
Research Article
The Radon Transforms on the Generalized Heisenberg Group

Tianwu Liu1,2 and Jianxun He1,2

1 School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China
2 Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes,
Guangzhou University, Guangzhou 510006, China

Correspondence should be addressed to Jianxun He; hejianxun@gzhu.edu.cn

Received 5 September 2013; Accepted 7 October 2013; Published 2 January 2014

Academic Editors: R. Curto and D.-X. Zhou

Copyright © 2014 T. Liu and J. He. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

LetH𝑎
𝑛
be the generalized Heisenberg group. In this paper, we study the inversion of the Radon transforms onH𝑎

𝑛
. Several kinds of

inversion Radon transform formulas are established. One is obtained from the Euclidean Fourier transform; the other is derived
from the differential operator with respect to the center variable 𝑡. Also by using sub-Laplacian and generalized sub-Laplacian we
deduce an inversion formula of the Radon transform onH𝑎

𝑛
.

1. Introduction

In the past decade the research of Radon transform on the
Euclidean spaceR𝑛 hasmade considerable progress due to its
wide applications to partial differential equations, X-ray tech-
nology, radio astronomy, and so on. The basic theory and
some new developments can be found in [1] by Helgason and
the references therein. The combination of Radon transform
and wavelet transform has proved to be very useful both on
pure mathematics and its applications. Therefore, it is very
meaningful to give the inversion formula of the Radon trans-
forms by using various ways. The first result in the area is
due to Holschneider who considered the classical Radon
transform on the two-dimensional plane (see [2]). Rubin in
[3, 4] extended the results in [2] to the 𝑘-dimensional Radon
transform on R𝑛 and totally geodesic Radon transforms on
the sphere and hyperbolic space. Heisenberg group H𝑛 is a
vital Lie group with the underlying C𝑛 × R. Strichartz [5]
discussed the Radon transform on the Heisenberg group.
Nessibi and Trimèche [6] obtained an inversion formula
of the Radon transform on the Laguerre hypergroup K =

[0,∞) × R by using the generalized wavelet transform.
Afterwards, He and Liu studied the analogous problems on
the Heisenberg group and Siegel type Lie group (see [7, 8]),
and Rubin [9] achieved some new progress of the Radon
transform on H𝑛. In [10] the authors gave the definition of
generalized Heisenberg group denoted by H𝑎

𝑛
and dealt with

some problems related to geometric analysis. In this paper,
we investigate the inversion formulas of the Radon transform
on the generalized Heisenberg group. From the Euclidean
Fourier transform and group Fourier transform, we deduce
inversion formulas of the Radon transform onH𝑎

𝑛
associated

with differential operators and generalized sub-Laplacian.
Let 𝑎 = (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) be an 𝑛-dimensional vector, where

𝑎
𝑖
are positive real constants for 𝑖 = 1, 2, . . . , 𝑛. We can turn

R𝑛 ×R𝑛 ×R into a non-Abelian group by defining the group
operation as

(𝑥, 𝑦, 𝑡) (𝑥
󸀠

, 𝑦
󸀠

, 𝑡
󸀠

)

= (𝑥 + 𝑥
󸀠

, 𝑦 + 𝑦
󸀠

, 𝑡 + 𝑡
󸀠

+
1

2

𝑛

∑

𝑗=1

𝑎
𝑗
(𝑥
󸀠

𝑗
𝑦
𝑗
− 𝑦
󸀠

𝑗
𝑥
𝑗
)) .

(1)

This group is called the generalized Heisenberg group and is
denoted by H𝑎

𝑛
. It is obvious that the generalized Heisenberg

group H𝑎
𝑛
becomes ordinary Heisenberg group H𝑛 if all 𝑎

𝑖
=

1 for 𝑖 = 1, 2, . . . , 𝑛. For any 𝑛-dimensional vectors 𝑎 =

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), 𝑏 = (𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
), we define

𝑎 ∗ 𝑏 = (𝑎
1
𝑏
1
, 𝑎
2
𝑏
2
, . . . , 𝑎

𝑛
𝑏
𝑛
) ,

𝑎𝑏 = 𝑎 ⋅ 𝑏 =

𝑛

∑

𝑗=1

𝑎
𝑗
𝑏
𝑗
.

(2)
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For 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
), 𝜆 ∈ R, the following equalities are

valid:

(i) 𝑎 ∗ (𝑏 + 𝑐) = 𝑎 ∗ 𝑏 + 𝑎 ∗ 𝑐;
(ii) (𝑎 ∗ 𝑏)𝑐 = 𝑎(𝑏 ∗ 𝑐);
(iii) (𝜆𝑎) ∗ 𝑏 = 𝜆(𝑎 ∗ 𝑏).

Therefore, (1) can be rewritten as

(𝑥, 𝑦, 𝑡) (𝑥
󸀠

, 𝑦
󸀠

, 𝑡
󸀠

)

= (𝑥 + 𝑥
󸀠

, 𝑦 + 𝑦
󸀠

, 𝑡 + 𝑡
󸀠

+
1

2
((𝑎 ∗ 𝑥

󸀠

) 𝑦 − (𝑎 ∗ 𝑦
󸀠

) 𝑥)) .

(3)

IdentifyR𝑛×R𝑛 withC𝑛; the symplectic form (𝑥
󸀠

𝑦−𝑦
󸀠

𝑥) can
be expressed by Im 𝑧𝑧

󸀠, where 𝑧 = 𝑥 + 𝑖𝑦 and 𝑧󸀠 = 𝑥󸀠 + 𝑖𝑦󸀠.
We can write (1) by

(𝑧, 𝑡) (𝑧
󸀠

, 𝑡
󸀠

) = (𝑧 + 𝑧
󸀠

, 𝑡 + 𝑡
󸀠

+
1

2
Im
𝑛

∑

𝑗=1

𝑎
𝑗
𝑧
𝑗
𝑧
󸀠

𝑗
) , (4)

or

(𝑧, 𝑡) (𝑧
󸀠

, 𝑡
󸀠

) = (𝑧 + 𝑧
󸀠

, 𝑡 + 𝑡
󸀠

+
1

2
Im (𝑎 ∗ 𝑧) 𝑧

󸀠
) . (5)

In next section, we will introduce some facts of Fourier
analysis onH𝑎

𝑛
, which is useful to get our result.

