse, that is, 𝑐
𝑖𝑘

≡ 0 (𝑖 =

1, 2), 𝑘 = 1, 2, . . ., 𝑐
1
= 𝑐
2
= 𝜌
1
= 𝜌
2
≡ 0. The conditions (𝐻

6
)

and (𝐻
7
) are automatically satisfied and (𝐻

8
), (𝐻

9
), and (𝐻

10
)

reduce to

(𝐻
󸀠

8
) 𝑢
−
𝑒
𝑅𝜔

< 𝑢
+
;

(𝐻
󸀠

9
) 𝑢
+
𝑒
𝑅𝜔/2

< 𝛼;
(𝐻
󸀠

10
) 𝑢
−
𝑒
𝑅𝜔/2

< min{𝑢
+
, 𝛼}.

Hence, we have the following corollaries.

Corollary 7. In addition to (H
1
)–(H

5
), suppose further that

(𝐻
󸀠

8
) and (𝐻

󸀠

9
) hold. Then system (2) has at least two positive

periodic solutions.

Corollary 8. In addition to (𝐻
1
)–(𝐻

5
), suppose further that

(𝐻
󸀠

10
) holds. Then system (2) has at least one positive periodic

solution.

Remark 9. In [4], Ding and Jiang got the following results.

TheoremA. In addition to the conditions (𝐻
1
)–(𝐻

7
), suppose

further that the following conditions hold:
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(𝐴
1
) 𝑢
−
𝑒
2𝑅𝜔

< 𝑢
+
;

(𝐴
2
) 𝑢
+
𝑒
𝑅𝜔

< 𝛼.

Then, system (2) has at least two 𝜔-periodic solutions with
strictly positive components.

Theorem B. In addition to (𝐻
1
)–(𝐻

5
), suppose further that

the following holds:

(𝐴
3
) 𝑢
−
𝑒
𝑅𝜔

< min{𝑢
+
, 𝛼}.

Then, system (2) has at least one 𝜔-periodic solution with
strictly positive components.

Obviously, the conditions (𝐻󸀠
8
), (𝐻󸀠

9
), and (𝐻󸀠

10
) are weaker

than the corresponding (𝐴
1
), (𝐴

2
), and (𝐴

3
), respectively.

Hence, our results generalize and improve the corresponding
results of [4].

4. Applications

In this section, we will list some applications of the previous
results.

Application 1. Consider the system (3) which can be obtained
by letting

𝑓 (𝑡, 𝑥) = 𝑟 (𝑡) − 𝑎 (𝑡) 𝑥, 𝑔 (𝑡, 𝑥) =

𝑏 (𝑡) 𝑥

(𝑥
2
/𝑚) + 𝑥 + 𝑛

,

ℎ (𝑡, 𝑥) =

𝑐 (𝑡) 𝑥

(𝑥
2
/𝑚) + 𝑥 + 𝑛

(57)

in system (4). ByTheorem 4, we get the following result.

Theorem 10. Suppose that the following conditions hold:

(1) 𝑑𝜔 − 𝑐
2
> 0;

(2) 𝑐 > max{(1 + 2√𝑛/𝑚)(𝑑 − 𝑐
2
/𝜔)𝑒

(1/2)(𝑅𝜔+𝜌
1
)
−

√(𝑚
2
(𝑐 − 𝑑 + 𝑐

2
/𝜔)
2
− 4𝑚𝑛(𝑑 − 𝑐

2
/𝜔)
2
)/𝑚,

(1 + 2√𝑛/𝑚)(𝑑 − 𝑐
2
/𝜔)};

(3) 2(𝑟𝜔 + 𝑐
1
)(𝑑 − 𝑐

2
/𝜔) > 𝑎𝜔[𝑚(𝑐 − 𝑑 + 𝑐

2
/𝜔) +

√𝑚
2
(𝑐 − 𝑑 + 𝑐

2
/𝜔)
2
− 4𝑚𝑛(𝑑 − 𝑐

2
/𝜔)
2
]𝑒
(1/2)(𝑅𝜔+𝜌

1
).

Then, system (3) has at least two 𝜔-periodic solutions with
strictly positive components.

