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The problem is to extend the method proposed by Soleymani et al. (2012) to a method with memory. Following this aim, a free
parameter is calculated using Newton’s interpolatory polynomial of the third degree. So the R-order of convergence is increased
from 4 to 6 without any new function evaluations. Numerically the extended method is examined along with comparison to some
existing methods with the similar properties.

1. Introduction

Root finding is a great task in mathematics, both historically
and practically. It has attracted attention of great mathemati-
cians like Gauss and Newton. It has real major applications
and because of these real features it is still alive as a research
field.

Kung and Traub’s conjecture is the basic fact to construct
optimal multipoint methods without memory [1]. On the
other hand, multipoint methods with memory can increase
efficiency index of an optimalmethodwithoutmemory with-
out consuming any new functional evaluations and merely
using accelerator parameter(s). This great power of meth-
ods with memory has not been well considered until very
recently. So we have been motivated to extend modified
Potra-Pták [2] to its with memory method.

Traub in his book [3] introduced methods with and
withoutmemory for the first time.Moreover, he constructed a
Steffensen-typemethodwithmemory using secant approach.
In fact, he increased the order of convergence of the Stef-
fensenmethod [4] from 2 to 2.41.This is the firstmethodwith
memory based on our best knowledge. In other words, Traub
changed Steffensen’s method slightly as follows (see [3, pages
185–187]):

𝑥
0
, 𝑤
0
𝛾
0
are given suitably,

𝑥
𝑛+1

= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]

, 0 ̸= 𝛾
𝑛
∈ 𝑅, 𝑛 = 0, 1, 2, . . . ,

𝑁
1 (

𝑥) = 𝑓 (𝑥
𝑛
) + (𝑥 − 𝑥

𝑛
) 𝑓 [𝑥

𝑛
, 𝑤
𝑛
] ,

𝛾
𝑛+1

= −

1

𝑁
󸀠

1
(𝑥
𝑛
)

,

𝑤
𝑛+1

= 𝑥
𝑛+1

+ 𝛾
𝑛+1

𝑓 (𝑥
𝑛+1

) .

(1)

The parameter 𝛾
𝑛
is called self-accelerator and method (1)

has convergence order of 2.41. It is still possible to increase
the convergence order using better self-accelerator parameter
based on better Newton interpolation. Free derivative can be
considered as another virtue of (1).

We use the symbols → , 𝑂, and ∼ according to the fol-
lowing conventions [3]. If lim
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Moreover, we recall the definition of efficiency index (EI) as
𝐸 = 𝑝

1/𝑛, where 𝑝 is the order of convergence and 𝑛 is the
total number of function evaluations per iteration.

This paper is organized as follows. Section 2 reviewsmod-
ified Potra-Pták’s method and we try to remodify it slightly
too. Error equation for our modification is provided. In
Section 3, development to with memory is carried out along
with the discussion of its 𝑅-order. Numerical examinations
and comparisons are presented in the last section.

2. Remodified Optimal Derivative-Free
Potra-Pták’s Method

In this section, our primal goal is to modify Soleymani et al.
method slightly so that its error equation can provide better
form in the case with memory. In fact, we prove that our
modified method can generate order of convergence of 6
while theirs has order of convergence of 5.2 in the case of with
memory.

Derivative-free iterative methods for solving nonlinear
equation 𝑓(𝑥) = 0 are important in the sense that in many
practical situation it is preferable to avoid calculation of
derivative of 𝑓. One such scheme is
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= 𝑥
𝑘
−

𝛾𝑓(𝑥
𝑘
)
2

𝑓 (𝑥
𝑘
+ 𝛾𝑓 (𝑥

𝑘
)) − 𝑓 (𝑥

𝑘
)

,

𝑘 = 0, 1, 2, . . . , 𝛾 ∈ 𝑅 − {0}

(3)

which is obtained from Newton’s method
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𝑘
). Scheme (3) defines a one-

parameter (𝛾) family of methods and has the same order and
efficiency index as that of Newton’s method [3, 4].

Recently, based on scheme (3), Soleymani et al. [2]
have extended the idea of this family and presented Potra-
Pták’s derivative free families of two-point methods without
memory as follows
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Moreover, they have proved.

