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The paper establishes some sufficient conditions for the boundedness of singular integral operators and their commutators from
products of variable exponent Herz spaces to variable exponent Herz spaces.

1. Introduction

In recent years, the interest in multilinear analysis for study-
ing boundedness properties of multilinear integral operators
has grown rapidly. The subject was founded by Coifman and
Meyer [1] in their seminal work on singular integral operators
like Calderén commutators and pseudosdifferential oper-
ators having multiparameter function input. Subsequently,
many authors including Christ and Journé [2], Kenig and
Stein [3], and Grafakos and Torres [4] have substantially
added to the exiting theory.

Let K be a locally integrable function defined away from
the diagonal x = y, = --- = y,, in (R")"*", which for C > 0
satisfies the estimates

C
IK (%, y15 -5 y)| < m> (1)
1 (e =yl + -+ |x = )
and fore > 0,
'K(x,yl,...,ym)—K(x',yl,...,ym)'
C'x—x'e 2
<

mn+e’

) (Z;‘il 'x - y,~|)

whenever |x — x'| < (1/2) max{|x = Y1l lx =y} and
'K(x,yl,...,y,-,...,ym)—K(x',yl,...,yi,...,ym)|
C')’i‘)’i"e 3)
< m mn+e
(X7 ’x‘ij
whenever |y,—y/| < (1/2) max{|x—y],..., |x=y,,|} forall 1 <

i < m. Then K is called m-linear Calderén-Zygmund kernel.
In this paper, we consider an m-linear singular integral
operator T associated with the kernel K, which is initially
defined on product of the Schwartz space §(R") and takes
its values in the space of tempered distribution &' (R") such
that

T(fireeos fn) (%)

B J(Rn)mK(x’yl""’ym)fl ()/1)"'fm (ym)d)/1 o dY,
(4)

for x ¢ ﬂ;"zl supp f;, where fi,..., f,, € LE(R"), the space
of compactly supported bounded functions. If T' is bounded
from L' x --- x LP» to L? with 1 < p;---p,, < oo and
1/py + -+ 1/p,, = 1/p, then we say that T is an m-linear
Calderén-Zygmund operator. It has been proved in [4] that
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T is a bounded operator on product of Lebesgue spaces and
endpoint weak estimates hold. For the boundedness of T and
its commutators on the product of Herz-type spaces we refer
the reader to see [5, 6] and [7], respectively.

In the last few decades, however, a number of research
papers have appeared in the literature which study the
boundedness of integral operators, including the maximal
function, singular operators, and fractional integral and
commutators on function spaces with nonstandard growth
conditions. Such kind of spaces is named as variable exponent
function spaces which include variable exponent Lebesgue,
Sobolev, Lorentz, Orlicz, and Herz-type function spaces.
Among them the most fundamental and widely explored
space is the Lebesgue space LP™) with the exponent p
depending on the point x of the space. We will describe it
briefly in the next section; however, we refer to the book
[8] and the survey paper [9] for historical background and
recent developments in the theory of L?™ spaces. Despite
the progress made, the problems of boundedness of mul-
tilinear singular integral operators and their commutators
on LP® spaces remain open. Recently, Huang and Xu [10]
proved the boundedness of such integral operators on the
product of variable exponent Lebesgue space. Motivated by
their results, in this paper we will study the multilinear
singular integral on Herz space with variable exponent.
Similar results for the boundedness of commutators gen-
erated by these operators and BMO functions are also
provided.

Herz-type spaces are an important class of function
spaces in harmonic analysis. In [11, 12], Izuki independently
introduced Herz space with variable exponent p, by keeping
the remaining two exponents « and g as constants. Variability
of alpha was recently considered by Almeida and Drihem
[13] in proving the boundedness results for some classical
operators on such spaces. More recently, Samko [14] intro-
duced the generalized Herz-type spaces where all the three
exponents were allowed to vary. In this paper, we will study
the multilinear singular operators on variable exponent Herz
space Kz(q) introduced in [12].

Throughout this paper, C denotes a positive constant
which may change from one occurrence to another. The next
section contains some basic definitions and the main results
of this study. Finally, the last section includes the proofs of
main results along with some supporting lemmas.

