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We consider a nonlinear degenerate coupled beams system with weak damping. We show using
the Nakao method that the solution of this system decays exponentially when the time tends to
infinity.

1. Introduction

For the last several decades, various types of equations have been employed as some mathe-
matical models describing physical, chemical, biological, and engineering systems. Among
them, the mathematical models of vibrating, flexible structures have been considerably
stimulated in recent years by an increasing number of questions of practical concern. Research
on stabilization of distributed parameter systems has largely focused on the stabilization of
dynamic models of individual structural members such as strings, membranes, and beams.

This paper is devoted to the study of the existence, uniqueness, and uniform decay
rates of the energy of solution for the nonlinear degenerate coupled beams system with weak
damping given by

K1(x, t)utt + Δ2u −M
(
‖u‖2 + ‖v‖2

)
Δu + ut = 0 in Ω × (0, T), (1.1)

K2(x, t)vtt + Δ2v −M
(
‖u‖2 + ‖v‖2

)
Δv + vt = 0 in Ω × (0, T), (1.2)
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u = v =
∂u

∂η
=

∂v

∂η
= 0 on Σ, (1.3)

(u(x, 0), v(x, 0)) = (u0, v0) in Ω, (1.4)

(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)) in Ω, (1.5)

whereΩ is a bounded domain of R
n, n ≥ 1, with smooth boundary Γ, T > 0 is a real arbitrary

number, and η is the unit normal at Σ = Γ × (0, T) direct towards the exterior of Ω × (0, T).
Here Ki ∈ C1([0, T];H1

0(Ω) ∩ L∞(Ω)), i = 1, 2 and M ∈ C1([0,∞[), see Section 2 for more
details.

Problems related to the system (1.1)–(1.5) are interesting not only from the point of
view of PDE general theory, but also due to its applications in mechanics. For instance, when
we consider only one equation without the dissipative term, that is,

K(x, t)utt + Δ2u −M
(
‖u‖2

)
Δu = 0 in Ω × (0, T) (1.6)

and with K(x, t) = 1, it is a generalization of one-dimensional model proposed by
Woinowsky-Krieger [1] as a model for the transverse deflection u(x, t) of an extensible beam
of natural length whose ends are held a fixed distance apart. The nonlinear term represents
the change in the tension of the beam due to its extensibility. The model has also been
discussed by Eisley [2], while related experimental results have been given by Burgreen [3].
Dickey [4] considered the initial-boundary value problem for one-dimensional case of (1.6)
withK(x, t) = 1 in the case when the ends of the beam are hinged. He showed how the model
affords a description of the phenomenon of “dynamic buckling.” The one-dimensional case
has also been studied by Ball [5]. He extended the work of Dickey [4] in several directions.
In both cases he used the techniques of Lions [6] to prove that the initial boundary value
problem is weakly well-posed. Menzala [7] studied the existence and uniqueness of solutions
of (1.6) with K(x, t) = 1, x ∈ R

n, and M ∈ C1[0,∞[ and M(λ) ≥ m0 > 0, for all λ ≥ 0. The
existence, uniqueness, and boundary regularity of weak solutions were considered by Ramos
[8] with K(x) ≥ k0 > 0, x ∈ Ω. See also Pereira et al. [9]. The abstract model

utt +A2u +M

(∣∣∣A1/2
∣∣∣
2
)
Au = 0 (1.7)

of (1.6), where A is a nonbounded self-adjoint operator in a conveniently Hilbert space has
been studied by Medeiros [10]. He proved that the abstract model is well-posed in the weak
sense, since M ∈ C1[0,∞[ with M(λ) ≥ m0 + m1λ, for all λ ≥ 0, where m0 and m1 are
positive constants. Pereira [11] considered the abstract model (1.7) with dissipative term ut.
He proved the existence, uniqueness, and exponential decay of the solutions with the follow-
ing assumptions about M:

M ∈ C0([0,∞[) with M(λ) ≥ −β, ∀λ ≥ 0, 0 < β < λ1, (1.8)

where λ1 is the first eigenvalue of

A2u − λAu = 0. (1.9)
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Ourmain goal here is to extend the previous results for a nonlinear degenerate coupled beams
system of type (1.1)–(1.5). We show the existence, uniqueness, and uniform exponential
decay rates.