2. Fourier Analysis on H𝑎
𝑛

We first state the definition of the Hermite polynomials. Let
Z+ = {0, 1, 2, . . . , 𝑛, . . .}, 𝑘 ∈ Z+, and 𝑡 ∈ R; the Hermite
polynomials are defined by

𝐻
𝑘
(𝑡) = (−1)

𝑘

(
𝑑
𝑘

𝑑𝑡
𝑘

{𝑒
−𝑡
2

} 𝑒
𝑡
2

) . (6)

The normalized Hermite functions are then defined by

ℎ
𝑘
(𝑡) = (2

𝑘

√𝜋𝑘!)
−(1/2)

𝐻
𝑘
(𝑡) 𝑒
−(1/2)𝑡

2

. (7)

These functions formanorthonormal basis for𝐿2(R). For any
fixed 𝜆 ∈ R+, it is easy to calculate from (6) that

𝐻
𝑘
(√𝜆𝑡) = (−1)

𝑘
1

(√𝜆)
𝑘

(
𝑑
𝑘

𝑑𝑡
𝑘

{𝑒
−𝜆𝑡
2

} 𝑒
𝜆𝑡
2

) ; (8)

then

ℎ
𝑘
(√𝜆𝑡) = (2

𝑘

√𝜋𝑘!)
−(1/2)

(−1)
𝑘

1

(√𝜆)
𝑘

× (
𝑑
𝑘

𝑑𝑡
𝑘

{𝑒
−𝜆𝑡
2

} 𝑒
𝜆𝑡
2

) 𝑒
−(1/2)𝜆𝑡

2

.

(9)

Therefore, we define

̃
ℎ
𝑎
𝑖

𝑘,𝜆
(𝑡) = (𝜆𝑎

𝑖
)
1/2

ℎ
𝑘
(√𝑎
𝑖
𝜆𝑡)

= (𝜆𝑎
𝑖
)
1/2

(2
𝑘

√𝜋𝑘!)
−(1/2)

(−1)
𝑘

×
1

(√𝑎
𝑖
𝜆)
𝑘

𝑑
𝑘

𝑑𝑡
𝑘

{𝑒
−𝑎
𝑖
𝜆𝑡
2

} 𝑒
(𝑎
𝑖
𝜆/2)𝑡
2

,

(10)

which also form the orthonormal basis for 𝐿2(R) for any pos-
itive constant 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑛).

Let 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) ∈ (Z+)

𝑛, 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈

R𝑛, 𝑎 = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), and 𝑎

𝑖
> 0 for 𝑖 = 1, 2, . . . , 𝑛. The

higher dimensional Hermite functions denoted byΦ
𝛼
can be

obtained by taking tensor products:

Φ
𝛼
(𝑥) =

𝑛

∏

𝑗=1

ℎ
𝑎
𝑗

(𝑥
𝑗
) . (11)

Then the family {Φ
𝛼
: 𝛼 ∈ (Z+)

𝑛

} is an orthonormal basis for
𝐿
2

(R𝑛) (see [11]).
We define

Φ
𝑎

𝛼,𝜆
(𝑥) =

𝑛

∏

𝑗=1

̃
ℎ
𝑎
𝑗

𝛼
𝑗
,𝜆
(𝑥
𝑗
) ; (12)

then {Φ𝑎
𝛼,𝜆

: 𝛼 ∈ (Z+)
𝑛

} for any fixed 𝑎 and 𝜆 is also the
orthonormal basis for 𝐿2(R𝑛). If 𝜆 = 1 and 𝑎

𝑖
= 1 for 𝑖 =

1, 2, . . . , 𝑛, then Φ
𝛼
(𝑥) = Φ

𝑎

𝛼,𝜆
(𝑥). And {Φ

𝛼
: 𝛼 ∈ (Z+)

𝑛

} are
eigenfunctions of the Hermite operator 𝐻 = −Δ + |𝑥|

2; that
is,𝐻Φ

𝛼
= (2|𝛼| + 𝑛)Φ

𝛼
, where Δ = ∑𝑛

𝑖=1
𝜕
2

/𝜕𝑥
2

𝑖
is Laplacian

on R𝑛, and |𝛼| = ∑𝑛
𝑗=1
𝛼
𝑗
.

For 𝜆 ∈ R \ {0}, let 𝜋
𝜆
(𝑥, 𝑦, 𝑡) be the Schrödinger

representation ofH𝑎
𝑛
, which acts on 𝐿2(R𝑛) by

𝜋
𝜆
(𝑥, 𝑦, 𝑡)Φ (𝜉) = 𝑒

𝑖𝜆𝑡+𝑖𝜆(𝑎∗𝑥)⋅𝜉+(𝑖/2)𝜆(𝑎∗𝑥)⋅𝑦

Φ(𝜉 + 𝑦) . (13)

By a direct computation and the law ofH𝑎
𝑛
; we then obtain

𝜋
𝜆
(𝑧, 𝑡) 𝜋

𝜆
(𝑧
󸀠

, 𝑡
󸀠

) = 𝜋
𝜆
((𝑧, 𝑡) (𝑧

󸀠

, 𝑡
󸀠

)) , (14)

which indicates that 𝜋
𝜆
is unitary. In addition, we deduce that

𝜋
𝜆
is irreducible (see [12]).
Suppose that 𝑓 ∈ 𝐿

1

(H𝑎
𝑛
), the Fourier transform of 𝑓 is

an operator-valued function acting on 𝐿2(R𝑛) by

𝑓 (𝜆) = ∫

H𝑎
𝑛

𝑓 (𝑧, 𝑡) 𝜋
𝜆
(𝑧, 𝑡) 𝑑𝑧 𝑑𝑡. (15)