2. Main Results

Let Q) be a measurable subset of R"” with Lebesgue measure
|Q] > 0. Given a measurable function p(-) : O — [1,00],
then for some A > 0 we define the variable exponent Lebesgue
space as

p(x)
*Y Q) = <|f is measurable : J- (M) dx < oo} ,
Q
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and the space LY (')(Q) as

loc

Lﬁf;’ Q) = {f f € LY (K) V compact subset K C Q}
(6)

The Lebesgue space LPY(Q) becomes a Banach function
space when equipped with the norm

p(x)
e N = I o

Given a locally integrable function f on Q, the Hardy-
Littlewood maximal operator M is defined by

Mf (x) :=supr™" J
r>0

|f ()] dy, 8)
B(x,r)NQ

where B(x,7) :={y € R" : |[x — y| < r}. We denote
p_:=essinf {p(x):x € Q},

€
p, =esssup {p(x):x€Q}.
We also define
P Q) :={p():p_>1,p, <oo},
BQ)={pO):p()e P, (10)

M is bounded on LP" (Q)}.

Cruz-Uribe et al. [15] and Nekvinda [16] independently
proved the following sufficient conditions for the bounded-
ness of M on LPV(Q).

Proposition 1. Let Q) be an open set. If p(-) € P(Q) satisfies

>

Y-

lp(x)-p(y)| < if |x—y| <

<
~log(Jx-y|)’ W

lp(x)-p(y)| < if |y] = |xl,

_ ¢
log (e + |x])’
then one has p(-) € B(Q).

Define 2°(Q) to be the set of measurable functions p :
Q — (0, co) such that

p_:=essinf {p(x): x € Q} >0,
(12)
P, :=esssup {p(x): x € Q} < oco.

Given p € Z°(Q), one can define the space L? ©) as above.
Since we will not use it in the this paper, we omit the details
here and refer the reader to see [10, 17].

Let By := {x : |x] <2}, A, = B, \ By, and y; = Xa, be
the characteristic function of the set A, for k € Z.

Definition 2. Fora € R,0 < g < co and p(-) € P(R"), the
homogeneous Herz space with variable exponent KZE’?) (R") is
defined by

KE8 (R") 1= {L (R {01 £ | fllgen oy < o0} (13)



ISRN Mathematical Analysis

where

If

1/q9
K;g(R" = { Z zkaq”ka”LP()([Rn } . (14)

k=—00

In the sequel, unless stated otherwise, we will work on
the whole space R"” and will not mention it. Taking b, and b,
in BMO, Huang and Xu in [10] define the three commutator
operators for suitable functions f and g. One of them is the
operator

(b1, b, T] (f, 9) (x)
=b(x)b, ()T (f,9) (x)—b, (x)T(f,bg) (x) (15)
b, (X)T (b f.g) (x) + T (b f.b,g) (x) .

As corollaries of their main results they give the following
estimates.

Theorem A. Let T be 2-linear Calderon-Zygmund operator
and p(-) € P°(R"). If p, (), p,(-) € B(R™) such that 1/ p(x) =
1/pi(x) + 1/ p,(x), then there exists a constant C independent

of the functions f, f, € L"), g, g, € L” and h € N such
that

[T Do < Cl Ao g0

. 1/r .. 1/r
<Z|T(fh’gh)|r> <C <Z|fh|rl>

00 1/r
. (zmi“)
h=1 120

hold, where1 < r; < oo forl=1,2and 1/r = 1/r, + 1/r,.

LeO) i) (16)

Theorem B. Let T be 2-linear Calderén-Zygmund operator,
by, b, € BMO(R"), and p(-) € .@O(R”).prl(-),pz(-) € B(R")
such that 1/p(x) = 1/p,(x) + 1/p,(x), then there exists a

constant C independent of the functions f, f, € LP©, g, g, €
LY and h € N such that
10, 6, T Dl o < Cln LB 1S v 9]0
o 1/r
<Z|[bl,b2,T] (fh’gh)r)
h=1 P0)
17)

: (gmrl)m (Zw)%

hold, where 1 < r; < oo forl=1,2and1/r = 1/r, + 1/r,.

) 12O

Motivated by these results, here we give the following two
theorems.

