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Using nonpolynomial cubic spline approximation in x- and finite difference in y-direction, we
discuss a numerical approximation ofO(k2+h4) for the solutions of diffusion-convection equation,
where k > 0 and h > 0 are grid sizes in y- and x-coordinates, respectively. We also extend our tech-
nique to polar coordinate system and obtain high-order numerical scheme for Poisson’s equation
in cylindrical polar coordinates. Iterativemethod of the proposedmethod is discussed, and numer-
ical examples are given in support of the theoretical results.

1. Introduction

We consider the two-dimensional elliptic equation of the form

∂2u

∂x2
+
∂2u

∂y2
= D(x)

∂u

∂x
+ g
(
x, y
)
,
(
x, y
) ∈ Ω. (1.1)

The Dirichlet boundary conditions are given by

u
(
x, y
)
= g
(
x, y
)
,
(
x, y
) ∈ Γ, (1.2)

where Ω = {(x, y) | 0 < x, y < 1} is the solution domain and Γ is its boundary. For g(x, y) = 0
andD(x) = β, the above equation represents diffusion-convention equation. ForD(x)= −1/x,
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the above equations represent the Poisson’s equation with singular coefficients in rectangular
coordinates. Similarly, for D(x) = −1/x and replacing the variables x, y by r, z, we obtain a
Poisson’s equation in cylindrical polar coordinates. We will assume that the boundary condi-
tions are given with sufficient smoothness to maintain the order of accuracy of the difference
scheme and spline functions under consideration.

In this paper, we are interested in discussing a new approximation based on cubic
spline polynomial for the solution of elliptic equation (1.1). In many practical problems, coef-
ficients of the second derivatives term are small compared to the coefficients of the first
derivatives term. These problems are called singular perturbation problems. Singularly per-
turbed elliptic boundary value problems are mathematically models of diffusion-convections
process or related physical phenomenon. The diffusion term is the term involving the second-
order derivative, and convective term is that involving the first-order derivative. During last
three decades, several numerical schemes for the solution of elliptic partial differential equa-
tions have been developed by many researchers. First-Lynch and Rice [1] have discussed
high-accuracy finite difference approximations to the solutions of elliptic partial differential
equations. Boisvert [2] has discussed a class of high-order accurate discretization for the ellip-
tic boundary value problems. Yavneh [3] has reported the analysis of fourth-order compact
scheme for convection diffusion equation. A fourth-order difference method for elliptic equa-
tions with non-linear first derivative terms has been discussed by Jain et al. [4, 5]. In 1997,
Mohanty [6] has derived order h4 difference method for a class of 2D elliptic boundary value
problemswith singular coefficients. A new discretizationmethod of order four for the numer-
ical solution of 2D non-linear elliptic partial differential equations has been studied by
Mohanty et al. [7–9]. The use of cubic spline polynomial and its approximation plays an im-
portant role for the formation of stable numerical methods. In the past, many authors (see
[10–12]) have studied and analysed the use of cubic spline approximations in the solution
of linear two-point boundary value problems. In 1983, Jain and Aziz [13] have developed a
new method based on cubic spline approximations for the solution of two-point nonlinear
boundary value problems. Later, Al-Said [14, 15] has discussed cubic spline methods for
solving the system of second-order boundary value problems. Khan [16] has introduced
parametric cubic spline approach for solving second order ordinary differential equations.
Mohanty et al. [17, 18] have also reported a fourth-order accurate cubic spline alternating
group explicit method for nonlinear singular two-point boundary value problems. Recently,
Rashidinia et al. [19] have proposed a new cubic spline technique for two-point boundary
value problems. Most recently, Mohanty and Dahiya [20] and Mohanty et al. [21] have used
cubic spline polynomials and developed high order stable numerical methods for the solution
of one space dimensional parabolic and hyperbolic partial differential equations. To the
authors knowledge, no high-order method using cubic spline polynomial for the solution of
2D elliptic differential equations (1.1) has been discussed in the literature so far. In this paper,
using nine-point compact cell (see Figure 1), we discuss a new compact cubic spline finite
difference method of accuracy two in y- and four in x-coordinates for the solution of elliptic
differential equation (1.1). In the next section, we discuss the derivation of the proposed cubic
spline method. It has been experienced in the past that the cubic spline solutions for the
Poisson’s equation in polar coordinates usually deteriorate in the vicinity of the singularity.
We overcome this difficulty by modifying the method in such a way that the solution retains
its order and accuracy everywhere in the vicinity of the singularity. In Section 3, we discuss
an iterative method. In Section 4, we compare the computed results with the results obtained
by the method discussed in [8]. Concluding remarks are given in Section 5.
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Figure 1: 9-point computational network.

