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The following comparison rules for the discrete spectrum of the position-dependent mass (PDM)
Schrödinger equation are established. (i) If a constant mass m0 and a PDM m(x) are ordered
everywhere, that is either, m0 ≤ m(x) or m0 ≥ m(x), then the corresponding eigenvalues of
the constant-mass Hamiltonian and of the PDM Hamiltonian with the same potential and the
BenDaniel-Duke ambiguity parameters are ordered. (ii) The corresponding eigenvalues of PDM
Hamiltonians with the different sets of ambiguity parameters are ordered if ∇2(1/m(x)) has a
definite sign. We prove these statements by using the Hellmann-Feynman theorem and offer
examples of their application.

1. Introduction

Last few decades, quantum mechanical systems with position-dependent mass (PDM) have
received considerable attention. The interest stems mainly from the relevance of the PDM
background for describing the physics of compositionally graded crystals [1, 2] and semicon-
ductor nanodevices [3–5]. These applications have stimulated the study of the various theo-
retical aspects of the PDM Schrödinger equation; in particular, its exact solvability [6–8],
shape invariance [9], supersymmetry and intertwining properties [10–12], point canonical
transformation [13, 14], iterative solution [15], and relation to theories in curved spaces [16]
have been examined.

However, it is known that the PDM Schrödinger equation suffers from ambiguity in
operator ordering, caused by the non-vanishing commutator of the momentum operator and
the PDM. The PDM Hamiltonians with different ambiguity parameters have been proposed
[17–20], but none of them can be preferred according to the existing reliability tests [21–23].
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Therefore, the attempts are made to settle the issue by fitting the calculated binding energies
to the experimental data [24, 25].

For generelizing such findings and obtaining additional information, one needs some
tools to compare the energy eigenvalues predicted by the different PDMHamiltonians. With-
in the constant-mass framework, a convenient tool is provided by the so-called comparison
theorems [26–28]. For example, the elementary comparison theorem [26, 28] states that if
two real potentials are ordered, V (1) ≤ V (2), then each corresponding pair of eigenvalues is
ordered, E(1) ≤ E(2).

The purpose of this paper is to establish the comparison theorems that confront the
energy eigenvalues of the constant-mass and PDM Schrödinger equations, as well as the
energy eigenvalues of the PDM problems with different ambiguity parameters. Our presen-
tation is based on the Hellmann-Feynman theorem [29, 30] and makes use of the ideas de-
veloped for the constant-mass case [28, 31].

The plan of the paper is as follows. In Section 2, we introduce the PDM Hamiltonians
and recall the Hellmann-Feynman theorem. In Section 3, the comparison theorems on the
PDM background are formulated and proved. In Section 4, we apply these theorems to two
PDM problems of current interest. Finally, our conclusions are summarized in Section 5.

2. Preliminaries

For the PDM Schrödinger equation, the most general form of the Hamiltonian is given by
[17]

Hpdm = −1
4

(
m(x)α∇m(x)β∇m(x)γ +m(x)γ∇m(x)β∇m(x)α

)
+ V (x), (2.1)

where α, β, and γ are the ambiguity parameters (α + β + γ = −1) and the units with � = 1 are
used. In this paper, we will adopt the sets of the ambiguity parameter values suggested by
BenDaniel and Duke [18] (α = γ = 0, β = −1), Li and Kuhn [19] (α = β = −1/2, γ = 0), and
Gora and Williams [20] (α = −1, β = γ = 0). Although there are infinitely many alternative
values of α, β, and γ constrained by α+β+γ = −1, our derivation of the comparison theorems
requires some quantum mean values to have definite signs that imposes further restrictions.
As we will see, these amount to choose α = 0 or γ = 0 still capturing most of the ambiguity
patameter sets known in literature.

The methods we are going to apply are valid for arbitrary dimensionN. We suppose
that the Hamiltonian operators have domains D(H) ⊂ L2(RN); they are bounded below, es-
sentially self-adjoint, and have at least one discrete eigenvalue at the bottom of the spectrum.

To derive our main results, we need the Hellmann-Feynman theorem [29, 30]. This
theorem states that if the Hamiltonian of a system is H(a), where a is a parameter, and the
eigenvalue equation for a bound state isH(a)|a〉 = E(a)|a〉, where E(a) is the energy and |a〉
the normalized associated eigenstate, then

∂E(a)
∂a

=
〈
a

∣∣∣∣
∂H(a)
∂a

∣∣∣∣a
〉
. (2.2)

Note that the proof relies on the self-adjointness ofH(a) and does not change for PDMHamil-
tonians.
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3. Comparison Theorems

First, let us formulate the theorem that confronts the energy eigenvalues of the constant mass
and BenDaniel-Duke PDM Hamiltonians with the same potentials.