Theorem 3. Let T' be 2-linear Calderén-Zygmund operator
and p(-) € P(R"). Furthermore, let p,(-), p,(-) € BR"),

0<gq <00, -nd, <a<ndy,l =1,2 whered,,5, >0
are constants defined in the next section such that 1/p(x) =
1/p(x)+1/py(x), 1/g=1/q, + 1/qy and o = o + o). If T is

bounded from LP'© x LPO) to LPO), then

17/ Dligas = Clf i g

X242 5
KPZ )

o 1/r 1/,
(ZlT(fh’gh)r) <Z|fh rl)

0 1/r,
. (zmrz)
h=1

hold for all f, f;, € Ka1 q)‘ 9>9n € K;‘:f;, where 1 < r; < 00 for
I=12and1l]r = l/r1 + 1/r,.

%4 X141
K:() K;(-)

Koty
(18)

Theorem 4. Let T be 2-linear Calderén-Zygmund operator,
b;,b, € BMO(R"), and p(-) € P(R"). Furthermore, let
P1O), () € BR™), 0 < g < 00, -nb, < oy < nd,, =12,
where 8,0, > 0 are constants defined in the next section,
such that 1/p(x) = 1/p;(x) + 1/py(x), 1/q = 1/q; + 1/,
& = & +a,. If [b, by, T] is bounded from LP') x L7 to L2,
then

|61, 6, T1( £, 9)

o LY L Y b PO e P

o 1/r
<hZ|[b1,b2,T] (fw gh)|r>

. 1/r,
; (zw)
h=1

xCllr|. ]

K
1/r,
(zw)

hold for all f, f, € K}, g, g € Ky}, where 1 < 1, < co for
I=1,2and1]r = 1/r1 +1/r,.

(19)

1 ql F %242
Ka K;z(-)

3. Proofs of the Main Results

In this section, we will prove main results stated in the last
section. The ideas of these proofs mainly come from [5, 7]. We
use the notation p’(x) to denote the conjugate index of p(x).
Here we give some lemmas which will be helpful in proving
Theorems 3 and 4.

Lemma 5 (see [10, 18], generalized Holder’s inequality). Let
PP P2 € Z(RY).

@) Iff € LP, g € LP'O, then one has
| /gl < Collfllrollglros (20)

whereC, =1+1/p_-1/p,.



O Iff e LMY, g e LPY and 1/p(x) = 1/p,(x) +
1/p,(x), then there exists a constant C ' such that

I /gl < Cpp lf el glires (21)
holds, where C,,,, = (1+1/(p;)_ — 1/(py),)"/*-.

Lemma 6 (see [12]). If p € B(R"), then there exist a constant
C > 0 such that for all balls B in R",

Ixsll oo Xl 0 < CIBI. (22)

Lemma 7 (see [12]). If p € B(R"), then there exists constants
8,C > 0 such that for all balls B in R" and all measurable

subsets S C B,
5
bl c<ﬂ> . (23)
Ixel oo |B]

Lemma 8 (see [19, Remark 1]). If p, € B[R"), 1 = 1,2,
then by Proposition 1 one has p, € B(R"). Therefore, applying

Lemma 7, one can take positive constants 6pl, 81’1’ > 0 such that

”XS“LP{U < C<@>8P;S (24)
P N

sl _ 181

"XS”LP(') NE

sl oo - C(@f‘”)

"XB"LP;(-) |B|
for all balls B in R" and all measurable subsets S C B.

Recently, Izuki [19] established a relationship between
Lebesgue space with variable exponent and BMO space
which can be stated in the form of the following lemma.

Lemma 9. One has that for allb € BMO(R") and alli, j € Z

with j > i,

_ 1
clnw*ssupmgw——wb—ngﬂmmscmmu
Bball || XB|| 1r0) (25)

[~ b5) x5 |, <CG -0 o,

XB,

I ON

The next lemma is the generalized Minkowski’s inequality
and is useful in proving vector valued inequalities.

Lemma 10 (see [19]). If 1 < r < oo, then there exists a
constant C > 0 such that for all sequences of functions { f,},2,

satisfying I{ fi}ullor | 1 < 00,

1/r

{;Z(Jw | )| dy)’}l/r <C JRn {glfh ()’)r]’ dy.

