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We study the viscous limit problem for a general system of conservation laws. We prove that if the
solution of the underlying inviscid problem is piecewise smooth with finitely many noninteracting
shocks satisfying the entropy condition, then there exist solutions to the corresponding viscous

system which converge to the inviscid solutions away from shock discontinuities at a rate of €' as
the viscosity coefficient € vanishes.

1. Introduction

We consider the relation between the solutions, u?, of the system of viscous conservation laws

uj + f(u), = e(B(u)uy),, u°€R", xR, t>0, >0, (1.1)

and the distributional solution, u, of the corresponding system of conservation laws without
viscosity

u+ f(u), =0, ueR", xeR, t>0. (1.2)

We assume that (1.2) is strictly hyperbolic, then by normalization, we have the
decomposition

A=D,f(u)=RAL,  RL=]I, (1.3)
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where A = diag(A,Ay,...,A,) with &y < Ay < -+ < A, L = (l1,...,ln)t is a matrix whose
rows are left eigenvectors of A, and R = (ry,...,7,) is a matrix whose columns are right
eigenvectors of A.

For the zero dissipation limit problem, there are many significant works. When the
Euler flow contains a single shock, Hoff and Liu [1] studied the isentropic case, they
established the limit process from the solutions of the compressible Navier-Stokes equations
to the single shock-wave solution of the corresponding compressible Euler system (so-called
p-system). They show that the solutions to the isentropic Navier-Stokes equations with shock
data exist and converge to the inviscid shocks as the viscosity vanishes, uniformly away
from the shocks. Ignoring the initial layers, Goodman and Xin [2] gave a very detailed
description of the asymptotic behavior of solutions for the general viscous systems as the
viscosity tends to zero, via a method of matching asymptotics. This method can be applied
to the Navier-Stokes equations (1.1), such as [3-5]. Later, Yu [6] revealed the rich structure
of nonlinear wave interactions due to the presence of shocks and initial layers by a detailed
pointwise analysis. As far as rarefaction wave is concerned, Xin in [7] has obtained that the
solutions for the isentropic Navier-Stokes equations with weak centered rarefaction wave
data exist for all time and converge to the weak centered rarefaction wave solution of the
corresponding Euler system, as the viscosity tends to zero, uniformly away from the initial
discontinuity. Moreover, in the case that either the initial layers are ignored or the rarefaction
waves are smooth, he also obtains a rate of convergence which is valid uniformly for all time.
Recently, Jiang et al. [8] improve the first part with weak centered srarefaction waves data
and Zeng [9] improve the other results, respectively, in [7] to the full compressible Navier-
Stokes equations, provided that the viscosity and heat-conductivity coefficients are in the
same order. Furthermore, by a spectral analysis and Evans function method, Kevin Zumbrun
and his collaborators have obtained many important results even for large amplitude and
multidimensional case [10-14], and so forth. The case that the solutions to the Euler system
containing contact discontinuity is much more subtle, there are few results in this respect[15—
17].

In this paper, motivated by Goodman and Xin’s work [2], we establish that the
piecewise smooth solutions, u, of (1.2), with finitely many noninteracting shocks satisfying
the entropy condition, are strong limits as ¢ — 0 of solutions, u*, of (1.1) when the matrix
LBR is positive definite.

For simplicity of presentation, we only consider the case in which u is a single-shock
solution.

Definition 1.1. A function u(x, t) is called a single-shock solution of (1.2) up to time T if:

(i) u(x,t) is a distributional solution of the hyperbolic system (1.2) in the region R' x
[0,T];

(ii) there is a smooth curve, the shock, x = s(t), 0 <t < T, so that u(x, t) is sufficiently
smooth at any point x # s(t);

(iii) the limits
Fu(s(t) - 0,t) = lLim 0fu(x,t),
x—s(t)”

(1.4)
oFu(s(t) +0,t) = lirr(l) ofu(x,t),
x—s(t)*

exist and are finite fort < T and 0 < k < 5;
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(iv) the Lax geometrical entropy condition [18] is satisfied at x = s(t), that is,

Mi(u(s(t) =0,8) <--- <Ap(u(s(t) - 0,t)),
A, (u(s(t) +0,8)) < %s(t) < A (u(s(t) = 0,1), (1.5)
Ay (u(s(t) +0,8)) < -+ < A (u(s(t) +0,1)).