2. The Approximation Based on Cubic Spline Polynomial

We consider our region of interest, a rectangular domain Ω = [0, 1] × [0, 1]. We choose grid
spacing h > 0 and k > 0 in the directions x- and y- respectively, so that the mesh points
(xl, ym) denoted by (l,m) are defined by xl = lh and ym = mk; l = 0, 1, . . . ,N+1; m = 0, 1, . . . ,
M + 1, where N and M are positive integers such that (N + 1)h = 1 and (M + 1)k = 1. The
mesh ratio parameter is denoted by λ = (k/h). The notations ul,m and Ul,m are used for the
discrete approximation and the exact value of u(x, y) at the grid point (xl, ym), respectively.
Similarly, we write D(xl) = Dl and D(xl±1) = Dl±1.

At the grid point (xl, ym), we denote

Wab =
∂a+bW

∂xl
a∂ym

b
, W = U,D and g. (2.1)

Let Sm(x) be the cubic spline interpolating polynomial of the function u(x, ym) be-
tween the grid point (xl−1, ym) and (xl, ym) and is given by

Sm(x) =
(xl − x)3

6h
Ml−1,m +

(x − xl−1)3

6h
Ml,m +

(

Ul−1,m − h2

6
Ml−1,m

)(
xl − x

h

)

+

(

Ul,m− h2

6
Ml,m

)

·
(
x − xl−1

h

)
, xl−1≤x≤xl; l=1, 2, . . . ,N+1; m=0, 1, 2, . . . ,M+1,

(2.2)

which satisfies at mth-line parallel to x-axis the following properties:

(i) Sm(x) coincides with a polynomial of degree three on each [xl−1, xl], l = 1, 2, . . . ,N+
1 and m = 1, 2, . . .M,

(ii) Sm(x) ∈ C2[0, 1],

(iii) Sm(xl) = Ul,m, l = 0, 1, 2, . . . ,N + 1 and m = 1, 2, . . . ,M.
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The derivatives of cubic spline function Sm(x) are given by

S′
m(x) =

−(xl − x)2

2h
Ml−1,m +

(x − xl−1)2

2h
Ml,m +

Ul,m −Ul−1,m
h

− h

6
[Ml,m −Ml−1,m],

S′′
m(x) =

(xl − x)
h

Ml−1,m +
(x − xl−1)

h
Ml,m,

(2.3)

where

Ml,m = S′′
m(xl) = Uxxl,m = −Uyyl,m

+DlUxl,m + gl,m, l = 0, 1, 2, . . . ,N + 1, j = 1, 2, . . . , J,
(2.4)

ml,m = S′
m(xl) = Uxl,m =

Ul,m −Ul−1,m
h

+
h

6
[Ml−1,m + 2Ml,m], xl−1 ≤ x ≤ xl, (2.5)

and replacing h by “−h”, we get

ml,m = S′
m(xl) = Uxl,m =

Ul+1,m −Ul,m

h
− h

6
[Ml+1,m + 2Ml,m], xl ≤ x ≤ xl+1, (2.6)

Combining (2.5) and (2.6), we obtain

ml,m = S′
m(xl) = Uxl,m =

Ul+1,m −Ul−1,m
2h

− h

12
[Ml+1,m −Ml−1,m], (2.7)

Further, from (2.5), we have

ml+1,m = S′
m(xl+1) = Uxl+1,m =

Ul+1,m −Ul,m

h
+
h

6
[Ml,m + 2Ml+1,m], (2.8)

and from (2.6),

ml−1,m = S′
m(xl−1) = Uxl−1,m =

Ul,m −Ul−1,m
h

− h

6
[Ml,m + 2Ml−1,m], (2.9)

We consider the following approximations:

Uyyl,m
=

(Ul,m+1 − 2Ul,m +Ul,m−1)
(k2)

= Uyyl,m
+O
(
k2
)
,

Uyyl+1,m =
(Ul+1,m+1 − 2Ul+1,m +Ul+1,m−1)