(26)

Proof of Theorem 3. In order to make computations easy, first
we have to prove the following inequality:

2klx"T (in’ ng) Xk“Lp(-) < CD, (k, 1) 2!'061 "in"LPl(-)

x D, (k, j) 2/

9] e
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where for k,i € Z,1=1,2,

IR i< k-2,
D, (ki) =11, ifk-1<i<k+1, (28)
20Dy i > k4 2,

Ifk—1<i<k+1,k—1< j<k+1,thenwehave 2 ~ 2 ~ 2/;
hence by the L?") boundedness of T, we obtain

2IT (o 9%;) 1 oo = C2° | Fiill g 2 .

x| o

In the other cases, we see that [x— y; | +|x—y,| ~ omax(bhy) for

x € A, yp € Ay, y, € Aj. Thus by the generalized Holder’s
inequality,

IT (fx 9x;) ) e )] < C272 ™ el g, - e ()

< Cp2max(kiin "f Xi "Lm(«) "Xz‘ || o

%3] o [ ot 2 0.
(30)
Applying Lemma 5, we have
I (£ 93) e
< C272 ™ o Il o
%95 o [ o0 Dot (3D

<2 filuno |t [ o

2" max(k,j)n

"ng"LPz(') 'XBk ”LPz(')'

XB;

L0

Now, fori < k -2, j < k -2, by Lemmas 6 and 8, it is easy to
show that

I (fx> 9x;) 1l oo

< C||in||Lp1(~) ”XBi ”Lp{(.) " . ||XBj 150 (32)
"XBk ”Lp{w | B || 1A
< Ao gl o2
By a similar argument fori > k + 2, j > k + 2, we get
I ax ) x| e
ST ET L T
"XBi"U1(~) |XB} Lp20

s C”f)(i|lLP1<')2(k_i)msp1 "ng"Lﬂz(» z(k—j)mspz .
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In view of (29)-(33), (27) is obvious. Now by Minkowski’s
inequality and (27), we get

> T(fxo 9x)xk

i=—00 j=—00

2UTCf @) x| oo < 2

s

< Z Z k“"T(sz’gXJ)Xk”LP()

i=—00 ]_—

(34)
<C Y Dy (ki) 2| fill o

i=—00

x Y D, (k, j)2’*

j==o0

I o

Since 1/q = 1/q, + 1/q,, then by definition

IT (£, 9)”1{;;?)

- 1/q
= { Z ZkaqHT (f.9) Xk“Zp(«)]’
k=—00

< { Z ( Z D, (k. ) 2ia1||in||Lp1(->

k=—00 \ i=—00

x Y D, (k j)2’*

j=—00

ax|

q 1/q
U’z(-)) } (35)

00 0 a1y Y
SC{ > ( Y D, (k,i)2™ ||fxi||Lp1<.>> }
k= i

=—00 \i=—00
3 YV
[eS) ) )
X{ Z < Z Dz (k,j)zjaz ng”Lpz(-)) }
k=—00 \ j=—0c0
=1, x I,.

It remains to show that I, < C”f”K“lE”Il and I, <
P10
Clgl K By symmetry, we only approximate I,. If 0 < g; <
P2l

1, then by the well-known inequality (¥ |a;[)" < Y |a;|" and
the inequality

[ee) (o)
Y Dy(k,i)’ + ) Dy(k,j)’ <oco, foranyy >0, (36)
i=—00 j=—00
we have

1/q
{ z 2 ”sz 720 Z D, (k, l)ql}

k=—00

(37)
1/q,
{ Z zlalql “le LPI()} = C"f“Kgll{i)l .

i=—00

5
If g, > 1, Holder’s inequality and inequality (36) yield
(e} [ee] i
LsCy Y X Dulki™ 2 flh,
k=—00 i=—00
. , A
x { Y Dy(k, i)q‘/z} }
e (38)
0 1/q,
{ Z o4y "sz "Lm( Z D, (k, i)ql/Z}
i=—00 =—00
1q
cof $ @l ] -l
Therefore, for 0 < g, < co
< C| fllgmsan- (39)
By symmetry, for 0 < g, < 0o we have
< Cllglgezzn- (40)
Finally, we obtain
I7Cf Dz < Clf e | glgoase- (41)

By virtue of Lemma 10 and the fact that 1/r = 1/r; + 1/r,, it

is easy to show that
00 . 1/
<of(S1ar)
h=1

s 1/r
<Z|T(fh’ gh)|r>
h=1
. 1/r,
(zmrz)
h=1

K> Kot
) 1)

X
i
(42)
?olds forall f, € K“l(q) gn € )2, where 1 < r; < oo for
=1,2.
Thus the proof of Theorem 3 is complete. O

Proof of Theorem 4. Similar to the proof of Theorem 3, for the
casek—1 <i < k+1,k-1 < j < k+1, we use L") boundedness
of [by, by, T] to obtain

251, b TI 0 92k 0
< Cloi | 18l 2 | fxill o 27 ”ng|
For other possibilities we have [x—y, [+]|x—y,| ~ 2

forx € A, y; € A, y, € A ;. Thus, we consider the following
two cases.