The main results of this paper are as follows.

Theorem 1.2. Suppose that the system (1.2) is strictly hyperbolic and that the pth characteristic
family is genuinely nonlinear. There exist positive constants, pg and €y, such that if u(x, t) is a single-

shock solution up to time T with
L]
1;kg6 0

2
okul(x, t)| dx dt < oo,

(1.6)
K= sup |u(s(t) +0, t) - u(s(t) -0, t)| < Ho.,
0<I<T
then for each € € [0, o], there is a smooth solution, u®(x,t), of (1.1) with
U € C1<[0,T],H1>. (1.7)
Moreover, for any given 17 € (0,1),
sup | [uf(x,t) —u(x, t)Pdx < Cye", (1.8)
0<I<T
sup [uf(x,t) —u(x,t)| < Cye, (1.9)

O<H<T, |x—s(t)|>e"

where C,; is a positive constant depending only on 1.

Notation. In this paper, we use H'(I > 1) to denote the usual Sobolev space with the norm
Il ll,and || - || = || - |lo denotes the usual L,-norm. We also use O(1) to denote any positive
bounded function which is independent of ¢.

2. Construction of the Approximate Solution

In this section, following the method of Goodman and Xin, in [2], we construct the
approximate solution v° through different scaling and asymptotic expansions in the region
near and away from the shock respectively, such that v° approximate the piecewise smooth
inviscid solution # away from the shock and has a sharp change near the shock.
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2.1. Outer and Inner Expansions and the Matching Conditions

In the region away from the shock, x = s(t), we approximate the solution of (1.1) by
truncation of the formal series

e (x, t) ~ ug(x, t) + eus (x,t) + e2ur (x,8) + - - - . (2.1)

Substituting this into (1.1) and comparing the coefficients of powers of €, we get, for x #s(t),
that

O() : ugt + f (o) = 0, (22)

O(e) uy + (f'(uo)ur) . = (B(uo)uox),, (2.3)

O() 1+ (f (o)), = (Blao)ua), + (B (o), w02)), — 5 (" () wr, ), (24

and so forth. The outer functions u, 1, . .., are generally discontinuous at the shock, x = s(t),
but smooth up to the shock. The leading term, uy, is the single-shock solution of (1.2) which
is given in the theorem.

Near the shock, u® should be represented by an inner expansion:

ue(x, 1) ~Up(&, 1) + el (&, 1) + U (&, ) + -+, (2.5)
where

+6(t¢), (2.6)

_ x—s(t)
g= 120

and 6(t, €) is the perturbation of the shock position to be determined later.
We assume that 6(¢, £) has the form

5(t,€) = 6o(t) + €61 (t) + €262 (t) + -+ - . (2.7)

Substitute (2.5)-(2.7) into (1.1) to obtain

O(%) 1 (B(Uo)Uog), + U — (f (Up)), =0, 2.8)
O(l) : {B(UO)ULg + B’(UO)(UL UOg) }g + S'U1§ - (f’(Uo)ul)é =Uy + 50u0§, (2‘9)

O(e) : {B(Uo)Uz + B'(Uo) (U2, Ug) §, + sUz — (f'Uo)U2),,
. . (2.10)
s = Uy + 61U + 6oU; + %(f”(UO)(ulrul))é - (B'(Uo) (U1, Uy)),,

and so forth, where $ = ds/dt, 6, = dby/dt, and so forth. The inner approximation is
supposed to be valid in a small zone of size O(¢) around x = s(t).
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In a matching zone, we expect the outer and the inner expansion agree with each other.