Theorem 1 (see [2]). Let 𝛼 be a simple root of the sufficiently
differentiable function 𝑓 in an open interval 𝐷. If 𝑥

0
is

sufficiently close to𝛼, then (5) is of local forth order and satisfies
the error equation below,
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As you can see, the order of convergence is 4. It is clear that
error equation (6) has linear factor (1 +𝑓

󸀠
(𝛼)𝛾); it is better to

correct approach (5) in such a way that its error equation has
the quadratic factor (1 + 𝑓

󸀠
(𝛼)𝛾)
2. So, as we can prove later,

this factor increases convergence order up to 6. To this end,
it is just enough to correct second step in (5) as follows:
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Hence, method without memory (8) is still optimal and
in the following theorem we establish its error equation.

Theorem 2. Let 𝛼 be a simple root of the sufficiently differ-
entiable function 𝑓 in an open interval 𝐷. If 𝑥
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Proof. We provide the Taylor expansion of any term involved
in (8). By Taylor expanding around the simple root in the nth
iterate, we have
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By considering this relation and the first step of (8), we obtain
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which shows that (8) is a derivative-free family of two-step
methods with optimal convergence rate of 4. This completes
the proof.

3. Development and Construction with
Memory Family

This section concerns with extension of (8) to a method with
memory since its error equation contains the parameter 𝛾

which can be approximated in such a way that increase the
local order of convergence. So we set 𝛾 = 𝛾
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By using Taylor’s expansion of 𝑓(𝑥) around the root 𝛼, we
have

𝑓 (𝑥) = 𝑓
󸀠
(𝛼) (𝑒 + 𝑐

2
𝑒
2
+ 𝑐
3
𝑒
3
+ 𝑐
4
𝑒
4
+ 𝑐
5
𝑒
5
+ ⋅ ⋅ ⋅ ) , (19)

where 𝑒 = 𝑥 − 𝛼. By using (18) and (19), we calculate

𝑁
󸀠

3
(𝑥
𝑘
) = 𝑓
󸀠
(𝛼) [1 + 2𝑐

2
𝑒
𝑘
+ 3𝑐
3
𝑒
2

𝑘

+ 𝑐
4
(𝑒
𝑘−1

𝑒
2

𝑘
+ 𝑒
2

𝑘−1,𝑦
𝑒
2

𝑘

+ 𝑒
2

𝑘−1,𝑤
𝑒
2

𝑘
− 𝑒
𝑘−1

𝑒
𝑘−1,𝑦

𝑒
𝑘

− 𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑤

𝑒
𝑘
− 𝑒
𝑘−1

𝑒
𝑘−1,𝑤

𝑒
𝑘

+𝑒
𝑘−1

𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑤

+ 3𝑒
3

𝑘
) + ⋅ ⋅ ⋅ ]

= 𝑓
󸀠
(𝛼) [1 + 𝑐

4
𝑒
𝑘−1

𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑤

+ 𝑂 (𝑒
𝑘
)] .

(20)

According to this and (17) we find

1 + 𝛾𝑓
󸀠
(𝛼) ∼ 𝑐

4
𝑒
𝑘−1

𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑤

. (21)

For general case one can consult [3].
In order to obtain the order of convergence of the

family of two-point methods with memory (8), where 𝛾
𝑘
is

calculated using the formula (17), we will use the concept
of the 𝑅-order of convergence [3]. Now, we can state the
following convergence theorem.

Theorem 3. If an initial approximation 𝑥
0
is sufficiently close

to the zero 𝛼 of 𝑓(𝑥) and the parameter 𝛾
𝑘
in the iterative

scheme (8) is recursively calculated by the forms given in (17),
then the 𝑅-order of convergence is at least 6.