Our paper is organized as follows. In Section 2 we give some notations and state our
main result. In Section 3 we obtain the existence and uniqueness for global weak solutions.
To obtain the global weak solution we use the Faedo-Galerkin method. Finally, in Section 4
we use the Nakao method (see Nakao [12]) to derive the exponential decay of the energy.

2. Assumptions and Main Result

In what follows we are going to use the standard notations established in Lions [6].
Let us consider the Hilbert space L2(Ω) endowed with the inner product

(u, v) =
∫

Ω
u(x)v(x)dx (2.1)

and norm

|u| =
√
(u, v). (2.2)

We also consider the Sobolev space H1(Ω) endowed with the scalar product

(u, v)H1(Ω) = (u, v) + (∇u,∇v). (2.3)

We define the subspace of H1(Ω), denoted by H1
0(Ω). This space endowed with the norm

induced by the scalar product

((u, v))H1
0 (Ω) = (∇u,∇v) (2.4)

is a Hilbert space.

2.1. Assumptions on the Functions Ki, i = 1, 2, and M

To obtain the weak solution of the system (1.1)–(1.5) we consider the following hypothesis:

Ki ∈ C1
(
[0, T];H1

0(Ω) ∩ L∞(Ω)
)
, i = 1, 2,

with Ki(x, t) ≥ 0, ∀(x, t) ∈ Ω × (0, T),

and there exists γ > 0 such that Ki(x, 0) ≥ γ > 0,

(2.5)

∣∣∣∣
∂Ki

∂t

∣∣∣∣
R

≤ δ + C(δ)Ki, i = 1, 2, ∀δ > 0, (2.6)
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M ∈ C1([0,∞[) with M(λ) ≥ −β, ∀λ ≥ 0,

0 < β < λ1, λ1 is the first eingenvalue of the stationary problem,

Δ2u − λ(−Δu) = 0.

(2.7)

Remark 2.1. Let λ1 be the first eingevalue of Δ2u − λ(−Δu) = 0; then (see Miklin [13])

λ1 = inf
w∈H2

0 (Ω)

|Δw|2
|∇w|2

> 0. (2.8)

3. Existence and Uniqueness Results

Now, we are in a position to state our result about the existence of weak solution to the system
(1.1)–(1.5).

Theorem 3.1. Let one take (u0, v0) ∈ (H1
0(Ω) ∩ H4(Ω))2 and (u1, v1) ∈ (H2

0(Ω))2, and let one
suppose that assumptions (2.5), (2.6) and (2.7) hold. Then, there exist unique functions u, v :
[0, T] → L2(Ω) in the class

(u, v) ∈
((

L∞
loc(0,∞) : H2

0(Ω) ∩H4(Ω)
))2

,

(ut, vt) ∈
((

L∞
loc(0,∞) : H2

0(Ω)
))2

,

(utt, vtt) ∈
((

L∞
loc(0,∞) : L2(Ω)

))2

(3.1)

satisfying

K1(x, t)utt + Δ2u −M
(
‖u‖2 + ‖v‖2

)
Δu + ut = 0 in L2

loc

(
0,∞;L2(Ω)

)
,

K2(x, t)vtt + Δ2v −M
(
‖u‖2 + ‖v‖2

)
Δv + vt = 0 in L2

loc

(
0,∞;L2(Ω)

)
,

(3.2)

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω,

(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)) in Ω.
(3.3)

Proof. Since Ki ≥ 0, i = 1, 2, we first perturb the system (1.1)–(1.5) with the terms εutt, εvtt,
with 0 < ε < 1, and we apply the Faedo-Galerkin method to the perturbed system. After
we pass to the limit with ε → 0 in the perturbed system and we obtain the solution for the
system (1.1)–(1.5).