Remark 11. In Theorem 3.2 of [17], Wang et al. proved that
system (3) has at least two 𝜔-periodic solutions with strictly
positive components under the conditions:

(1
󸀠
) 𝑑𝜔 − 𝑐

2
> 0;

(2
󸀠
) 𝑐 > (1 + 2√𝑛/𝑚)(𝑑 − 𝑐

2
/𝜔)𝑒

(1/2)(𝑅𝜔+𝜌
1
);

(3
󸀠
) 2(𝑟𝜔 + 𝑐

1
)(𝑑 − 𝑐

2
/𝜔) > 𝑎𝜔[𝑚(𝑐𝑒

(𝑅𝜔+𝜌
1
)/2

− 𝑑 + 𝑐
2
/𝜔)

+ √𝑚
2
(𝑐𝑒
(𝑅𝜔+𝜌

1
)/2

− 𝑑 + 𝑐
2
/𝜔)
2
− 4𝑚𝑛(𝑑 − 𝑐

2
/𝜔)
2
]

𝑒
(𝑅𝜔+𝜌

1
)/2.

Obviously, (2󸀠) implies (2). Notice that

𝑚(𝑐𝑒
(𝑅𝜔+𝜌

1
)/2

− 𝑑 +

𝑐
2

𝜔

)

+ √𝑚
2
(𝑐𝑒
(𝑅𝜔+𝜌

1
)/2

− 𝑑 +

𝑐
2

𝜔

)

2

− 4𝑚𝑛(𝑑 −

𝑐
2

𝜔

)

2

= [𝑚(𝑐 − (𝑑 −

𝑐
2

𝜔

) 𝑒
−(𝑅𝜔+𝜌

1
)/2
)

+ (𝑚
2
(𝑐 − (𝑑 −

𝑐
2

𝜔

) 𝑒
−(𝑅𝜔+𝜌

1
)/2
)

2

−4𝑚𝑛(𝑑 −

𝑐
2

𝜔

)

2

𝑒
−(𝑅𝜔+𝜌

1
)
)

1/2

] 𝑒
(𝑅𝜔+𝜌

1
)/2

>
[

[

𝑚(𝑐 − 𝑑 +

𝑐
2

𝜔

)

+√𝑚
2
(𝑐 − 𝑑 +

𝑐
2

𝜔

)

2

− 4𝑚𝑛(𝑑 −

𝑐
2

𝜔

)

2

]

]

𝑒
(1/2)(𝑅𝜔+𝜌

1
)
.

(58)

Thus, (3󸀠) also implies (3). Hence, Theorem 10 improves
Theorem 3.2 in [17].

Application 2. Consider the following system:

𝑥
󸀠

(𝑡) = 𝑥 (𝑡) [

𝑟 (𝑡) − 𝑎 (𝑡) 𝑥 (𝑡 − 𝜏 (𝑡))

𝑛 + 𝑥 (𝑡 − 𝜏 (𝑡))

−

𝑏 (𝑡) 𝑦 (𝑡 − 𝜎
1
(𝑡))

𝑥
2
(𝑡) + 𝑚

2
] ,

𝑦
󸀠

(𝑡) = 𝑦 (𝑡) [

𝑐 (𝑡) 𝑥 (𝑡 − 𝜎
2
(𝑡))

𝑥
2
(𝑡 − 𝜎

2
(𝑡)) + 𝑚

2
− 𝑑 (𝑡)] , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥 (𝑡) = 𝑥 (𝑡
+
) − 𝑥 (𝑡) = 𝑐

1𝑘
𝑥 (𝑡) ,

Δ𝑦 (𝑡) = 𝑦 (𝑡
+
) − 𝑦 (𝑡) = 𝑐

2𝑘
𝑦 (𝑡) , 𝑡 = 𝑡

𝑘
,

(59)

which isz a special form of system (4) by replacing

𝑓 (𝑡, 𝑥) =

𝑟 (𝑡) − 𝑎 (𝑡) 𝑥

𝑛 + 𝑥

, 𝑔 (𝑡, 𝑥) =

𝑏 (𝑡) 𝑥

𝑚
2
+ 𝑥
2
,

ℎ (𝑡, 𝑥) =

𝑐 (𝑡) 𝑥

𝑚
2
+ 𝑥
2
.