Proof. Let {𝑥
𝑘
} be a sequence of approximations generated

by an iterative method with memory (IM). If this sequence

converges to the zero 𝛼 of𝑓with the𝑅-order (≥r) of IM, then
we write

𝑒
𝑘+1

∼ 𝐷
𝑘,𝑟

𝑒
𝑟

𝑘
, 𝑒

𝑘
= 𝑥
𝑘
− 𝛼, (22)

where 𝐷
𝑘,𝑟

tends to the asymptotic error constant 𝐷
𝑟
of IM

when 𝑘 → ∞. Thus

𝑒
𝑘+1

∼ 𝐷
𝑘,𝑟

(𝐷
𝑘−1,𝑟

𝑒
𝑟

𝑘−1
)
𝑟
= 𝐷
𝑘,𝑟

𝐷
𝑟

𝑘−1,𝑟
𝑒
𝑟
2

𝑘−1
. (23)

Let 𝑒
𝑘−1,𝑦

= 𝑦
𝑘−1

− 𝛼, 𝑒
𝑘−1,𝑤

= 𝑤
𝑘−1

− 𝛼, then we have

𝑒
𝑘,𝑤

∼ (1 + 𝛾
𝑘
𝑓
󸀠
(𝛼)) 𝑒𝑘

+ 𝑂 (𝑒
2

𝑘
) , (24)

𝑒
𝑘,𝑦

∼ 𝑐
2
(1 + 𝛾

𝑘
𝑓
󸀠
(𝛼)) 𝑒

2

𝑘
+ 𝑂 (𝑒

3

𝑘
) , (25)

𝑒
𝑘+1

∼ 𝐴
2
(1 + 𝛾

𝑘
𝑓
󸀠
(𝛼))

2

𝑒
4

𝑘
+ 𝑂 (𝑒

5

𝑘
) , (26)

where 𝐴
2
= −(1/2)𝑐

2
[(2(−3 + 𝑎) + (−2 + 𝑎)𝑓

󸀠
(𝛼)𝛾)𝑐

2

2
+ 2𝑐
3
].

In the sequel, we obtain the 𝑅-order of convergence of family
(8) for approach (17) applied to the calculation of 𝛾

𝑘
.

Assume that the iterative sequences 𝑦
𝑘
and 𝑥
𝑘
have the𝑅-

orders; 𝑝 and 𝑟, respectively, then, bearing in mind (22) we
obtain

𝑒
𝑘,𝑦

∼ 𝐷
𝑘,𝑝

𝑒
𝑝

𝑘
∼ 𝐷
𝑘,𝑝

(𝐷
𝑘−1,𝑟

𝑒
𝑟

𝑘−1
)
𝑝
∼ 𝐷
𝑘,𝑝

𝐷
𝑝

𝑘−1,𝑟
𝑒
𝑟𝑝

𝑘−1
, (27)

and then, we obtain

𝑒
𝑘,𝑦

∼ 𝑐
2
(1 + 𝛾

𝑘
𝑓
󸀠
(𝛼)) 𝑒

2

𝑘
∼ 𝑐
2
(𝑐
4
𝑒
𝑘−1

𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑤

) 𝑒
2

𝑘

∼ 𝑐
2
𝑐
4
(𝑒
𝑘−1

) (𝐷
𝑘−1,𝑝

𝑒
𝑝

𝑘−1
) (𝐷
𝑘−1,𝑠

𝑒
𝑠

𝑘−1
) (𝐷
𝑘−1,𝑟

𝑒
𝑟

𝑘−1
)
2

∼ 𝑐
2
𝑐
4
𝐷
𝑘−1,𝑝

𝐷
𝑘−1,𝑠

𝐷
2

𝑘−1,𝑟
𝑒
2𝑟+𝑠+𝑝+1

𝑘−1
.

(28)

Assume that the iterative sequence𝑤
𝑘
has the 𝑅-order 𝑠; then

bearing in mind (22) we obtain

𝑒
𝑘,𝑤

∼ 𝐷
𝑘,𝑠

𝑒
𝑠

𝑘
∼ 𝐷
𝑘,𝑠

(𝐷
𝑘−1,𝑟

𝑒
𝑟

𝑘−1
)
𝑠
∼ 𝐷
𝑘,𝑠

𝐷
𝑠

𝑘−1,𝑟
𝑒
𝑟𝑠

𝑘−1
. (29)

and then, we obtain

𝑒
𝑘,𝑤

∼ (1 + 𝛾
𝑘
𝑓
󸀠
(𝛼)) 𝑒𝑘

∼ (𝑐
4
𝑒
𝑘−1

𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑤

) 𝑒
𝑘

∼ 𝑐
4
𝑒
𝑘−1

(𝐷
𝑘−1,𝑝

𝑒
𝑝

𝑘−1
) (𝐷
𝑘−1,𝑠

𝑒
𝑠

𝑘−1
) (𝐷
𝑘−1,𝑟

𝑒
𝑟

𝑘−1
)