(1) Perturbed System

Consider the perturbed system

(K1 + ε)uε
tt + Δuε +M

(
‖uε‖2 + ‖vε‖2

)
(−Δuε) + uε

t = 0 in Ω × (0, T),

(K2 + ε)vε
tt + Δvε +M

(
‖uε‖2 + ‖vε‖2

)
(−Δvε) + vε

t = 0 in Ω × (0, T),
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uε = vε =
∂uε

∂η
=

∂vε

∂η
= 0 on Σ,

(uε(x, 0), vε(x, 0)) = (u0(x), v0(x)) in Ω,

(
uε
t (x, 0), v

ε
t (x, 0)

)
= (u1(x), v1(x)) in Ω.

(3.4)

Let (wν)ν∈N
be a basis of H2

0(Ω) formed by the eigenvectors of the operator −Δ, that is,
−Δwν = λνwν, with λν → ∞ when ν → ∞. Let Vm = [w1, w2, . . . , wm] be the subspace
generated by the first m vectors of (wν)ν∈N

.
For each fixed ε, we consider

uε
m(t) =

m∑
j=1

gjεm(t)wj ∈ Vm,

vε
m(t) =

m∑
j=1

hjεm(t)wj ∈ Vm

(3.5)

as solutions of the approximated perturbed system

(
(K1 + ε)uε

ttm(t), w
)
+ (−Δuε

m(t),−Δw)

+M
(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)
(−Δuε

m(t), w) +
(
uε
tm(t), w

)
= 0, ∀w ∈ Vm,

(3.6)

(
(K2 + ε)vε

ttm(t), z
)
+ (−Δvε

m(t),−Δz)

+M
(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)
(−Δvε

m(t), z) +
(
vε
tm(t), z

)
= 0, ∀z ∈ Vm,

(3.7)

(uε
m(0), v

ε
m(0)) = (u0m, v0m) −→ (u0, v0) in

(
H2

0(Ω) ∩H4(Ω)
)2
, (3.8)

(
uε
tm(0), v

ε
tm(0)

)
= (u1m, v1m) −→ (u1, v1) in

(
H2

0(Ω)
)2
. (3.9)

The local existence of the approximated solutions (uε
m, v

ε
m) is guaranteed by the standard

results of ordinary differential equations. The extension of the solutions (uε
m, v

ε
m) to the whole

interval [0, T] is a consequence of the first estimate below.

The First Estimate

Setting w = uε
tm and z = vε

tm in (3.6) and (3.7), respectively, integrating over (0, t), and taking
the convergences (3.8) and (3.9) in consideration, we arrive at

(
K1,

(
uε
tm

)2(t)
)
+ ε

∣∣uε
tm(t)

∣∣2 + |Δuε
m(t)|2 +

(
K2,

(
vε
tm

)2(t)
)
+ ε

∣∣vε
tm

∣∣2

+ |Δvε
m(t)|2 + M̂

(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)
+ 2

∫ t

0

[∣∣uε
tm(s)

∣∣2 + ∣∣vε
tm(s)

∣∣2]ds
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≤
∫ t

0

[∣∣∣∣
(
∂K1

∂t
,
(
uε
tm

)2(s)
)∣∣∣∣

R

+
∣∣∣∣
(
∂K2

∂t
,
(
vε
tm

)2(s)
)∣∣∣∣

R

]
ds +

(
K1(0), u2

1m

)
+ ε|u1m|2

+ |Δu0m|2 +
(
K2(0), v2

1m

)
+ ε|v1m|2 + |Δv0m|2 + M̂

(
‖u0m‖2 + ‖v0m‖2

)
,

(3.10)

where

M̂(s) =
∫ s

0
M(τ)dτ. (3.11)

From (2.7) and (2.8), we have

M̂
(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)
≥ − β

λ1

(
|Δuε

m(t)|2 + |Δvε
m(t)|2

)
. (3.12)

Since β < λ1 and so by (2.5)–(2.7) and convergences (3.8), (3.9), and (3.12), we obtain

(
K1,

(
uε
tm

)2(t)
)
+
(
K2,

(
uε
tm

)2(t)
)
+ ε

(∣∣uε
tm(t)

∣∣2 + ∣∣vε
tm

∣∣2(t)
)

+
(
1 − β

λ1

)(
|Δuε

m(t)|2 + |Δvε
m(t)|2

)
+ (2 − δ)

∫ t

0

[∣∣uε
tm(s)