(k2)
= Uyyl+1,m +O

(
k2
)
,

Uyyl−1,m =
(Ul−1,m+1 − 2Ul−1,m +Ul−1,m−1)

(k2)
= Uyyl−1,m +O

(
k2
)
,
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Uxl,m =
(Ul+1,m −Ul−1,m)

(2h)
= Uxl,m +

h2

6
U30 +O

(
h4
)
,

Uxl+1,m =
(3Ul+1,m − 4Ul,m +Ul−1,m)

(2h)
= Uxl+1,m − h2

3
U30 +O

(
h3
)
,

Uxl−1,m =
(−3Ul−1,m + 4Ul,m −Ul+1,m)

(2h)
= Uxl−1,m − h2

3
U30 +O

(
h3
)
.

(2.10)

Since the derivative values of Sm(x) defined by (2.4), (2.7), (2.8), and (2.9) are not
known at each grid point (xl, ym), we use the following approximations for the derivatives of
Sm(x).

Let

Ml,m = −Uyyl,m +DlUxl,m + gl,m,

Ml+1,m = −Uyyl+1,m +Dl+1Uxl+1,m + gl+1,m,

Ml−1,m = −Uyyl−1,m +Dl−1Uxl−1,m + gl−1,m,

Uxl+1,m =
Ul+1,m −Ul,m

h
+
h

6

[
Ml,m + 2Ml+1,m

]
,

Uxl−1,m =
Ul,m −Ul−1,m

h
− h

6

[
Ml,m + 2Ml−1,m

]
,

Fl+1,m = Dl+1Uxl+1,m + gl+1,m,

Fl−1,m = Dl−1Uxl−1,m + gl−1,m,

Ûxl,m = Uxl,m − h

12

[
Fl+1,m − Fl−1,m

]
+

h

12

[
Uyyl+1,m −Uyyl−1,m

]
,

F̂l,m = DlÛxl,m + gl,m.

(2.11)

Then at each grid point (xl, ym), a cubic spline finite difference method of Numerov
type with accuracy ofO(k2 + h4) for the solution of differential equation (1.1)may be written
as

λ2δ2
xUl,m +

k2

12

[
Uyyl+1,m +Uyyl−1,m + 10Uyyl,m

]

=
k2

12

[
Dl+1Uxl+1,m +Dl−1Uxl−1,m + 10DlÛxl,m

]
+
k2

12
[
gl+1,m + gl−1,m + 10gl,m

]
+ Tl,m,

(2.12)

where the local truncation error Tl,m = O(k4+k2h4). Note that themethod (2.12) is ofO(k2+h4)
for the numerical solution of (1.1). However, the method (2.12) fails to compute at l = 1, when
D(x) and/or g(x, y) contains the singular terms like 1/x, 1/x2, and so forth. For example, if
D(x) = 1/x, this implies Dl−1 = 1/xl−1, which cannot be evaluated at l = 1 (since x0 = 0).
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We modify the method (2.12) in such a manner, so that the method retains its order and accu-
racy everywhere in the vicinity of the singularity.

We use the following approximation:

Dl+1 = Dl + hD10 +
h2

2
D20 +O

(
h3
)
,

Dl−1 = Dl − hD10 +
h2

2
D20 −O

(
h3
)
,

gl+1,m = gl,m + hg10 +
h2

2
g20 +O

(
h3
)
,

gl−1,m = gl,m − hg10 +
h2

2
g20 −O

(
h3
)
.

(2.13)

Substituting the approximations (2.13) into (2.12) and neglecting higher-order terms
and local truncation error, we get

(
12 + δ2

x

)
δ2
yul,m + 12λ2δ2

xul,m

=
λ2h

2

(
12D00 + h2D20

)(
2μxδx

)
ul,m + λ2h2

(
D10 −D00

2
)
δ2
xul,m − h2D10δ

2
yul,m

+
hD00

2

(
δ2
y2μxδx

)
ul,m + k2

[
12g00 + h2(g20 +D10g00 −D00g10

)]
,

(2.14)

where μxul = (1/2)(ul+1/2 + ul−1/2) and δxul = (ul+1/2 − ul−1/2). Note that the cubic spline
method (2.14) is of O(k2 + h4) for the numerical solution of elliptic equation (1.1), which is
also free from the terms 1/xl±1 and hence can be computed for l = 1(1)N,m = 1(1)M.