Casel (i < k-2, j < k—2). We denote (b)p by b, where

(43)

J9Z10N

max(k,i, )

(&) = J b(x)dx, I=1,2 (44)

El



6

and consider the following decomposition:

(b, b, T] ( fo 9x;) ()
= (b (%) = by;) (by (%) = by;) T (fixio 9x;) (%)
= (b () =) T (e (B2 () = b gx;) (%)
(B (x) = by,) T (B () = b)) fxio 9x;) ()

+T((0, ) = by) o (B, ) = byy) g5) ()
=L, (x)+L,(x)+Ls(x)+L,(x).
Thus,

(45)

4 4
"[blrbz’T] (in>ng) Xk“y(a < Z”(Lm) Xk"LP(" = Z]m'
m=1 m=1
(46)

Now, we will estimate each J,, (im = 1,..., 4), separately.
Applying Lemma 5, we have

|L1 (x)| < C2—2k” |b1 (x) - blil |b2 (x) - szl

x| il il

< C27 il o Il o 9
x [y () = byy| by () by

120 X] LP; ©)

Therefore, by virtue of generalized Hoélder’s inequality and
Lemmas 6, 8, and 9, we get

o= I el oo
< C2—2kn||in"Lm(_> ”Xi"Lp{(*) ||gX] LP20O
X ”(b1 (x) - by;) (bz (x) - sz) Xk||Lp<->

< C2_2kn”in ”me ”XBi ”Lp{(-)

Xj ”LPQW

x ”(bl (x) = by;) XB, ||Lp1<-> ”ng 1020 || XB; | b0
x ”(bz (%) ~ ij) By || 1200
< Clol. el 27" (k= i) | fxill s
(48)
] V) TS N e
x (k- j) “ng 1020 || XB; || b0 [ XBill 200
< Clo|. el k=i | fxill oo
“XBi “m{(a (k- j) ”ng o 'XBj 1720
AR ol
< Clonl el ) flpno (=i 27"

gt | s (= )27
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Similarly, using Lemma 9, we approximate L, as
Lol = €27 Iy G = Bl |l | (8 O = ) 9

< C27 by () = byl | fral oo [l 1240

(49)

o 227 e (CIORL Y et

< Cllbo|. 27" [by () = bl | fxill oo

oo ol o

XB;

h0”
Therefore, in view of Lemmas 6, 9, and 8, we have
L= ||(L2)Xk||LP<'>

s C"bz”*zfzkn"f Xi"mw “XBi ” 20

x 1B 0) = by el o |9 s | 1,

Lr2®)

< Cll L 1ea L 27" il s, |t

PO

U= [ane ol s

20

< Cle.fea]l, e =) il

L0 (50)

s, o
[ st

<l o)L D frl o G =27

XB;

LP;(-)

"ng

20

By || p20)

k—i)mSP;
_(k—j)n(spé )

1r20) 2

x|ax;

By symmetry, the estimate for J; is similar to that for J,;
therefore,

—(k—i)nd s
I <l el |l 2™

51
k . 7(k—j)n6P, ( )
1920) (k=j)2 2.

x|gx;

Finally, it remains to estimate J,. For that, we use Lemma 9 to
write

|Ls|
= |7 ((b () = 1) oo (B () = by;) 9x;) ()]
<C27(8 O = by) fll | (B O = b)) 9
< C27 fill oo |6 ) = Bl o s
x B0 = by st
< C27| fill o |61 ) = B s o |9

x|, - b)),

20

Lr20

90
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< ol el 2 Wl o e o il o

d

XB;