∣∣2 + ∣∣uε
tm(s)

∣∣2]ds

≤ C0 + C(δ)
∫ t

0

[(
K1,

(
uε
tm

)2(s)
)
+
(
K2,

(
vε
tm

)2(s)
)]

ds

(3.13)

with 0 < δ < 1 and C0 being a positive constant independent of ε,m, and t.
Employing Gronwall’s lemma in (3.13), we obtain the first estimate

(
K1,

(
uε
tm

)2(t)
)
+
(
K2,

(
uε
tm

)2(t)
)
+ ε

(∣∣uε
tm(t)

∣∣2 + ∣∣vε
tm

∣∣2(t)
)

+
(
1 − β

λ1

)(
|Δuε

m(t)|2 + |Δvε
m(t)|2

)
+ (2 − δ)

∫ t

0

[∣∣uε
tm(s)

∣∣2 + ∣∣uε
tm(s)

∣∣2]ds ≤ C1,

(3.14)

where C1 is a positive constant independent of ε, m, and t. Then, we can conclude that

(
K1/2

1 uε
tm

)
,
(
K1/2

2 vε
tm

)
are bounded in L∞

(
0, T ;L2(Ω)

)
,

(√
εuε

tm

)
,
(√

εvε
tm

)
are bounded in L∞

(
0, T ;L2(Ω)

)
,

(uε
m), (v

ε
m) are bounded in L∞

(
0, T ;H2

0(Ω)
)
,

(
uε
tm

)
,
(
vε
tm

)
are bounded in L2

(
0, T ;L2(Ω)

)
.

(3.15)
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The Second Estimate

Substituting w = −Δuε
tm(t) and z = −Δvε

tm(t) in (3.6) and (3.7), respectively, it holds that

d

dt

[((
K1,

(
uε
tm

)2(t)
))

+
((

K2,
(
vε
tm

)2(t)
))

+ ε
(∥∥uε

tm(t)
∥∥2 +

∥∥vε
tm(t)

∥∥2
)

+‖Δuε
m(t)‖2 + ‖Δvε

m(t)‖2
]
+ 2

(∥∥uε
tm(t)

∥∥2 +
∥∥vε

tm(t)
∥∥2
)

=
((

∂K1

∂t
,
(
uε
tm

)2(t)
))

+
((

∂K2

∂t
,
(
vε
tm

)2(t)
))

− 2M
(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)
· [((−Δuε

m(t), u
ε
tm(t)

))
+
((−Δvε

m(t), v
ε
tm(t)

))]
.

(3.16)

Integrating (3.16) over (0, t), 0 < t < T , and taking (2.5)–(2.7) and (3.8), (3.9), and first
estimate into account, we infer

((
K1,

(
uε
tm

)2(t)
))

+
((

K2,
(
vε
tm

)2(t)
))

+ ε
(∥∥uε

tm(t)
∥∥2 +

∥∥vε
tm(t)

∥∥2
)

+ ‖Δuε
m(t)‖2 + ‖Δvε

m(t)‖2 + 2
(∥∥uε

tm(t)
∥∥2 +

∥∥vε
tm(t)

∥∥2
)

+ (2 − 2δ)
∫ t

0

(∥∥uε
tm(t)

∥∥2 +
∥∥vε

tm(t)
∥∥2
)
ds ≤ C2,

(3.17)

where C2 is a positive constant independent of ε, m, and t. From the above estimate we
conclude that

(
K1/2

1 uε
tm

)
,
(
K1/2

2 vε
tm

)
are bounded in L∞

(
0, T ;H1

0(Ω)
)
,

(√
εuε

tm

)
,
(√

εvε
tm

)
are bounded in L∞

(
0, T ;H1

0(Ω)
)
,

(uε
m), (v

ε
m) are bounded in L∞

(
0, T ;H2

0(Ω) ∩H4(Ω)
)
,

(
uε
tm

)
,
(
vε
tm

)
are bounded in L2

(
0, T ;H1

0(Ω)
)
.