(60)

The prey population follows the Smith [24] model.
ByTheorem 4, we have the following result.

Theorem 12. Suppose that the following conditions hold:

(1) 𝑑𝜔 − 𝑐
2
> 0;

(2) 𝑐 > max{2𝑚(𝑑 − 𝑐
2
/𝜔)𝑒

(1/2)(𝑅𝜔+𝜌
1
)

−

√𝑐
2
− 4𝑚

2
(𝑑 − 𝑐

2
/𝜔)
2, 2𝑚(𝑑 − 𝑐

2
/𝜔)};
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(3) 2(𝑟𝜔 + 𝑐
1
)(𝑑 − 𝑐

2
/𝜔) > 𝑎𝜔(𝑐 + √𝑐

2
− 4𝑚

2
(𝑑 − 𝑐

2
/𝜔)
2
)

𝑒
(1/2)(𝑅𝜔+𝜌

1
).

Then, system (59) has at least two 𝜔-periodic solutions with
strictly positive components.

Application 3. Consider the following system:

𝑥
󸀠

(𝑡) = 𝑥 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑒 (𝑡) 𝑥
2

(𝑡 − 𝜏 (𝑡))]

−

𝑏 (𝑡) 𝑥 (𝑡) 𝑦 (𝑡 − 𝜎
1
(𝑡))

𝑥
2
(𝑡) + 𝑚

2
,

𝑦
󸀠

(𝑡) = 𝑦 (𝑡) [

𝑐 (𝑡) 𝑥 (𝑡 − 𝜎
2
(𝑡))

𝑚
2
+ 𝑥
2
(𝑡 − 𝜎

2
(𝑡))

− 𝑑 (𝑡)] , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) = 𝑥 (𝑡
+
) − 𝑥 (𝑡) = 𝑐

1𝑘
𝑥 (𝑡) ,

Δ𝑦 (𝑡) = 𝑦 (𝑡
+
) − 𝑦 (𝑡) = 𝑐

2𝑘
𝑦 (𝑡) , 𝑡 = 𝑡

𝑘
,

(61)

which is a special case of (4) by letting

𝑓 (𝑡, 𝑥) = 𝑟 (𝑡) − 𝑎 (𝑡) 𝑥 − 𝑒 (𝑡) 𝑥
2
,

𝑔 (𝑡, 𝑥) =

𝑏 (𝑡) 𝑥

𝑚
2
+ 𝑥
2
, ℎ (𝑡, 𝑥) =

𝑐 (𝑡) 𝑥

𝑚
2
+ 𝑥
2
,

(62)

where functions 𝑟(𝑡), 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡), 𝜏(𝑡), 𝜎
1
(𝑡), 𝜎

2
(𝑡) and

constant𝑚 are defined as above, 𝑒(𝑡) is a positive continuous
𝜔-periodic function, and the prey population follows the
Allee effect [25] model. ByTheorem 4, we have the following
result.

Theorem 13. Suppose that the following conditions hold:

(1) 𝑑𝜔 − 𝑐
2
> 0;

(2) 𝑐 > max{2𝑚(𝑑 − 𝑐
2
/𝜔)𝑒

(1/2)(𝑍𝜔+𝜌
1
)

−

√𝑐
2
− 4m2(𝑑 − 𝑐

2
/𝜔)
2, 2𝑚(𝑑 − 𝑐

2
/𝜔)};

(3) 2𝛼(𝑑−𝑐
2
/𝜔) > (𝑐+√𝑐

2
− 4𝑚

2
(𝑑 − 𝑐

2
/𝜔)
2
)𝑒
(1/2)(𝑍𝜔+𝜌

1
),

Then, system (61) has at least two 𝜔-periodic solutions with
strictly positive components, where

𝛼 =

𝑎 +
√
𝑎
2
+ 4𝑒𝑟

2𝑒

, 𝑧 (𝑡) =

𝑎
2
(𝑡) + 4𝑒 (𝑡) 𝑟 (𝑡)

4𝑒 (𝑡)

. (63)
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