3. Iterative Method

Now consider the convection-diffusion equation

∂2u

∂x2
+
∂2u

∂y2
= β

∂u

∂x
, 0 < x, y < 1, (3.1)

where β > 0 is a constant, and magnitude of β determines the ratio of convection to diffusion
term. SubstitutingD(x) = β and g(x, y) = 0 into the difference scheme (2.14) and simplifying,
we obtain a nine-point cubic spline difference scheme of O(k2 + h4) accuracy for the solution
of the convection-diffusion equation (3.1) given by

α0ul,m + α1ul+1,m + α2ul−1,m + α3ul,m+1 + α4ul,m−1
+ α5ul+1,m+1 + α6ul+1,m−1 + α7ul−1,m+1 + α8ul−1,m−1 = 0,

(3.2)
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where R = βh/2 is called the cell Reynold number, and the coefficients αj , j = 0, 1, 2, . . . , 8 are
defined by

α0 = 20 + 24λ2
(

1 +
R2

3

)

, α1 = −12λ2
(

1 − R +
R2

3

)

+ 2(1 − R),

α2 = −12λ2
(

1 + R +
R2

3

)

+ 2(1 + R), α3 = α4 = −10,

α5 = α6 = −(1 − R), α7 = α8 = −(1 + R).

(3.3)

The scheme (3.2)may be written in matrix form

Au = b, (3.4)

where A is a square matrix of order NM × NM, u is the solution vector, and b is the right
hand side vector consisting of boundary values.

The coefficient matrix A has a block tridiagonal structure A = tri[−L,D,−U], with the
submatrices −L, D, and −U given by

−L = tri[α8, α4, α6] = −U, D = tri[α2, α0, α1]. (3.5)

We focus on line stationary iterative methods for solving the linear system (3.5). The
coefficient matrix A can be written as A = D − L − U, where D is block tri-diagonal matrix
of A, −L is strictly block lower triangular part, and −U is strictly block upper triangular part
of matrix A. The iteration matrices of the block Jacobi and block Gauss-Seidel methods are
described by

GJ = D−1(L +U), GGS = (D − L)−1U. (3.6)

The matrix A has block tri-diagonal form and hence is block consistently ordered (see
Varga [22]).

It can be verified that α0 > 0 and αj < 0 for j = 1, 2, . . . , 8 provided |R| < 1. One can also
verify that

α0 =
8∑

i=1

|αi|, (3.7)

which implies that A is weakly diagonally dominant. Since A is reducible, we conclude that
it is also anM-matrix (see Varga [22]).
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Applying the Jacobi iterative method to the scheme (3.2), we get the iterative scheme

(1 − R)u(k)
l+1,m+1

+

[

12λ2
(

1 − R +
R2

3

)

− 2(1 − R)

]

u(k)
l+1,m

+ (1 − R)u(k)
l+1,m−1

+ 10u(k)
l,m+1

−
[

20 + 24λ2
(

1 +
R2

3

)]

u(k+1)
l,m

+ 10u(k)
l,m−1 + (1 + R)u(k)

l−1,m+1

+

[

12λ2
(

1 + R +
R2

3

)

− 2(1 + R)

]

u(k)
l−1,m + (1 + R)u(k)

l−1,m−1 = 0.

(3.8)

The propagating factors for the Jacobi iterative methods are given by

ξj =
1

5 + 6λ2(1 + (R2/3))

⎡

⎣5 cos(πk) +

⎛

⎝

√√
√
√6λ2

(

1 + R +
R2

3

)

− (1 + R)(1 − cos kπ)

⎞

⎠

×
⎛

⎝

√√√
√6λ2

(

1 − R +
R2

3

)

− (1 − R)(1 − cos kπ)

⎞

⎠ cosπh

⎤

⎦,

(3.9)

where (M + 1)h = 1, (N + 1)k = 1. Consequently, the spectral radii ρ of the Jacobi and Gauss-
Seidel matrices are related by

ρ(GGS) = ρ(GJ)
2. (3.10)

Hence, the associated iteration

u(k+1) = Gu(k) + c (3.11)

converges for any initial guess, whereG is either Jacobi or Gauss-Seidel iteration matrix. The
Jacobi and Gauss-Seidel splitting are regular for both the line and point versions, and hence,
they converge for any initial guess.