(3.18)

The Third Estimate

Differentiating (3.6) and (3.7)with respect to t and settingw = uε
ttm and vε

ttm, respectively, we
arrive at

d

dt

[
K1,

(
uε
ttm(t)

)2 +
(
K2,

(
vε
ttm(t)

)2) + ε
(∣∣uε

ttm(t)
∣∣2 + ∣∣vε

ttm

∣∣2) +
∣∣Δuε

tm(t)
∣∣2 + ∣∣Δvε

tm(t)
∣∣2]

+ 2
(∣∣uε

tm(s)
∣∣2 + ∣∣vε

tm(s)
∣∣2)
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= −2M
(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)
· [(−Δuε

tm(t), u
ε
ttm(t)

)
+
(−Δvε

tm(t), v
ε
ttm(t)

)]

− 4
[(
uε
m(t),−Δuε

tm(t)
)
+
(
vε
m(t),−Δvε

tm(t)
)] ·M′

(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)

·[(−Δuε
tm(t), u

ε
ttm(t)

)
+
(−Δvε

tm(t), v
ε
ttm(t)

)]
+
(
∂K1

∂t
,
(
uε
ttm

)2(t)
)
+
(
∂K2

∂t
,
(
vε
ttm

)2(t)
)
.

(3.19)

Integrating (3.19) over (0, t), and using (2.5), (3.8), (3.9), and the norms |uε
ttm(0)|2 ≤ C3 and

|vε
ttm(0)|2 ≤ C4 after employing Gronwall’s lemma, we obtain the third estimate

(
K1,

(
uε
ttm

)2(t)
)
+
(
K2,

(
vε
ttm

)2(t)
)
+ ε

(∣∣uε
ttm(t)

∣∣2 + ∣∣vε
ttm(t)

∣∣2)

+
∣∣Δuε

tm(t)
∣∣2 + ∣∣Δvε

tm(t)
∣∣2] + (2 − 2δ)

∫ t

0

(∣∣uε
ttm(t)

∣∣2 + ∣∣vε
ttm(t)

∣∣2)ds ≤ C5,

(3.20)

where C5 is a positive constant independent of ε, m, and t. From the above estimate we
conclude that

(
K1/2

1 uε
ttm

)
,
(
K1/2

2 vε
ttm

)
are bounded in L∞

(
0, T ;L2(Ω)

)
,

(√
εuε

ttm

)
,
(√

εvε
ttm

)
are bounded in L∞

(
0, T ;L2(Ω)

)
,

(
uε
tm

)
,
(
vε
tm

)
are bounded in L∞

(
0, T ;H2

0(Ω)
)
,

(
uε
ttm

)
,
(
vε
ttm

)
are bounded in L2

(
0, T ;L2(Ω)

)
.

(3.21)

(2) Limits of Approximated Solutions

From the Aubin-Lions theorem (see [6])we deduce that there exist subsequences of (uε
m)m∈N

and (vε
m)m∈N

such that

uε
m −→ uε strongly in L2

(
0, T ;H1

0(Ω)
)
,

vε
m −→ vε strongly in L2

(
0, T ;H1

0(Ω)
)
,

(3.22)

and since M is continuous, it follows that

M
(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)
−→ M

(
‖uε(t)‖2 + ‖vε(t)‖2

)
. (3.23)
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From the above estimate we can conclude that there exist subsequences of (uε
m)m∈N

and
(vε

m)m∈N
, that we denote also by (uε

m)m∈N
and (vε

m)m∈N
such that as m → ∞ and ε → 0 we

have

uε
m −→ u, vε

m −→ v weak star in L∞
(
0, T ;H2

0(Ω) ∩H4(Ω)
)
,

uε
tm −→ ut, vε

tm −→ vt weak star L∞
(
0, T ;H2

0(Ω)
)
,

uε
ttm −→ utt, vε

ttm −→ vtt weak star L2
(
0, T ;L2(Ω)

)
,

Δuε
m −→ Δu, Δvε

m −→ Δv weak star in L∞
(
0, T ;L2(Ω)

)
,

K1u
ε
ttm −→ K1utt, K2v

ε
ttm −→ K2vtt weak star in L∞

(
0, T ;L2(Ω)

)
,

Δ2uε
m −→ Δ2u, Δ2vε

m −→ Δ2v weak star in L2
(
0, T ;L2(Ω)

)
,

√
εuε

ttm −→ √
εutt,

√
εvε

ttm −→ √
εvtt weak star in L∞

(
0, T ;L2(Ω)

)
,

M
(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)
(−Δuε

m −Δvε
m)

−→ M
(
‖u(t)‖2 + ‖v(t)‖2

)
(−Δu −Δv) weak star in L∞

(
0, T ;L2(Ω)

)
.