If we write 𝜋
𝜆
(𝑧, 𝑡) = 𝑒

𝑖𝜆𝑡

𝜋
𝜆
(𝑧), where 𝜋

𝜆
(𝑧) = 𝜋

𝜆
(𝑧, 0), and

define

𝑓
𝜆

(𝑧) = ∫

+∞

−∞

𝑒
𝑖𝜆𝑡

𝑓 (𝑧, 𝑡) 𝑑𝑡, (16)

then (15) can be rewritten as

𝑓 (𝜆) = ∫

R2𝑛
𝑓
𝜆

(𝑧) 𝜋
𝜆
(𝑧) 𝑑𝑧 =W

𝜆
(𝑓
𝜆

) , (17)
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where W
𝜆
is the Weyl transform. By the same argument of

the theory of Weyl transforms on the Heisenberg group we
have

󵄩󵄩󵄩󵄩󵄩
𝑓
𝜆
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(R2𝑛)

=

𝑛

∏

𝑖=1

𝑎
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑓(𝜆)

󵄩󵄩󵄩󵄩󵄩

2

HS. (18)

From this identity we obtain the Plancherel formula

󵄩󵄩󵄩󵄩
𝑓
󵄩󵄩󵄩󵄩𝐿2(H𝑎

𝑛
)
= {∫

+∞

−∞

󵄩󵄩󵄩󵄩󵄩
𝑓(𝜆)

󵄩󵄩󵄩󵄩󵄩

2

HS
𝑑𝜇(𝑎, 𝜆)}

1/2

,

𝑓 ∈ 𝐿
1

(H𝑎
𝑛
) ∩ 𝐿
2

(H𝑎
𝑛
) ,

(19)

where 𝑑𝜇(𝑎, 𝜆) = (2𝜋)
−𝑛−1

|𝜆|
𝑛

∏
𝑛

𝑖=1
𝑎
𝑖
𝑑𝜆 and ‖ ⋅ ‖HS is the

Hilbert-Schmidt norm of operators. For 𝑓, 𝑔 ∈ 𝐿
1

(H𝑎
𝑛
) ∩

𝐿
2

(H𝑎
𝑛
), the Parseval formula is

⟨𝑓, 𝑔⟩
𝐿
2
(H𝑎
𝑛
)
= ∫

+∞

−∞

tr (𝑔(𝜆)∗𝑓 (𝜆)) 𝑑𝜇 (𝑎, 𝜆) , (20)

where 𝑔(𝜆)∗ denotes the adjoint of 𝑔(𝜆). For any (𝑧, 𝑡) ∈ H𝑎
𝑛
,

𝑧 = 𝑥 + 𝑖𝑦, where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈

R𝑛. Thus, (𝑧, 𝑡) can be written as (𝑥, 𝑦, 𝑡) ∈ H𝑎
𝑛
. We define the

left-invariant vector fields 𝑋
𝑗
, 𝑌
𝑗
(𝑗 = 1, 2, . . . , 𝑛), and 𝑇 on

H𝑎
𝑛
. These are given by

𝑋
𝑗
= (

𝜕

𝜕𝑥
𝑗

−
1

2
𝑎
𝑗
𝑦
𝑗

𝜕

𝜕𝑡
) , 𝑗 = 1, 2, . . . , 𝑛,

𝑌
𝑗
= (

𝜕

𝜕𝑦
𝑗

+
1

2
𝑎
𝑗
𝑥
𝑗

𝜕

𝜕𝑡
) , 𝑗 = 1, 2, . . . , 𝑛,

(21)

and 𝑇 = 𝜕/𝜕𝑡 (see [10]). The 2𝑛 + 1 vectors fields generate the
Lie algebra of the generalized Heisenberg group.

The generalized Heisenberg sub-Laplacian is explicitly
given by

ℓ = −

𝑛

∑

𝑗=1

(𝑋
2

𝑗
+ 𝑌
2

𝑗
) . (22)

Also, a direct computation shows that

ℓ = −

𝑛

∑

𝑗=1

(
𝜕
2

𝜕𝑥
2

𝑗

+
𝜕
2

𝜕𝑦
2

𝑗

) −

𝑛

∑

𝑗=1

𝑎
𝑗
(𝑥
𝑗

𝜕

𝜕𝑦
𝑗

− 𝑦
𝑗

𝜕

𝜕𝑥
𝑗

)
𝜕

𝜕𝑡

−
1

4

𝜕
2

𝜕𝑡
2

𝑛

∑

𝑗=1

𝑎
2

𝑗
(𝑥
2

𝑗
+ 𝑦
2

𝑗
) .

(23)

We know that (−Δ + |𝑥|2)Φ
𝛼
= (2|𝛼| + 𝑛)Φ

𝛼
(see [11]). In

dimension one, in fact, we have

(−
𝑑
2

𝑑𝑥
2

1

+ 𝑥
2

1
)ℎ
𝛼
1

(𝑥
1
) = (2𝛼

1
+ 1) ℎ

𝛼
1

(𝑥
1
) . (24)

In 𝑛 dimensions, this equation together with (11) shows that
Φ
𝛼
is an eigenfunction of the Hermite operators in each

variable:

(−
𝑑
2

𝑑𝑥
2

1

+ 𝑥
2

1
)Φ
𝛼
(𝑥) = (2𝛼

1
+ 1)Φ

𝛼
(𝑥) . (25)

Therefore, for each 𝜆, we have

(−
𝑑
2

𝑑𝑥
2

1

+ 𝜆
2

𝑥
2

1
)Φ
𝛼
(|𝜆|
1/2

𝑥) = |𝜆| (2𝛼
1
+ 1)Φ

𝛼
(|𝜆|
1/2

𝑥) .