∼ 𝑐
4
𝐷
𝑘−1,𝑝

𝐷
𝑘−1,𝑠

𝐷
𝑘−1,𝑟

𝑒
𝑟+𝑠+𝑝+1

𝑘−1
,

(30)

𝑒
𝑘+1

∼ 𝑎
𝑘,4

(1 + 𝛾
𝑘
𝑓
󸀠
(𝛼))

2

𝑒
4

𝑘
∼ 𝑎
𝑘,4

(𝑐
4
𝑒
𝑘−1

𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑤

)

2

𝑒
4

𝑘

∼ 𝑎
𝑘,4

𝑐
4
(𝑒
𝑘−1

)
2
(𝐷
𝑘−1,𝑝

𝑒
𝑝

𝑘−1
)

2

(𝐷
𝑘−1,𝑠

𝑒
𝑠

𝑘−1
)
2
(𝐷
𝑘−1,𝑟

𝑒
𝑟

𝑘−1
)
4

∼ 𝑎
𝑘,4

𝑐
4
𝐷
2

𝑘−1,𝑝
𝐷
2

𝑘−1,𝑠
𝐷
4

𝑘−1,𝑟
𝑒
4𝑟+2𝑠+2𝑝+2

𝑘−1
.

(31)

Combining the exponents of 𝑒
𝑘−1

on the right-hand sides
of (27)-(28), (29)-(30), and (23)–(31), we form the nonlinear
system of three equations in 𝑝, 𝑠, and 𝑟:

𝑟𝑝 − 2𝑟 − (𝑝 + 𝑠) − 1 = 0,

𝑟𝑠 − 𝑟 − (𝑝 + 𝑠) − 1 = 0,

𝑟
2
− 4𝑟 − 2 (𝑝 + 𝑠) − 2 = 0.

(32)
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Table 1: 𝑓
1
(𝑥) = log(1 + 𝑥

2
) + 𝑒
𝑥
2
−3𝑥 sin𝑥, 𝛼 = 0, 𝑥

0
= 0.35, 𝛾

0
= 0.01.

Methods |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| 𝑟

𝑐
(20)

Potra-Pták without memory 6.040 (−3) 5.672 (−10) 8.280 (−37) 3.822
Equations (8) and (17) with memory 6.050 (−3) 8.723 (−15) 6.425 (−84) 5.841

Kung and Traub [1] without memory 5.545 (−3) 4.864 (−9) 3.045 (−33) 3.999

Equation (34) with memory 5.546 (−3) 4.708 (−17) 1.374 (−96) 5.654

Zheng et al. [5] without memory 3.541 (−2) 2.974 (−6) 2.127 (−22) 3.930
Equation (35) with memory 5.647 (−3) 8.272 (−18) 1.022 (−101) 5.658

Table 2: 𝑓
2
(𝑥) = ∏

5

𝑖=1
(𝑥 − 𝑖), 𝛼 = 2, 𝑥

0
= 1.6, 𝛾

0
= 0.01.

Methods |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼| 𝑟

𝑐
(20)

Potra-Pták without memory 5.522 (−3) 1.063 (−10) 7.391 (−41) 3.910
Equations (8) and (17) with memory 5.623 (−3) 3.822 (−16) 1.170 (−93) 5.888

Kung and Traub [1] (without memory) 6.125 (−3) 2.402 (−9) 5.453 (−35) 4.004

Equation (34) with memory 6.125 (−3) 5.888 (−15) 1.651 (−86) 5.955

Zheng at al. [5] without memory 6.021 (−3) 1.525 (−9) 6.077 (−36) 4.003
Equation (35) with memory 6.021 (−3) 3.251 (−15) 1.274 (−88) 5.985

Nontrivial solution of this system is 𝑠 = 2, 𝑝 = 3, and
𝑟 = 6, and we conclude that the lower bound of the 𝑅-order
of the method with memory is 6.

Similarly, one can prove the following.

Theorem 4. If an initial approximation 𝑥
0
is sufficiently close

to the zero 𝛼 of 𝑓(𝑥) and the parameter 𝛾
𝑘
in the iterative

scheme (5) is recursively calculated by the forms given in (17),
then the 𝑅-order of convergence is at least 5.2.