Theorem 3.1. Suppose that the Hamiltonian

H(0) = − 1
2m0

∇2 + V (x) (3.1)

with a real potential V (x) and a constant massm0 has discrete eigenvalues E
(0)
{n} characterized by a set

of quantum numbers {n}. Then, the corresponding eigenvalues E(BD)
{n} of the BenDaniel-Duke PDM

Hamiltonian

H(BD) = −1
2
∇ 1
m(x)

∇ + V (x) (3.2)

satisfy

E
(0)
{n} ≤ E

(BD)
{n} if ∀x 0 < m(x) ≤ m0,

E
(0)
{n} ≥ E

(BD)
{n} if ∀x m(x) ≥ m0,

(3.3)

provided that these eigenvalues exist.

Proof. Define the Hamiltonian

H(a) = (1 − a)H(0) + aH(BD), (3.4)

which turns intoH(0) andH(BD) when a = 0 and a = 1, respectively. Assume thatH(a) poss-
esses well defined eigenvalues E{n}(a), for 0 ≤ a ≤ 1, and the normalized associated eigen-
functions in the coordinate representation are ψ{n}(x;a).

Applying the Hellmann-Feynman theorem (2), we get

∂E{n}(a)
∂a

=
∫
ψ∗
{n}(x;a)

(
1

2m0
∇2 − 1

2
∇ 1
m(x)

∇
)
ψ{n}(x;a)dx, (3.5)

where the integration is performed over the whole space and the asterisk denotes complex
conjugation.

Integrating by parts and taking into account that ψ{n}(x;a) and∇ψ{n}(x;a)must vanish
at infinity, we obtain

∂E{n}(a)
∂a

=
1
2

∫(
1

m(x)
− 1
m0

)∣∣∇ψ{n}(x;a)
∣∣2dx. (3.6)
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It is a positive (negative) number if 0 < m(x) ≤ m0 (m(x) ≥ m0) for all x, so that E{n}(a) is an
increasing (decreasing) function of a. For definiteness, let 0 < m(x) ≤ m0. Then, it follows im-
mediately that

E{n}(0) = E
(0)
{n} ≤ E

(BD)
{n} = E{n}(1) (3.7)

that completes the proof. Note that an alternative proof can be given by applying the varia-
tional characterization [32] of the discrete part of the Schrödinger spectrum.

It is now tempting to compare the eigenvalues of the constant-mass Hamiltonian with
those of PDM Hamiltonians other than the BenDaniel-Duke one. However, in that case, at
least one of the ambiguity parameters α and γ in (2.1)must be nonzero and we encounter an
obstacle that becomes clear if we first find out how the eigenvalues of different PDM Hamil-
tonians are ordered. This is done in the following theorem.

Theorem 3.2. The discrete eigenvalues E(BD)
{n} , E

(LK)
{n} , and E(GW)

{n} of the BenDaniel-Duke, Li-Kuhn,
and Gora-Williams PDM Hamiltonians:

H(BD) = −1
2
∇ 1
m(x)

∇ + V (x), (3.8)

H(LK) = −1
4

(
1√
m(x)

∇ 1√
m(x)

∇ +∇ 1√
m(x)

∇ 1√
m(x)

)
+ V (x), (3.9)

H(GW) = −1
4

(
1

m(x)
∇2 +∇2 1

m(x)

)
+ V (x) (3.10)

satisfy

E
(BD)
{n} < E

(LK)
{n} < E

(GW)
{n} if ∀x ∇2

(
1

m(x)

)
< 0, (3.11)

E
(BD)
{n} > E

(LK)
{n} > E

(GW)
{n} if ∀x ∇2

(
1

m(x)

)
> 0,

(3.12)

provided that these eigenvalues exist.

Proof. Let us prove the inequalities for E(BD)
{n} and E

(LK)
{n} . We define the parameter-dependent

HamiltonianH(a) by

H(a) = (1 − a)H(BD) + aH(LK) (3.13)
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and make use of the Hellmann-Feynman theorem (2.2), to obtain

∂E{n}(a)
∂a

=
∫
ψ∗
{n}(x;a)

[
1
2
∇ 1
m(x)

∇ − 1
4

(
1√
m(x)

∇ 1√
m(x)

∇+∇ 1√
m(x)

∇ 1√
m(x)

)]
ψ{n}(x;a)dx.