(26)

Let 𝑎
𝑖
> 0 for 𝑖 = 1, 2, . . . , 𝑛; then

𝑛

∑

𝑖=1

(−
𝑑
2

𝑑𝑥
2

𝑖

+ (𝑎
𝑖
𝜆)
2

𝑥
2

𝑖
)Φ
𝑎

𝛼,𝜆
(𝑥)

=

𝑛

∑

𝑖=1

(−
𝑑
2

𝑑𝑥
2

𝑖

+ (𝑎
𝑖
𝜆)
2

𝑥
2

𝑖
)

⋅ (𝜆
𝑛/2

𝑛

∏

𝑖=1

𝑎
1/2

𝑖

𝑛

∏

𝑗=1

ℎ
𝛼
𝑗

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗
𝜆
󵄨󵄨󵄨󵄨󵄨

1/2

𝑥
𝑗
))

= |𝜆|

𝑛

∑

𝑖=1

𝑎
𝑖
(2𝛼
𝑖
+ 1) ⋅

𝑛

∏

𝑖=1

((𝜆𝑎
𝑖
)
1/2

ℎ
𝛼
𝑖

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗
𝜆
󵄨󵄨󵄨󵄨󵄨

1/2

𝑥
𝑖
))

= (2

𝑛

∑

𝑖=1

𝑎
𝑖
𝛼
𝑖
+

𝑛

∑

𝑖=1

𝑎
𝑖
) |𝜆| ⋅

𝑛

∏

𝑗=1

̃
ℎ
𝑎
𝑗

𝛼
𝑗
,𝜆
(𝑥
𝑗
)

= (2𝑎𝛼 + |𝑎|) |𝜆| Φ
𝑎

𝛼,𝜆
(𝑥) ,

(27)

where 𝑎𝛼 = ∑𝑛
𝑖=1
𝑎
𝑖
𝛼
𝑖
and |𝑎| = ∑𝑛

𝑖=1
𝑎
𝑖
.

Therefore, {Φ𝑎
𝛼,𝜆

: 𝛼 ∈ (Z+)
𝑛

} are eigenfunctions of
operator∑𝑛

𝑖=1
(−(𝑑
2

/𝑑𝑥
2

𝑖
) + (𝑎
𝑖
𝜆)
2

𝑥
2

𝑖
) with eigenvalues (2𝑎𝛼 +

|𝑎|)|𝜆|.
Now we consider the space H

𝑘
spanned by {Φ𝑎

𝛼,𝜆
(𝑥) :

|𝛼| = 𝑘}. It is clear that the dimension of H
𝑘
is 𝑑
𝑘
= (𝑛 +

𝑘 − 1)!/(𝑛 − 1)!𝑘! (see [13]). Then we have

𝐿
2

(R
𝑛

) =

∞

⨁

𝑘=0

H
𝑘
. (28)

Let P
𝑘
denote the orthogonal projection operator from

𝐿
2

(R𝑛) to H
𝑘
. For 𝑘 ∈ Z+, 𝜎 = +or−. Let H̃𝜎

𝑘
be the subspace

of 𝐿2(H𝑎
𝑛
) such that

̃H+
𝑘
= {𝑓 ∈ 𝐿

2

(H𝑎
𝑛
) : 𝑓 (𝜆) = 𝑓 (𝜆)P

𝑘
,

P
𝑘
= 0 if 𝜆 < 0} ,

̃H−
𝑘
= {𝑓 ∈ 𝐿

2

(H𝑎
𝑛
) : 𝑓 (𝜆) = 𝑓 (𝜆)P

𝑘
,

P
𝑘
= 0 if 𝜆 > 0} .

(29)

Then we have

𝐿
2

(H𝑎
𝑛
) =

∞

⨁

𝑘=0

(
̃H+
𝑘
⊕
̃H−
𝑘
) . (30)

Set H̃
𝑘
=
̃H+
𝑘
⊕
̃H−
𝑘
= {𝑓 ∈ 𝐿

2

(H𝑎
𝑛
) : 𝑓(𝜆) = 𝑓(𝜆)P

𝑘
}; then we

can write the above decomposition as

𝐿
2

(H𝑎
𝑛
) =

∞

⨁

𝑘=0

H̃
𝑘
. (31)

More details can be found in [14].
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3. Inversion of the Radon Transform on H𝑎
𝑛

The Radon transform 𝑅 for a function 𝑓 on the generalized
Heisenberg groupH𝑎

𝑛
is defined by

𝑅 (𝑓) (𝑧, 𝑡) = ∫

C𝑛
𝑓 ((𝑧, 𝑡) (𝑧

󸀠

, 0)) 𝑑𝑧
󸀠

= ∫

C𝑛
𝑓(𝑧
󸀠

, 𝑡 +
1

2
Im
𝑛

∑

𝑗=1

𝑎
𝑗
𝑧
𝑗
𝑧
󸀠

𝑗
)𝑑𝑧
󸀠

= ∫

R𝑛×R𝑛
𝑓(𝑢, V, 𝑡

+
1

2
((𝑎 ∗ 𝑦) 𝑢 − (𝑎 ∗ 𝑥) V)) 𝑑𝑢 𝑑V,

(32)

where 𝑧󸀠 = (𝑧󸀠
1
, 𝑧
󸀠

2
, . . . , 𝑧

󸀠

𝑛
), 𝑧󸀠 = 𝑢+𝑖V, 𝑧󸀠

𝑗
= 𝑢
𝑗
+𝑖V
𝑗
, 𝑧 = 𝑥+𝑖𝑦,

and 𝑑𝑧󸀠 = 𝑑𝑢 𝑑V. Clearly, when 𝑎 ≡ 1, that is, 𝑎
𝑖
= 1 for

𝑖 = 1, 2, . . . , 𝑛, the above formula is just the Radon transform
on the Heisenberg groupH𝑛.

Next, we will obtain some inversion formulas for the
inverse Radon transform by means of the Euclidean Fourier
transform, differential operators, and sub-Laplacian. We first
consider the way of the Euclidean Fourier transform. In fact,
Strichartz [5] had obtained the inverse Radon transform on
H𝑛 by using Euclidean Fourier transform. However, he did
not show on which space the formula holds. In this section,
we not only find a subspace of S(H𝑎

𝑛
) on which the Radon

transform is a bijection, but also give the inversion Radon
transform onH𝑎

𝑛
, where S(H𝑎

𝑛
) is the Schwartz space onH𝑎

𝑛
.