4. Numerical Results

If we replace the partial derivatives in (1.1) by the central difference approximations at the
grid point (l,m), we obtain a central difference scheme (CDS)which is ofO(k2 +h2). We now
solve the following two benchmark problems whose exact solutions are known. The right
hand side homogeneous function and boundary conditions may be obtained by using the
exact solution as a test procedure. We use block Gauss-Seidel iterative method (see [22–24])
to solve the proposed scheme (2.14). In all cases, we have considered u(0) = 0 as the initial
guess, and the iterations were stopped when the absolute error tolerance |u(k+1) −u(k)| ≤ 10−12

was achieved. In all cases, we have calculated maximum absolute errors (l∞-norm) for differ-
ent grid sizes. All computations were performed using double-precision arithmetic.
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Table 1: Example 4.1: The maximum absolute errors.

(h, k)
Proposed O(k2 + h4) method O(k2 + h2)method

β = 10 β = 50 β = 10 β = 50

(
1
20

,
1
10

)
0.2645E−02 0.1982E−01 0.9212E−02 0.2240E+00

(
1
40

,
1
20

)

0.6560E−03 0.1823E−02 0.2279E−02 0.6511E−01

(
1
20

,
1
40

)

0.2167E−03 0.1875E−01 0.1125E−01 0.2253E+00

(
1
80

,
1
40

)

0.1635E−03 0.1511E−03 0.5682E−03 0.1416E−01

(
1
40

,
1
80

)

0.4352E−04 0.1604E−02 0.2755E−02 0.6534E − 01

Table 2: Example 4.1: The maximum absolute errors (k/h2 = 64).

h
Proposed O(k2 + h4)method O(k4 + h4) method discussed in [8]

β = 5 β = 10 β = 15 β = 5 β = 10 β = 15

1
16

0.1808E − 01 0.1636E − 01 0.1494E − 01 0.4408E−01 0.4212E−01 0.4018E−01

1
32

0.1129E − 02 0.1026E − 02 0.9396E − 03 0.2692E−02 0.2554E − 02 0.2482E−02

1
64 0.7054E − 04 0.6419E − 04 0.5881E − 04 0.1645E−03 0.1566E−03 0.1512E−03

Example 4.1 (Convection-Diffusion Equation). The problem is to solve (3.1) in the solution
region 0 < x, y < 1 whose exact solution is given by

u
(
x, y
)
= eβx/2

sinπy
sinhσ

[
2e−β/2 sinhσx + sinhσ(1 − x)

]
, (4.1)

where σ2 = π2 + β2/4, β > 0.
The maximum absolute errors for u are tabulated in Tables 1 and 2.
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Table 3: Example 4.2: The maximum absolute errors.

(h, k) Proposed O(k2 + h4)method O(k2 + h2) method
(

1
20

,
1
10

)
0.3986E−03 0.1133E−02

(
1
40

,
1
20

)

0.1089E−03 0.3003E−03

(
1
20

,
1
40

)

0.4117E−03 0.1132E−02

(
1
80

,
1
40

)
0.2893E−04 0.7836E−04

(
1
40

,
1
80

)

0.1116E−03 0.2984E−03

Table 4: Example 4.2: The maximum absolute errors (k/h2 = 64).

h Proposed O(k2 + h4) method O(k4 + h4) method discussed in [8]

1
16

0.2711E − 02 0.4842E − 02

1
32

0.1654E − 03 0.2988E − 03

1
64

0.1016E − 04 0.1811E − 04

Example 4.2 (Poisson’s Equation in Polar Cylindrical Coordinates). Consider the following:

∂2u

∂r2
+
∂2u

∂z2
+
1
r

∂u

∂r
= f(r, z), 0 < r, z < 1. (4.2)

The exact solution is given by u(r, z) = r2 sinh r cosh z. The maximum absolute errors
for u are tabulated in Tables 3 and 4.

5. Concluding Remarks

The available numerical methods based on spline approximations for the numerical solution
of 2D Poisson’s equation are of O(k2 + h2) accurate, which require nine grid points. In this
paper, using the same number of grid points, we have discussed a new stable compact nine
point cubic spline finite difference method ofO(k2+h4) accuracy for the solution of Poisson’s
equation in polar cylindrical coordinates. For a fixed parameter γ = k/h2, the proposed
method behaves like a fourth-order method, which is exhibited from the computed results.
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