(3.14)

Integration by parts yields

∂E{n}(a)
∂a

= −1
2

∫
1

m(x)

∣∣∇ψ{n}(x;a)
∣∣2dx

+
1
4

∫
∇
(

1√
m(x)

ψ∗
{n}(x;a)

)
· 1√

m(x)
∇ψ{n}(x;a)dx

+
1
4

∫
∇
(

1√
m(x)

ψ{n}(x;a)

)
· 1√

m(x)
∇ψ∗

{n}(x;a)dx

= −1
8

∫
1

m(x)2
(∇m(x)) · ∇∣∣ψ{n}(x;a)

∣∣2dx

= −1
8

∫
∇2

(
1

m(x)

)∣∣ψ{n}(x;a)
∣∣2dx.

(3.15)

Let ∇2(1/m(x)) ≤ 0 for all x, then E{n}(a) is an increasing function and we get

E{n}(0) = E
(BD)
{n} < E

(LK)
{n} = E{n}(1) (3.16)

that completes the proof. For the case of E(LK)
{n} and E(GW)

{n} , the proof is identical since the factor
∇2(1/m(x)) arises in this case as well. However, it is hardly possible to extend the theorem
to the situations when both the ambiguity parameters α and γ are nonzero. The reason is
that integrals like (3.15) then contain extra terms (proportional to αγ(∇m(x))2), so that the
∇2(1/m(x)) term cannot determine the sign by itself.

Moreover, it is now evident from (3.6) and (3.15) that if we try to compare E(LK)
{n} with

the constant-mass energy E(0)
{n}, then the sign of the integral will be determined by the signs of

both (1/m(x) − 1/m0) and ∇2(1/m(x)). Unfortunately, this leads to inconsistent conditions.
For example, in order to get the inequality E(0)

{n} > E
(LK)
{n} , we have to put 1/m(x) < 1/m0 and

∇2(1/m(x)) > 0; that is, 1/m(x) must be bounded from above and convex which is impossi-
ble. The same obstacle is encountered when dealing with E(GW)

{n} .

4. Applications

In this section, we consider two specific PDM problems, which are discussed in literature and
show how the comparison theorems explain the peculiarities of their energy spectra.
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Case 1. The three-dimensional mass distribution of the form

m(r) =
m0

(1 + κr)2
, (4.1)

with r = |x| and nonnegative κ has been shown [16] to give rise to an exactly solvable exten-
sion of the Coulomb problem, V (r) = −Ze2/r. This extension is useful as it enables one to
trace the link between the PDM background and theories with deformations in the quantum
canonical relations or with curvature of the underlying space.

For this case, the discrete energy eigenvalues of the PDM Hamiltonian (2.1), in units
with � = m0 = e = 1, are written as [16]

E = −
[
Z − (κ/2)

(
l(l + 1) − 2β

)]2
2n2

+
Zκ

2

+
κ2

8

[
2l(l + 1) − n2 − 4β + (1 + 4α)

(
1 + 4γ

)]
,

(4.2)

where l = 0, 1, . . . and n = l + 1, l + 2, . . . are the orbital and principal quantum numbers, res-
pectively. In contrast to the constant-mass Coulomb problem, the system has only a finite
number of discrete levels, so that the allowed values of l and n are restricted by

κ

2

[
l(l + 1) + n2 − 2β

]
< Z. (4.3)

Such a restriction implies that in presence of the PDM the energy eigenvalues may be closer to
continuum and thus larger than the ordinary Coulomb eigenenergies E(0) = −Z2/(2n2) calcu-
lated with the massm0.

It is Theorems 3.1 and 3.2 that permit us to determine how the energy eigenvalues are
ordered. Since in (4.1) we have m(r) ≤ m0, the eigenvalues of the BenDaniel-Duke PDM
Hamiltonian must obey E(BD) ≥ E(0), by Theorem 3.1. Since∇2(1/m(r)) = (κ/m0)(6κ+4/r) >
0, it follows from Theorem 3.2 that the eigenvalues of the PDM Hamiltonians with different
ambiguity parameters are ordered as E(BD) > E(LK) > E(GW).