Let F
3
denote the Euclidean Fourier transform with

respect to the central variable 𝑡 alone and let F denote the
full Euclidean Fourier transform; that is,

F
3
(𝑓) (𝑢, V, 𝜆) = ∫

R

𝑓 (𝑢, V, 𝑡) 𝑒𝑖𝜆𝑡𝑑𝑡,

F (𝑓) (𝑥, 𝑦, 𝜆) = ∬

R𝑛
∫

R

𝑓 (𝑢, V, 𝑡) 𝑒𝑖𝜆𝑡+𝑖𝑢𝑥+𝑖V𝑦𝑑𝑡 𝑑𝑢 𝑑V.

(33)

Because

F
3
(𝑅 (𝑓)) (𝑥, 𝑦, 𝜆)

= ∫

R

𝑅 (𝑓) (𝑥, 𝑦, 𝑡) 𝑒
𝑖𝜆𝑡

𝑑𝑡

= ∫

R

∫

R𝑛×R𝑛
𝑓(𝑢, V, 𝑡 +

1

2
((𝑎 ∗ 𝑦) 𝑢 − (𝑎 ∗ 𝑥) V))

× 𝑒
𝑖𝜆𝑡

𝑑𝑢 𝑑V 𝑑𝑡

= ∫

R𝑛×R𝑛
∫

R

𝑓 (𝑢, V, 𝑡) 𝑒𝑖𝜆𝑡𝑒−(𝑖/2)𝜆((𝑎∗𝑦)𝑢−(𝑎∗𝑥)V)𝑑𝑡 𝑑𝑢 𝑑V

= ∫

R𝑛×R𝑛
F
3
(𝑓) (𝑢, V, 𝜆) 𝑒𝑖𝑢(−(𝜆/2)(𝑎∗𝑦))+𝑖V((𝜆/2)(𝑎∗𝑥))𝑑𝑢 𝑑V,

(34)

we have

F
3
(𝑅 (𝑓)) (𝑥, 𝑦, 𝜆) = F (𝑓) (−

𝜆

2
(𝑎 ∗ 𝑦) ,

𝜆

2
(𝑎 ∗ 𝑥) , 𝜆) .

(35)

We define

S
∗
(H𝑎
𝑛
)

= {𝑓 (𝑥, 𝑦, 𝑡) ∈ S (H𝑎
𝑛
) : ∫

R

𝑓 (𝑥, 𝑦, 𝑡) 𝑡
𝑘

𝑑𝑡 = 0

∀𝑥, 𝑦 ∈ R
𝑛

, 𝑘 ∈ Z
+

}

S
∗

(H𝑎
𝑛
) = {𝑓(𝑥, 𝑦, 𝑡) ∈ S(H𝑎

𝑛
) :

𝜕
𝑘

𝜕𝑡
𝑘

𝑓(𝑥, 𝑦, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

∀𝑥, 𝑦 ∈ R
𝑛

, 𝑘 ∈ Z
+

} .

(36)

By argument analogous to [9], we also find that𝑓 ∈ S
∗
(H𝑎
𝑛
) if

and only ifF(𝑓) ∈ S∗(H𝑎
𝑛
), andF

3
is an isomorphism from

S
∗
(H𝑎
𝑛
) onto S∗(H𝑎

𝑛
). The spaces S

∗
(H𝑎
𝑛
) and S∗(H𝑎

𝑛
) are

regarded as Semyanistyi-Lizorkin type spaces that havemany
applications (see [6, 15]). We define an operator J

𝑎
which is

given by

J
𝑎
(𝑓) (𝑥, 𝑦, 𝑡)

= 𝑓(−
𝑡

2
𝑎
1
𝑦
1
, −
𝑡

2
𝑎
2
𝑦
2
, . . . , −

𝑡

2
𝑎
𝑛
𝑦
𝑛
,
𝑡

2
𝑎
1
𝑥
1
, . . . ,

𝑡

2
𝑎
𝑛
𝑥
𝑛
, 𝑡) .

(37)

It is easy to know thatJ
𝑎
is a bijection onS∗(H𝑎

𝑛
). The inver-

sion ofJ
𝑎
is given by

J
−1

𝑎
(𝑓) (𝑥, 𝑦, 𝑡)

=

{{{{{

{{{{{

{

𝑓(−
2𝑦
1

𝑎
1
𝑡
, −
2𝑦
2

𝑎
2
𝑡
, . . . , −

2𝑦
𝑛

𝑎
𝑛
𝑡
,

2𝑥
1

𝑎
1
𝑡
, . . . ,

2𝑥
𝑛

𝑎
𝑛
𝑡
, 𝑡) , for 𝑡 ̸= 0;

0, for 𝑡 = 0.

(38)

Now (35) reads as

F
3
(𝑅 (𝑓)) (𝑥, 𝑦, 𝜆) = J

𝑎
(F (𝑓)) (𝑥, 𝑦, 𝜆) . (39)

Therefore, we have an inversion formula of the Radon trans-
form as follows.

Theorem 1. Let 𝑓 ∈ S
∗
(H𝑎
𝑛
). Then one has

𝑅
−1

(𝑓) = F
−1

J
−1

𝑎
F
3
(𝑓) . (40)

We can give another inversion formula of 𝑅 by using
operator 𝐿 = ∏𝑛

𝑗=1
𝑎
𝑗
((1/4𝜋𝑖)(𝜕/𝜕𝑡))

𝑛. First of all, we give the
Fourier transform of Radon transform for a function 𝑓.
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Lemma 2. Let 𝑓 ∈ 𝐿2(H𝑎
𝑛
); then

(
̂
𝑅(𝑓) (𝜆)Φ

𝛼
) (𝜂) =

(−1)
|𝛼|

|𝜆|
−𝑛

2
𝑛

(2𝜋)
𝑛

∏
𝑛

𝑗=1
𝑎
𝑗

(𝑓 (𝜆)Φ
𝛼
) (𝜂) ,

(41)

whereΦ
𝛼
is the orthonormal basis for 𝐿2(R𝑛).