(3.24)

Now, multiplying (3.6), (3.7) by θ ∈ D(0, T) and integrating over (0, T), we arrive at

∫T

0

(
(K1 + ε)uε

ttm(t), w
)
θ(t)dt +

∫T

0
(−Δuε

m(t),−Δw)θ(t)dt

+
∫T

0
M

(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)
(−Δuε

m(t), w)θ dt

+
∫T

0

(
uε
tm,w

)
θdt = 0, ∀w ∈ Vm, ∀θ ∈ D(0, T),

∫T

0

(
(K2 + ε)vε

ttm(t), z
)
θ(t)dt +

∫T

0
(−Δvε

m(t),−Δz)θ(t)dt

+
∫T

0
M

(
‖uε

m(t)‖2 + ‖vε
m(t)‖2

)
(−Δvε

m(t), z)θ dt

+
∫T

0

(
vε
tm, z

)
θ dt = 0, ∀z ∈ Vm, ∀θ ∈ D(0, T).

(3.25)

The convergences (3.24) are sufficient to pass to the limit in (3.25) in order to obtain

K1utt + Δ2u +M
(
‖u(t)‖2 + ‖v(t)‖2

)
(−Δu) + ut = 0 in L∞

loc

(
0,∞;L2(Ω)

)
,

K2vtt + Δ2v +M
(
‖u(t)‖2 + ‖v(t)‖2

)
(−Δv) + vt = 0 in L∞

loc

(
0,∞;L2(Ω)

)
,

(3.26)

and (u, v) satisfies (3.1).
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The uniqueness and initial conditions follow by using the standard arguments as in
Lions [6]. The proof is now complete.

4. Asymptotic Behavior

In this section we study the asymptotic behavior of solutions to the system (1.1)–(1.5). We
show using the Nakao method that the system (1.1)–(1.5) is exponentially stable. The main
result of this paper is given by the following theorem.

Theorem 4.1. Let one take (u0, v0) ∈ (H1
0(Ω) ∩ H4(Ω))2, and (u1, v1) ∈ (H2

0(Ω))2 and let one
suppose that assumptions (2.5), (2.6), and (2.7) hold. Then, the solution (u, v) of system (1.1)–(1.5)
satisfies

∣∣∣K1/2
1 ut(t)

∣∣∣
2
+
∣∣∣K1/2

2 vt(t)
∣∣∣
2
+ |Δu(t)|2 + |Δv(t)|2 +

∫ t+1

t

(
|ut(s)|2 + |vt(s)|2

)
ds ≤ α1e

−α2t,

(4.1)

for all t ≥ 1, where α1 and α2 are positive constants.

Proof. Multiplying (3.2) by ut(t) and vt(t), respectively, and integrating over Ω, we obtain

1
2
d

dt

[∣∣∣K1/2
1 ut(t)

∣∣∣
2
+
∣∣∣K1/2

2 vt(t)
∣∣∣
2
+ |Δu(t)|2 + |Δv(t)|2 + M̂

(
‖u(t)‖2 + ‖v(t)‖2

)]

+ |ut(t)|2 + |vt(t)|2 =
(
∂K1

∂t
, u2

t (t)
)
+
(
∂K2

∂t
, v2

t (t)
)
,

(4.2)

where

M̂(s) =
∫ s

0
M(τ)dτ. (4.3)

Using (2.6) and considering δ > 0 sufficiently small, we get

1
2
d

dt

[∣∣∣K1/2
1 ut(t)

∣∣∣
2
+
∣∣∣K1/2

2 vt(t)
∣∣∣
2
+ |Δu(t)|2 + |Δv(t)|2 + M̂

(
‖u(t)‖2 + ‖v(t)‖2

)]