0N

(52)
Thus, by Holder’s inequality and Lemmas 6 and 8, we obtain
Ja = L) xill o

< Clonl. lel. 2" | il x| o s
d

< Clle 1oL 27 il s, | v [ [

Lr2©)

XBj|| 1pr00 “Xk " o0

x "ng 1220 | XB; || oo [ XBil| 200
. XB, || 70l c
< Cla. 8. e =) | fxill oo bl
(e e
‘XBJ' P50
XNIXi || 1 pac
e
—(k=i)nd ~(k=j)nd ,
< Clal el 1ol oo™ a2
(53)
Combining the estimates for J;, J,, J5, and J,, we have
|02, T1C e a0 < ClLNL BN Fil
x (k - ) 5~ (kind,y " e
x (k- j) 2 ",
(54)

Case Il (i > k+2, j > k +2). We denote (b)p,_ by by, where
(b,)Bk = (1/|Bl) IBk b(x)dx, I =1,2.Inthis case, we consider
the following decomposition:

(b, b, T] (f ng) (x)
= (b1 (x) - blk) (bz (x) - bzk) T (in’ng) (x)

~ (b () = b) T (o (B, )~ by) gx;) ()

(55)

(b (x)-by)T ((b1 () = by) fx ng) (x)

T (B ) = b fte (B O) = b ;) (%)

=L, (x)+L,(x)+ f,3 (x) + L, (x).
Thus,
4
|81 62, 7] (f 93) i o < D N(Tom) Xk o
m=1

(56)

Ton-

M-

1

3
I

7

Let us first compute J,. As in the proof of Theorem 3, in this
case we estimate L, as

2] = Clo (O =il Iy (0 =l 27 ls2"

X gX 1
o .
< Clby (x) = byl 1B (%) = B 27| o
Il oo 27" |9 oo | ot

By virtue of generalized Holder’s inequality and Lemmas 6-9,
we obtain

To= @) il o
< C2 " fillno s o2 sl e
x|y () = by ) (s () = by il o
< 2" fiiluno s | o 16 0 = Bl
o (B2 () = bye) xl o

< Cla, &, Zimllei oo “XBi "Lpi(’) 'lXBk “m(»)

AB;

LP; Q]

><27jn“9Xj 1720 | XB; | 15}

X2_jn“ng 1020 | XB; || 10 [ XBifl 200
“XB ” ) "XB 0
< Clo . el ) il o T—5= “ng 120 e
"XB,-"Lm(-) B; || 15200
< Cllr LIl ol 27 gty 2%
(58)

Next, we approximate J,. Using Lemma 9, it is easy to see that

|]-2| < C27" by (%) = by | fxill “(bz () = by) QX]'“L1

<C2™ |b1 (%) - blkl “in“LPl(’) "Xi”Lp{(»)

X 2—jn“ng“LP2(') "(bz(') = by X 0 (59)
= C||b2||*2"i” |y (x) = by ||in"LP1(‘)|XB,- "Lp;w
x(j—k) oy in ng"L"z(‘) X5 || 0

Thus, in view of Lemmas 6, 9, and 8, we get

T = (Z2) 1] o
< Cloll 27" | il oo | s, oo 101 ) = Bl s

x(j-k)2™"

gX] Lr2®) XBj Lpé(.)



< C"bl ” x ||b2 ” # z_in"in ||LP1(-> ”XBi ”Lpi(') “XBk |'LP(~)

x(j—k)2 e “QX]“LPZ() XB;

LPZ()

< Cle.fea] 0 Fxill e “XB"””“)( k)

e

Lr20)

X "ng “lfk
B

< o) 18l | il 27 g

x (j—k)2®mn,

L0

il Le2¢)

Lr2©)

(60)
By symmetry, the estimate for J; is similar to that for J,; thus

Is < CloL 16l N fxill o G =) 2{-mon

(61)
2 <>2(k_j)msz .
L

x[lax;

Lastly, it remains to compute J,. For this purpose we use
generalized Hoder’s inequality and lemmas 6 and 9 to obtain

|Zs| = |T((8 O = bie) fo (B ) = by) gx;) ()]
< C27"(by () = by) fill 2
x| &0 - bax |,

< C27 il o 181 O = B il s

X 27 gxs| o | @20 = B)x;

LP; )

< Clll el G =002 il s | o

% (= k) 279 o | 5,

LPZ()

| fxill oo (j-k) ||ng|'LP2(-)