In order to illustrate these inequalities, we present Figure 1 where we plot the energy
for the ground state (n = 1, l = 0) and the first radially excited state (n = 2, l = 0), as a function
of the deforming parameter κ. In Figure 1, the solid lines correspond to the constant-mass case
whereas the broken curves represent the PDM cases with different ambiguity parameters. The
circles indicate the points at which the bound states disappear according to (4.3). From
Figure 1, we see that, for all allowed κ, it holds that E(BD) ≥ E(0), as it was proved, and also
E(LK) ≥ E(0), but we observe both E(GW) > E(0) and E(GW) < E(0) regions. Furthermore, we can
see that the second proved inequality, E(BD) > E(LK) > E(GW), is indeed fulfilled.

Case 2. Now, let us consider the one-dimensional mass distribution

m(x) = m0

(
1 + κx2

)
, (4.4)
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Figure 1: Energy for the states (a) (n = 1, l = 0) and (b) (n = 2, l = 0), in the Coulomb potential and the
mass distribution (4.1), calculated with � = m0 = Ze2 = 1. The solid line is the constant-mass result; the
dotted, dashed, and dash-dotted curves are the PDM results obtained with Hamiltonians (3.8), (3.9), and
(3.10), respectively.

which is found to be useful for studying quantum wells [3]. Applying Theorem 3.1 to this
PDMprofile, we get the inequalityE(BD) ≤ E(0) that justifies the shift of electron and hole bind-
ing energies to lower values which was observed in [3]when the spatial dependence of mass
was included. On the other hand, Theorem 3.2 does not apply since the quantity
∇2(1/m(x)) = κ(6κx2 − 2)/m0(1 + κx2)3 has an indefinite sign.

It is worth examining how this sign indefiniteness affects the energy spectrum. To that
end, we choose the harmonic-oscillator potential, V (x) = (1/2)m0ω

2x2, for which the accu-
rate numerical solution of the PDM Schrödinger equation with the mass distribution (4.4) is
available [15]. In Figure 2, we plot the corresponding energy of the ground and the fifth



8 ISRN Mathematical Physics

0.2 0.4 0.6 0.8 1

κ

0.35

0.4

0.45

0.5

E

BD
LK
GW

(a)

0.5 0.6 0.7 0.8 0.9 1

κ

3.6

3.8

4

E

BD
LK
GW

(b)

Figure 2: Energy for the states (a) n = 0 and (b) n = 5, in the harmonic-oscillator potential and the mass
distribution (4.4), calculated with � = m0 = ω = 1. The dotted, dashed, and dash-dotted curves are the
PDM results obtained with Hamiltonians (3.8), (3.9), and (3.10), respectively.

excited states, as a function of κ, for the three PDM Hamiltonians with different ambiguity
parameters. The energies have been calculated with � = m0 = ω = 1, by using the shooting
method, and are in agreement with those computed in [15] where the results obtained with
the samem0 and ω, and κ = 0.1 are reported.

From Figure 2, it is evident that for the excited state the discrepancy among the ener-
gies evaluated using the different PDM Hamiltonians is less profound. However, we call at-
tention to a serious difference between the ground and excited states. As seen in Figure 2, the
ground-state energies are ordered as E(BD) < E(LK) < E(GW) whereas the energies of the fifth
excited state (and of the states with n > 5) are in inverse order. This inversion can be easily
understood in conjunctionwith Theorem 3.2. It is known that thewave functions of highly ex-
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cited states are spread to larger distances. Consequently, with increasing n, the mean value of
x2 grows and eventually reaches the point where the sign of ∇2(1/m(x)) in Theorem 3.2 re-
verses, thus inverting the order of energies.

5. Summary

In this paper, we have established the comparison theorems for the PDM Schrödinger equa-
tion. Our first theorem states that the corresponding eigenvalues of a constant-mass Hamil-
tonian and of a BenDaniel-Duke PDMHamiltonian with the same potential are ordered if the
constant and position-dependent masses are ordered everywhere. The second theorem con-
cerns PDM Hamiltonians with the different sets of ambiguity parameters: the BenDaniel-
Duke, Li-Kuhn, and Gora-WilliamsHamiltonians. It is proved that their corresponding eigen-
values are ordered if the Laplacian of the inverse mass distribution 1/m(x) has a definite sign.