Proof. Because

F
3
(𝑓) (𝑢, V, 𝜆) = ∫

R

𝑓 (𝑢, V, 𝑡) 𝑒𝑖𝜆𝑡𝑑𝑡, (42)

then we have

(𝑅(𝑓) (𝜆)Φ
𝛼
) (𝜂)

= ∫

H𝑎
𝑛

𝑅 (𝑓) (𝑥, 𝑦, 𝑡) 𝑒
𝑖𝜆𝑡+𝑖𝜆(𝑎∗𝑥)𝜂+(𝑖/2)𝜆(𝑎∗𝑥)𝑦

× Φ
𝛼
(𝜂 + 𝑦) 𝑑𝑥 𝑑𝑦 𝑑𝑡

= ∫

R𝑛×R𝑛
F
3
(𝑓) (𝑢, V, 𝜆)

⋅ ( ∫

R𝑛×R𝑛
𝑒
𝑖𝜆(𝑎∗𝑥)𝜂+(𝑖/2)𝜆(𝑎∗𝑥)𝑦−(𝑖/2)𝜆[(𝑎∗𝑦)𝑢−(𝑎∗𝑥)V]

×Φ
𝛼
(𝜂 + 𝑦) 𝑑𝑥 𝑑𝑦) 𝑑𝑢 𝑑V.

(43)

Let Φ̂
𝛼
denote the ordinary Fourier transform of Φ

𝛼
on

R𝑛; then we have

∫

R𝑛×R𝑛
𝑒
𝑖𝜆(𝑎∗𝑥)𝜂+(𝑖/2)𝜆(𝑎∗𝑥)𝑦−(𝑖/2)𝜆[(𝑎∗𝑦)𝑢−(𝑎∗𝑥)V]

× Φ
𝛼
(𝜂 + 𝑦) 𝑑𝑥 𝑑𝑦

= ∫

R𝑛
𝑒
(𝑖/2)𝜆(𝑎∗𝑢)𝜂+(𝑖/2)𝜆(𝑎∗𝑥)𝜂+(𝑖/2)𝜆(𝑎∗𝑥)V

× (∫

R𝑛
Φ
𝛼
(𝜂 + 𝑦) 𝑒

−(𝑖/2)𝜆(𝜂+𝑦)(𝑎∗𝑢−𝑎∗𝑥)

𝑑𝑦)𝑑𝑥

= ∫

R𝑛
𝑒
(𝑖/2)𝜆(𝑎∗𝑢)𝜂+(𝑖/2)𝜆(𝑎∗𝑥)𝜂+(𝑖/2)𝜆(𝑎∗𝑥)V

× Φ̂
𝛼
(
𝜆

2
𝑎 ∗ (𝑢 − 𝑥)) 𝑑𝑥

= 𝑒
𝑖𝜆(𝑎∗𝑢)𝜂+(𝑖/2)𝜆(𝑎∗𝑢)V

× ∫

R𝑛
Φ̂
𝛼
(
𝜆

2
𝑎 ∗ (𝑢 − 𝑥)) 𝑒

(𝑖/2)𝜆(𝑎∗𝑢−𝑎∗𝑥)(−𝜂−V)
𝑑𝑥

=
2
𝑛

|𝜆|
−𝑛

(2𝜋)
𝑛

∏
𝑛

𝑗=1
𝑎
𝑗

𝑒
𝑖𝜆(𝑎∗𝑢)𝜂+(𝑖/2)𝜆(𝑎∗𝑢)V

Φ
𝛼
(−V − 𝜂) .

(44)

On the other hand, by the recursion formula of Hermite
polynomials (see [16]) we can get

Φ
𝛼
(−𝜂) = (−1)

|𝛼|

Φ
𝛼
(𝜂) , (45)

so we have

(
̂
𝑅(𝑓) (𝜆)Φ

𝛼
) (𝜂)

= ∫

R𝑛×R𝑛
F
3
𝑓 (𝑢, V, 𝜆)

2
𝑛

|𝜆|
−𝑛

(2𝜋)
𝑛

∏
𝑛

𝑗=1
𝑎
𝑗

× 𝑒
𝑖𝜆(𝑎∗𝑢)𝜂+(𝑖/2)𝜆(𝑎∗𝑢)V

Φ
𝛼
(−V − 𝜂) 𝑑𝑢 𝑑V

=
2
𝑛

|𝜆|
−𝑛

(2𝜋)
𝑛

∏
𝑛

𝑗=1
𝑎
𝑗

× ∫

H𝑎
𝑛

𝑓 (𝑢, V, 𝑡) 𝑒𝑖𝜆𝑡+𝑖𝜆(𝑎∗𝑢)𝜂+(𝑖/2)𝜆(𝑎∗𝑢)V

× Φ
𝛼
(−V − 𝜂) 𝑑𝑢 𝑑V 𝑑𝑡

=
(−1)
|𝛼|

|𝜆|
−𝑛

(2𝜋)
𝑛

∏
𝑛

𝑗=1
𝑎
𝑗

(𝑓 (𝜆)Φ
𝛼
) (𝜂) .

(46)

This completes the proof.