< Cleu].f1e.]. G - )

“XB; “LPI") ||XBj 1520
(62)
Thus, an application of Lemma 8 yields
T~ [0l o <l s, -1y W
Ixillzevo
- liloog,
“X] Lr2®)

Ll G o 220
”XB,. ||LP1<'>

||XBk

Lr20)

X ||ng

Lr2®)

|XB;' 1L20)
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R Fxll 027
% (=) x| o 27"
(63)

Combining the estimates for ]~1, 72, T3, and T4, we have

| b1, 2, TV i ) 1
< Clby |l L fxill oo G = ) 25 (64)
xJaxl o (G- 1) 257,
In view of (43), (54), and (64), we arrive at
2|1y, by, TN Fi> ) 2]
< Cloi, bl By i) 2% fiilporr (65)

x E, (k, j) 2"*

9X;

Lr2()?
where fork,i € Z,1=1,2,

k— 5/
(=) 2" i<k -2,

1, ifk-1<i<k+1,
(i — k) 20D o) i > k42,

E; (ki) =

(66)

Under the assumption —nd,, < oy < n,y, it is easy to see that
1 Pl

(e

Y E, (ki) +
2B >

i=—00 j=—00

E,(k,j)' <co, foranyy>0. (67)

Now by the Minkowski’s inequality and (65), we get

2k“" (b1, b, TI(f, g)Xk"pr

[c o]

Y Y b T X 9x)x

i=—00 j=—00

< 2koc

PO

Z Z koc" bl,bz,T(sz’gxf)Xk”U (68)

i=—00 j=—00

211 Z E, (k,i) 2 ”in”Lm)

i=—00

< Y By (k)2 gy,

j==00

0"

Finally, by definition and the fact that 1/q = 1/q, + 1/g,, we
obtain

11612, TICE Dllges

1/q9
{szbbTummm}

k=—00
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< Clle. [ba]].
00 0o g1 Va
X{ Z ‘[ Z El(k,i)2'“1||f)(i||m<_)} ]‘
k=—0c0 li=—00
) 00 @y
<1 21 2 E ki) 2ax],m0
k=—00 | j=—00
= "bl"*"bZ"* (Tl x TZ) .
(69)

It is enough to show that I; < CIIfIIKaIEq)l and I, < C”g"kaz(ﬂ)z.
P P2l

By symmetry, we only give estimates for I,. For 0 < g, < oo,
by inequality (} |a;))"" < ¥ |a;|"" and inequality (67), we have

1/q
7 c{ ¥ ol 3 >}
i=—00 (70)

1/q,
. { S g el } sl

SX1q1
1()
i=—00

For q; > 1, by Holder’s inequality and inequality (67), we
obtain

0

Lecl Y Y Bk g,

k=—00 i=—0C0

1y Va
1

00 , a/9
X { Y El(k,i)‘h/z}

(71)
1/q,
{ Z Siond "le o Z E,(k, 1)%/2}
i=—00
/g
< C{ Z 2""1% |sz Lp1()} = C"f"Kgll(q)l .
i
Hence, for 0 < g, < co
I, <C| | ke 72)
By symmetry, for 0 < g, < 00, we have
L < C"!J”ngsz (73)

Therefore,

I, b 1 (£ 0y < Cl L1k i Dol 0

9
By a similar procedure one can prove that
. 1r
(S 11001 )
" K5
(75)

(ZI%I“)WZ

holds for all f;, € K%' () ,9n € (),wherel < 1; < oo for

I'=1,2and 1/r = l/r1 + 1/r,. Thus, we finish the proof of
Theorem 4. O

0 1/r;
(zw)
h=1

xCllr . [e:].

1 ql 02502
Ka K;‘Z(')

then the results of
Theorems 3 and 4 are no longer true. It needs to replace
the variable exponent Herz space K;f)(R") with H Kg&fl)(R")
and the Herz-type Hardy spaces with the variable exponent
recently introduced in [20]. The boundedness of multilinear
singular integral operators from HK;E?)(R”) to KZE?)(R”) is
still an interesting question that needs to be answered.

Remark 11. Note that when oy > nd,,

Remark 12. Although we considered the 2-linear case, the
method can be extended for any m-linear case without any
essential difficulty.
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