4. Numerical Examples

To examine practical aspects of the proposedmodified Potra-
Pták’s without and with memory we implement it here in
action. In other words, we demonstrate the convergence
behavior of the method with memory (8), where 𝛾

𝑘
is

calculated by (17). For comparison purposes, we pick up
Kung and Traub [1] and Zheng et al. [5] with and without
memories. We use these notations. The errors |𝑥

𝑘
− 𝛼|

denote approximations to the sought zeros. 𝐴(−ℎ) stands for
𝐴 × 10

−ℎ. Moreover, 𝑟
𝑐
indicates computational order of

convergence and is computed [2]

𝑟
𝑐
=

log (󵄨󵄨󵄨
󵄨
𝑓 (𝑥
𝑘
) /𝑓 (𝑥

𝑘−1
)
󵄨
󵄨
󵄨
󵄨
)

log (󵄨󵄨󵄨
󵄨
𝑓 (𝑥
𝑘−1

) /𝑓 (𝑥
𝑘−2

)
󵄨
󵄨
󵄨
󵄨
)

. (33)

The software Mathematica 8, with 1000 arbitrary precision
arithmetic, has been used in our computations. The results
alongside the test functions are given in Tables 1 and 2,
while 𝛾 = 𝛾

0
= 0.01 [3]. From Tables 1 and 2, we can

conclude that our methods work numerically well and are
successfully competingwith the existingmethods. Indeed the
last columns of these tables show that both numerical and
theoretical aspects support each other.

For comparison purposes, we consider the following
methods.

Two-Point Method by Kung and Traub [1]:

𝑥
0
, 𝑤
0
𝛾
0
are given suitably,

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑤
𝑛
, 𝑥
𝑛
]

, 𝑛 = 0, 1, 2, . . . ,

𝑥
𝑛+1

= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
) 𝑓 (𝑤

𝑛
)

[𝑓 (𝑤
𝑛
) − 𝑓 (𝑦

𝑛
)] 𝑓 [𝑥

𝑛
, 𝑦
𝑛
]

, 𝑘 = 0, 1, . . .

𝛾
𝑛+1

= −

1

𝑁
󸀠

3
(𝑥
𝑛
)

,

𝑤
𝑛+1

= 𝑥
𝑛+1

+ 𝛾
𝑛+1

𝑓 (𝑥
𝑛+1

) .

(34)

Two-Point Method by Zheng et al. [5]:

𝑥
0
, 𝑤
0
𝛾
0
are given suitably,

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]

, 𝑛 = 0, 1, 2, . . . ,

𝑥
𝑛+1

= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
)

𝑓 [𝑦
𝑛
, 𝑤
𝑛
] + 𝑓 [𝑦

𝑛
, 𝑥
𝑛
, 𝑤
𝑛
] (𝑦
𝑛
− 𝑥
𝑛
)

,

𝛾
𝑛+1

= −

1

𝑁
󸀠

3
(𝑥
𝑛
)

,

𝑤
𝑛+1

= 𝑥
𝑛+1

+ 𝛾
𝑛+1

𝑓 (𝑥
𝑛+1

) .

(35)

From Tables 1 and 2, it can be seen that our modified
method without memory works truly; moreover, its with
memory competes the existing methods. To sum up, Potra
and Pták [6] constructed two-pointmethodwithoutmemory
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with convergence order of 3; it is not optimal in the sense of
Kung and Traub. Cordero et al. [7] could make it optimal.
In other words, they introduce optimal two- and three-point
methods with order of convergence of 4 and 8, respectively.
Though their methods are optimal, they are not derivative-
free. Freshly, Soleymani et al. [2] have drawn two point
methods without memory from Potra and pták method.
One is derivative-free and the other is not. In addition their
derivative method results two steps method by Cordero et al.
[7] for 𝑎 = 0 (See (5)). In this work, we modified their
derivative-free method at first. Then, we generalized it to
method with memory with efficiency index 𝐸(𝑝, 𝑛) = 4

1/3
=

1.8; see more about efficiency index in [7]. Therefore, a
two-step method with memory can obtain performance
even better than four-step methods without memory with
efficiency index 16

1/5
= 1.7.
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