+ (1 − δ −K0C(δ))
(
|ut(t)|2 + |vt(t)|2

)
≤ 0,

(4.4)

where K0 = max{K1, K2}with

Ki = max
s∈[t,t+1]

{
ess supKi(x, s)

}
, i = 1, 2. (4.5)

Integrating (4.4) from 0tot, we have

E(t) + (1 − δ −K0C(δ))
∫ t

0

(
|ut(s)|2 + |vt(s)|2

)
ds ≤ E(0), (4.6)
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where

E(t) =
1
2

[∣∣∣K1/2
1 ut(t)

∣∣∣
2
+
∣∣∣K1/2

2 vt(t)
∣∣∣
2
+ |Δv(t)|2 + |Δv(t)|2 + M̂

(
‖u(t)‖2 + ‖v(t)‖2

)]
(4.7)

is the energy associated with the system (1.1)–(1.5). From (4.4)we conclude that

d

dt
E(t) ≤ 0 ∀t ∈ (0,∞), (4.8)

that is, E(t) is bounded and increasing in (0,∞).
Integrating (4.4) from τ1toτ2, 0 < τ1 < τ2 < ∞, we arrive at

E(τ2) + (1 − δ −K0C(δ))
∫ τ2

τ1

(
|ut(s)|2 + |vt(s)|2

)
ds ≤ E(τ1). (4.9)

Taking τ1 = t and τ2 = t + 1 in (4.9), we get

∫ t+1

t

(
|ut(s)|2 + |vt(s)|2

)
ds ≤ 1

1 − δ −K0C(δ)
[E(t) − E(t + 1)] = F2(t). (4.10)

Therefore, there exist two points t1 ∈ [t, t + 1/4] and t2 ∈ [t + 3/4, t + 1], such that

|ut(ti)| + |vt(ti)| ≤ 4F(t), i = 1, 2. (4.11)

Making the inner product in L2(Ω) of (1.1) and (1.2) by u(t) and v(t), respectively, and
summing up the result we obtain

d

dt
(K1ut(t), u(t)) +

d

dt
(K2vt(t), v(t)) −

∣∣∣
√
K1ut(t)

∣∣∣
2 −

∣∣∣
√
K2vt(t)

∣∣∣
2

+ |Δu(t)|2 + |Δv(t)|2 +M
(
‖u(t)‖2 + ‖v(t)‖2

)(
‖u(t)‖2 + ‖v(t)‖2

)
+ (ut(t), u(t))

+ (vt(t), v(t)) =
(
∂K1

∂t
ut(t), u(t)

)
+
(
∂K2

∂t
vt(t), v(t)

)
.

(4.12)

Integrating from t1 to t2 and using (2.6), and (2.7)we have

(
1 − β

λ1

)∫ t2

t1

(
|Δu(s)|2 + |Δv(s)|2

)
ds

≤ (K1ut(t1), u(t1)) − (K1ut(t2), u(t2)) + (K2vt(t1), v(t1)) − (K2vt(t2), v(t2))

+ (1 + δ +K0C(δ))
∫ t2

t1

(|ut(s)||u(s)| + |vt(s)||v(s)|)ds

+K0

∫ t2

t1

(
|ut(s)|2 + |vt(s)|2

)
ds.

(4.13)
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Let us consider C > 0 such that

|u(s)| ≤ C|Δu(s)|, |v(s)| ≤ C|Δv(s)| (4.14)

and we take d > 0 sufficiently small Then we have

(1 + δ +K0C(δ))(|ut(s)||u(s)| + |vt(s)||v(s)|)

≤ (1 + δ +K0C(δ))
2

d

(
|ut(s)|2 + |vt(s)|2

)
+ d

(
|Δu(s)|2 + |Δv(s)|2

)
,

|(K1ut(t1), u(t1)) + (K2vt(t1), v(t1)) − (K1ut(t2), u(t2)) − (K2vt(t2), v(t2))|
≤ CK0 ess sup

s∈[t,t+1]
|Δu(s)|(|ut(t1)| + |ut(t2)|) + CK0 ess sup

s∈[t,t+1]
|Δv(s)|(|vt(t1)| + |vt(t2)|).