Let 𝐿 = ∏𝑛
𝑗=1
𝑎
𝑗
((1/4𝜋𝑖)(𝜕/𝜕𝑡))

𝑛

, 𝑓 ∈ S(H𝑎
𝑛
); then

∫

R

𝐿 (𝑓) (𝑥, 𝑦, 𝑡) 𝑒
𝑖𝜆𝑡

𝑑𝑡 =
(−𝜆)
𝑛

(4𝜋)
𝑛

𝑛

∏

𝑗=1

𝑎
𝑗
F
3
(𝑓) (𝑥, 𝑦, 𝜆) . (47)

Furthermore,

̂
𝐿(𝑓) (𝜆) =

(−𝜆)
𝑛

(4𝜋)
𝑛

𝑛

∏

𝑗=1

𝑎
𝑗
𝑓 (𝜆) . (48)

By (41), we have

(
̂
𝐿𝑅(𝑓) (𝜆)Φ

𝛼
) (𝜂)

= {
(−1)
𝑛+|𝛼|

(𝑓 (𝜆)Φ
𝛼
) (𝜂) , if 𝜆 > 0;

(−1)
|𝛼|

(𝑓 (𝜆)Φ
𝛼
) (𝜂) , if 𝜆 < 0.

(49)

We can verify that ̂
(𝐿𝑅)
2

(𝑓)(𝜆) = 𝑓 and 𝑅−1 = 𝐿𝑅𝐿.
However, we know that 𝑅(𝑓) may not belong to 𝐿2(H𝑎

𝑛
)

for a function 𝑓 ∈ 𝐿2(H𝑎
𝑛
). We naturally hope to find a space

on which the Radon transform is a bijection. Suppose thatΩ
is a subspace of 𝐿2(H𝑎

𝑛
) such that the Radon transform 𝑅 is

a bijection. That is, if 𝑓 ∈ Ω, then for all 𝑗 ∈ Z, 𝑅𝑗(𝑓) ∈ Ω.
From Lemma 2 and the Plancherel formula (19), we have

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑗

(𝑓)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(H𝑎
𝑛
)

=
(2𝜋)
2𝑗𝑛

4
𝑗𝑛

∏
𝑛

𝑖=1
𝑎
2𝑗

𝑖

∫

H𝑎
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝜆)

󵄩󵄩󵄩󵄩󵄩

2

HS|𝜆|
−2𝑗𝑛

𝑑𝜇 (𝑎, 𝜆) .

(50)

Define the subspace 𝑅(H𝑎
𝑛
) of 𝐿2(H𝑎

𝑛
) by

𝑅 (H𝑎
𝑛
) = {𝑓 ∈ S (H𝑎

𝑛
) : ∫

R

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝜆)

󵄩󵄩󵄩󵄩󵄩

2

HS|
𝜆|
2𝑗𝑛

𝑑𝜇 (𝑎, 𝜆) < +∞ ,

∀𝑗 ∈ Z} .

(51)
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Obviously, if 𝑓
1
, 𝑓
2
∈ 𝑅(H𝑎

𝑛
), 𝑓
1
̸= 𝑓
2
, then 𝑅(𝑓

1
) ̸= 𝑅(𝑓

2
).

Furthermore, for any 𝑔 ∈ 𝑅(H𝑎
𝑛
), we can find that 𝑓 ∈ 𝑅(H𝑎

𝑛
),

such that 𝑅(𝑓) = 𝑔. In fact, we take 𝑓 satisfying 𝑓(𝜆) =
∏
𝑛

𝑗=1
𝑎
𝑗
⋅ (−1)
|𝛼|

|𝜆|
𝑛

2
−𝑛

(2𝜋)
−𝑛

𝑔(𝜆). Since

∫

R

󵄩󵄩󵄩󵄩
𝑔(𝜆)

󵄩󵄩󵄩󵄩

2

HS|𝜆|
2𝑗𝑛

𝑑𝜇 (𝑎, 𝜆)

=
(4𝜋)
𝑛

∏
𝑛

𝑖=1
𝑎
2

𝑖

∫

R

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝜆)

󵄩󵄩󵄩󵄩󵄩

2

HS|
𝜆|
2(𝑗−1)𝑛

𝑑𝜇 (𝑎, 𝜆) ,

(52)

we can see that 𝑓 ∈ 𝑅(H𝑎
𝑛
). This is to say that the Radon

transform is a bijection from 𝑅(H𝑎
𝑛
) onto itself.

From the above discussion, we have the following.

Theorem 3. Let 𝑓 ∈ 𝑅(H𝑎
𝑛
); then

𝑅
−1

(𝑓) = 𝐿𝑅𝐿 (𝑓) . (53)

Next, we will give another inversion formula associated
with the generalizedHeisenberg group sub-Laplacian. In fact,
a direct calculation shows that

𝜋
𝜆
(𝑋
𝑗
) 𝜑 (𝜉) = 𝑖𝜆𝑎

𝑗
𝜉
𝑗
𝜑 (𝜉) ,

𝜋
𝜆
(𝑌
𝑗
) 𝜑 (𝜉) =

𝜕

𝜕𝜉
𝑗

𝜑 (𝜉)

(54)

and consequently

𝜋
𝜆
(ℓ) = −Δ + 𝜆

2󵄨󵄨󵄨󵄨
𝑎 ∗ 𝜉

󵄨󵄨󵄨󵄨

2 (55)

is the scaled Hermite operator, where 𝑋
𝑗
and 𝑌

𝑗
are the left-

invariant vector fields onH𝑎
𝑛
.

Because
𝑛

∑

𝑖=1

(−
𝑑
2

𝑑𝜉
2

𝑖

+ (𝑎
𝑖
𝜆)
2

𝜉
2

𝑖
) = −Δ + 𝜆

2󵄨󵄨󵄨󵄨
𝑎 ∗ 𝜉

󵄨󵄨󵄨󵄨

2 (56)

and {Φ𝑎
𝛼,𝜆

: 𝛼 ∈ (Z+)
𝑛

} are eigenfunctions of operator
∑
𝑛

𝑖=1
(−(𝑑
2

/𝑑𝜉
2

𝑖
) + (𝑎

𝑖
𝜆)
2

𝜉
2

𝑖
) with eigenvalues (2𝑎𝛼 + |𝑎|)|𝜆|,

we have

𝜋
𝜆
(ℓ)Φ
𝑎

𝛼,𝜆
(𝜉) = (2𝑎𝛼 + |𝑎|) |𝜆| Φ

𝑎

𝛼,𝜆
(𝜉) . (57)

Set 𝑓 ∈ H̃
𝑘
; then we have from [17]

ℓ̂𝑓 (𝜆) = (2𝑎𝛼 + |𝑎|) |𝜆| 𝑓 (𝜆) , (58)

where ∑𝑛
𝑖=1
𝛼
𝑖
= 𝑘.