We have applied these theorems to the PDM Coulomb and harmonic-oscillator pro-
blems and have been led to the following conclusions. First, the eigenvalues of PDM Hamil-
tonians other than the BenDaniel-Duke one do not have to be in the strict order with respect to
the eigenvalues of the constant-mass Hamiltonian. For instance, from both Figures 1 and 2, it
is seen that the order of the Gora-Williams and constant-mass ground-state energies do vary,
depending on the value of the deforming parameter κ. Second, if the quantity∇2(1/m(x)) has
no definite sign and thus Theorem 3.2 does not apply, then the order of the energies calculated
using different PDM Hamiltonians may alternate, as seen by comparing parts (a) and (b) of
Figure 2. We therefore think that for establishing further comparison rules within the PDM
framework one should restrict the potential profile to, for example, a spherically symmetric
case, the way the generalized comparison theorems for the ordinary Schrödinger equation
have been obtained [27].

The comparison rules we have found out can be employed for analyzing the energy
spectra in semiconductor nanodevices; an example of application to the quantumwell system
was sketched in the previous section. In this connection, it is worthwhile to extend the present
approach to periodic heterostructures, which allow the direct fit of PDM binding energies to
experiment [25]. Then, we will have to abandon the requirement of vanishing of the wave
function at infinity which the proof of our theorems relies on. What comparison rules might
be formulated in that case is an interesting open question.

Acknowledgments

The author thanks Dr. O. Yu. Orlyansky for discussions and a careful reading of the paper.
The research was supported by Grant N0109U000124 from the Ministry of Education and
Science of Ukraine which is gratefully acknowledged.

References

[1] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Editions de Physique, Les Ulis,
1988.

[2] K. Young, “Position-dependent effective mass for inhomogeneous semiconductors,” Physical Review
B, vol. 39, no. 18, pp. 13434–13441, 1989.

[3] G. L. Herling and M. L. Rustgi, “Spatially dependent effective mass and optical properties in finite
parabolic quantum wells,” Journal of Applied Physics, vol. 71, no. 2, pp. 796–799, 1992.



10 ISRN Mathematical Physics

[4] A. J. Peter and K. Navaneethakrishnan, “Effects of position-dependent effective mass and dielectric
function of a hydrogenic donor in a quantum dot,” Physica E, vol. 40, no. 8, pp. 2747–2751, 2008.

[5] R. Khordad, “Effects of position-dependent effective mass of a hydrogenic donor impurity in a ridge
quantum wire,” Physica E, vol. 42, no. 5, pp. 1503–1508, 2010.

[6] L. Dekar, L. Chetouani, and T. F. Hammann, “Wave function for smooth potential and mass step,”
Physical Review A, vol. 59, no. 1, pp. 107–112, 1999.

[7] A. D. Alhaidari, “Solutions of the nonrelativistic wave equation with position-dependent effective
mass,” Physical Review A, vol. 66, article 042116, 7 pages, 2002.

[8] S.-H. Dong and M. Lozada-Cassou, “Exact solutions of the Schrödinger equation with the position-
dependent mass for a hard-core potential,” Physics Letters, Section A, vol. 337, no. 4–6, pp. 313–320,
2005.

[9] B. Bagchi, A. Banerjee, C. Quesne, and V. M. Tkachuk, “Deformed shape invariance and exactly sol-
vable Hamiltonians with position-dependent effective mass,” Journal of Physics A: Mathematical and
General, vol. 38, no. 13, pp. 2929–2945, 2005.

[10] T. Tanaka, “N-fold supersymmetry in quantum systems with position-dependent mass,” Journal of
Physics A: Mathematical and General, vol. 39, no. 1, pp. 219–234, 2006.

[11] A. Ganguly and L. M. Nieto, “Shape-invariant quantum Hamiltonian with position-dependent effec-
tive mass through second-order supersymmetry,” Journal of Physics A: Mathematical and Theoretical,
vol. 40, no. 26, pp. 7265–7281, 2007.

[12] B.Midya, B. Roy, and R. Roychoudhury, “Position dependentmass Schrödinger equation and isospec-
tral potentials: intertwining operator approach,” Journal of Mathematical Physics, vol. 51, no. 2, article
022109, 2010.

[13] C. Tezcan and R. Sever, “Exact solutions of the Schrödinger equation with position-dependent effec-
tive mass via general point canonical transformation,” Journal of Mathematical Chemistry, vol. 42, no.
3, pp. 387–395, 2007.

[14] R. A. Kraenkel andM. Senthilvelan, “On the solutions of the position-dependent effectivemass Schrö-
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