(4.15)

Thus, substituting (4.15) into (4.13), we arrive at

(
1 − β

λ1

)∫ t2

t1

(
|Δu(s)|2 + |Δv(s)|2

)
ds

≤ K0

∫ t2

t1

(
|ut(s)|2 + |vt(s)|2

)
ds + d

∫ t2

t1

(
|Δu(s)|2 + |Δv(s)|2

)
ds

+ CK0 ess sup
s∈[t,t+1]

|Δu(s)|(|ut(t1)| + |ut(t2)|) + CK0 ess sup
s∈[t,t+1]

|Δv(s)|(|vt(t1)| + |vt(t2)|).

(4.16)

Applying (4.10) and (4.11) in (4.16), we have

∫ t2

t1

(
|Δu(s)|2 + |Δv(s)|2

)
ds ≤ C1

[
F2(t) + ess sup

s∈[t,t+1]
(|Δu(s)| + |Δv(s)|)F(t)

]
= G2(t),

(4.17)

where C1 is a positive constant independent of t. Therefore, from (4.10) and (4.17) we obtain

∫ t2

t1

(
|ut(s)|2 + |vt(s)|2 + |Δu(s)|2 + |Δv(s)|2

)
ds ≤ F2(t) +G2(t). (4.18)

Hence, there exists t∗ ∈ [t1, t2] such that

|ut(t∗)|2 + |vt(t∗)|2 + |Δu(t∗)|2 + |Δv(t∗)|2 ≤ 2
[
F2(t) +G2(t)

]
. (4.19)

Consequently,

M̂
(
‖u(t)‖2 + ‖v(t)‖2

)
≤ C2

[
F2(t) +G2(t)

]
, (4.20)
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where

C2 = 2m0C̃, m0 = max
0≤s≤(‖u(t∗)‖2+‖v(t∗)‖2)<∞

M(s) (4.21)

and C̃ is a positive constant such that ‖u(t∗)‖2 ≤ C̃|Δu(t∗)|2.
From (4.19) and (4.20), we have

E(t∗) ≤ C3

[
F2(t) +G2(t)

]
. (4.22)

Since E(t) is increasing, we have

ess sup
s∈[t,t+1]

E(s) ≤ E(t∗) + (1 + δ +K0C(δ))
∫ t2

t1

(
|ut(s)|2 + |vt(s)|2

)
ds. (4.23)

Now, by (4.10), (4.22), and (4.23) we get

E(t) ≤ C4[E(t) − E(t + 1)], (4.24)

where C4 is a positive constant. Then, by the Nakao lemma (see [12]) we conclude that

E(t) ≤ b1e
−α2t, ∀t ≥ 1, (4.25)

where b1 and α2 are positive constants, that is,

∣∣∣
√
K1ut(t)

∣∣∣
2
+
∣∣∣
√
K2vt(t)

∣∣∣
2
+ |Δu(t)|2 + |Δv(t)|2M̂

(
‖u(t)‖2 + ‖v(t)‖2

)
≤ 2b1e−α2t. (4.26)

Using (2.7) we obtain

∣∣∣
√
K1ut(t)

∣∣∣
2
+
∣∣∣
√
K2vt(t)

∣∣∣
2
+ |Δu(t)|2 + |Δv(t)|2 ≤ 2b1

m1
e−α2t, (4.27)

where

m1 = 1 − β

λ1
> 0. (4.28)

From (4.10) we have

∫ t+1

t

(
|ut(s)|2 + |vt(s)|2

)
ds ≤ 1

1 − δ −K0C(δ)
[E(t) − E(t + 1)] ≤ E(t) ≤ b1e

−α2t. (4.29)
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Therefore, from (4.27) and (4.29) we conclude that

∣∣∣
√
K1ut(t)

∣∣∣
2
+
∣∣∣
√
K2vt(t)

∣∣∣
2
+ |Δu(t)|2 + |Δv(t)|2

+
∫ t+1

t

(
|ut(s)|2 + |vt(s)|2

)
ds ≤ α1e

−α2t, ∀t ≥ 1,
(4.30)

where α1 and α2 are positive constants. Now, the proof is complete.
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