Let 𝑓 ∈ H̃
𝑘
⋂S(H𝑎

𝑛
); then we can get

ℓ̂
𝑛
𝑓 (𝜆) = (2𝑎𝛼 + |𝑎|)

𝑛

|𝜆|
𝑛

𝑓 (𝜆) . (59)

Write Γ = ℓ𝑛; by (41), we can deduce

Γ̂𝑅𝑓 (𝜆) =
(2∑
𝑛

𝑖=1
𝑎
𝑖
𝛼
𝑖
+ 𝑛)
𝑛

(−1)
𝑘

4
𝑛

𝜋
𝑛

∏
𝑛

𝑗=1
𝑎
𝑗

𝑓 (𝜆) . (60)

Consequently, by Plancherel formula we obtain

󵄩󵄩󵄩󵄩󵄩
(Γ𝑅)
2

𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(H𝑎
𝑛
)

= ∫

+∞

−∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

̂
(Γ𝑅)
2

𝑓 (𝜆)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

HS
𝑑𝜇 (𝑎, 𝜆)

=
(2𝑎𝛼 + |𝑎|)

4𝑛

4
4𝑛

𝜋
4𝑛

∏
𝑛

𝑗=1
𝑎
4

𝑗

󵄩󵄩󵄩󵄩
𝑓
󵄩󵄩󵄩󵄩

2

𝐿
2
(H𝑎
𝑛
)
.

(61)

Theorem 4. Suppose that 𝑓 ∈ H̃
𝑘
⋂S(H𝑎

𝑛
); then we have

𝑅
−1

(𝑓) =

𝑛

∏

𝑗=1

𝑎
2

𝑗
⋅ (2𝑎𝛼 + |𝑎|)

−2𝑛

(4𝜋)
−2𝑛

(Γ𝑅Γ) (𝑓) , (62)

where ∑𝑛
𝑖=1
𝛼
𝑖
= 𝑘.

We conclude this section by giving the inverse Radon
transform with generalized sub-Laplacian.

Let 𝑢
𝑗
be positive constants for 𝑗 = 1, 2, . . . , 𝑛. We define

generalized sub-Laplacian by

ℓ̃ = −

𝑛

∑

𝑗=1

𝑢
𝑗
(𝑋
2

𝑗
+ 𝑌
2

𝑗
) , (63)

where𝑋
𝑗
and 𝑌

𝑗
are the left-invariant vector fields onH𝑎

𝑛
. Let

𝑓 ∈ H̃
𝑘
; by an analogous computation, we have

𝜋
𝜆
(ℓ̃)Φ

𝑎

𝛼,𝜆
(𝜉) = |𝜆|

𝑛

∑

𝑖=1

𝑢
𝑖
(2𝑎
𝑖
𝛼
𝑖
+ 𝑎
𝑖
)Φ
𝑎

𝛼,𝜆
(𝜉) , (64)

̂̃
ℓ𝑓 (𝜆) = |𝜆|

𝑛

∑

𝑖=1

𝑢
𝑖
(2𝑎
𝑖
𝛼
𝑖
+ 𝑎
𝑖
) 𝑓 (𝜆) . (65)

If we take 𝑢
𝑗
= 1/𝑎
𝑗
, then

̂̃
ℓ𝑓 (𝜆) = |𝜆| (2𝑘 + 𝑛) 𝑓 (𝜆) . (66)

In this case the Fourier transform of 𝑓 under the action of
generalized sub-Laplacian ℓ of H𝑎

𝑛
is the same as that of the

sub-Laplacian on H𝑛 (see [11]). Write Γ̃ = ℓ̃
𝑛; by Lemma 2,

Plancherel formula, and (65), we obtain the theorem below.

Theorem 5. Suppose that 𝑓 ∈ H̃
𝑘
⋂S(H𝑎

𝑛
). Then we have

𝑅
−1

(𝑓) =

𝑛

∏

𝑗=1

𝑎
2

𝑗
⋅ (

𝑛

∑

𝑖=1

𝑢
𝑖
𝑎
𝑖
(2𝛼
𝑖
+ 1))

−2𝑛

(4𝜋)
−2𝑛

(Γ̃𝑅Γ̃) (𝑓) ,

(67)

where ∑𝑛
𝑖=1
𝛼
𝑖
= 𝑘. Especially, when 𝑢

𝑖
= 1/𝑎
𝑖
, we have

𝑅
−1

(𝑓) =

𝑛

∏

𝑗=1

𝑎
2

𝑗
⋅ (2𝑘 + 𝑛)

−2𝑛

(4𝜋)
−2𝑛

(Γ̃𝑅Γ̃) (𝑓) . (68)
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Birkhäuser, Boston, Mass, USA, 1998.

[12] G. B. Folland, Harmonic Analysis in the Phase Space, Princeton
University Press, Princeton, NJ, USA, 1989.

[13] E. M. Stein and G.Weiss, Introduction to Fourier Analysis on the
Euclidean Spaces, Princeton University Press, Princeton, NJ,
USA, 1971.

[14] H. Liu and L. Peng, “Admissible wavelets associated with the
Heisenberg group,” Pacific Journal of Mathematics, vol. 180, no.
1, pp. 101–123, 1997.

[15] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Inter-
grals and Derivatives, Theory and Applications, Gordon and
Breach Science Publishers, Yverdon, Switzerland, 1993.

[16] J. B. Seaborn, Hypergeometric Functions and Their Application,
vol. 8, Springer, New York, NY, USA, 1991.

[17] D. Geller, “Fourier analysis on the Heisenberg group,” Journal of
Functional Analysis, vol. 36, no. 2, pp. 205–254, 1980.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