Using the Taylor series to express the outer solutions in terms of ¢, we obtain the following
“matching conditions” as ¢ — =oe:

Up(¢,t) =up(s(t) £0,t) + o(1), (2.11)
Uq(é,t) =ur(s(t) £0,t) + (¢ — 60)Oxuo(s(t) £0,t) + o(1), (2.12)

Us(¢,t) = ua(s(t) £0,t) + (& — 60)0xu1(s(t) £0,t) — 610 up(s(t) £0,1)
1 (2.13)
+ E(g — 60)20%up(s(t) £0,1) +o(1),

and so forth.

2.2, The Structure of Viscous Shock Profiles

Our construction of the approximate solution depends on the properties of the viscous shock
profiles, which are the solutions of the ordinary differential equation

(B(9)9e), = —o¢: + f(9),/ (2.14)
satisfying the boundary conditions

P@) —wu as§— -oo,

(2.15)
$(&) — u, as ¢ — +oo,
and moving with speed o:
o(u —uy) = f(ur) = f(uy). (2.16)
Integrate the differential equation to reduce that
B(§)$; = -0 (p(@) —w) + f($(2)) - f (w). (2.17)

It is well known that for a given state u and the p wave family, if |u; — u| + |0 - A, (u)] is
sufficiently small, then there exists a shock profile ¢ = ¢(¢, u;, o), which connects u; and u,
from left to right. Using the genuine nonlinearity, by similar arguments in [2], we can obtain

ag)tp ((Ib) < O/ vé/

(2.18)
|0:| < c|0gAy(@)] < clur — uyl.
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And as ¢ — —oo,

P& u,0) —u =0 |w - uyle™,

op -

a—ul -I= O(l)e |§\/ (219)
op _ al
% = O(l)e §

As ¢ — +oo,

¢, u,0) —up = O |uy — uyle™,

op  Ou, —al]
3 oy - OWMe (2.20)
(3(;1) aur _ —al¢|
% % = O(l)e .

2.3. Solutions of the Outer and Inner Problems

Now we construct u; and U; order by order.

The leading order outer function, uy, is the single-shock solution of the theorem. For
any fixed t, the leading order inner solution Uy (¢, f) is exactly the viscous shock profile with
w(t) =u(s(t) —0,t),u,(t) =u(s(t) +0,t), and o = 5(t). So

Uo (&, 1) = ¢(&, ui(t), 5(8))- (2.21)

Here we take the shift to be zero since it can be absorbed into 6 (t).
Next we determine u;, U1, and 6y(t) together. Substituting (2.21) into (2.9) gives

(B)Us + B (§) (U, + Ui~ (F (U, = 6ol + 5+ S 222)
By the matching condition (2.12), we expect that
Ui (& 1) = & - Betto(s() £0,8) + O(1)  as & —s +oo. (2.23)
So we set
Uq(¢ t) = Vi(é,t) + D1(§, 1), (2.24)

where D (¢, t) is a smooth function satisfying

(2.25)

{g SOyug(s(t) = 0,8), &<-1,
Dl(é/ t) =
&-0xup(s(t) +0,8), ¢>1.



ISRN Mathematical Physics 7

Then inserting (2.24) into (2.22) and using (2.19)—(2.20) and the identity
d ) ,
Euo(s(t) +£0,t) = (I — f'(uo(s(t) £0,1)) ) uox(s(t) £0,t), (2.26)

we obtain

{B(@)Vag + B'(¢) (Vi, ¢) ), + $Vig = (F ($)V1), = Go (D) + (4 1), (2.27)

where |g(¢,1)| < cexp{—al¢|} for large |¢|. Define G(¢, t) = fg g(n,t)dn. Then we have
B(§)Vig + B'($) (Vi ¢2) + Vi = f/($) V1 = 8o + G, 1) + c(t), (2.28)

where c(t) € R" are integration constants to be determined later. We express Vi in terms of
the basis, r1(¢), 2 (), ..., 2 (), of the right eigenvectors of f'(¢). We write

Vi (é/ t) = Z‘xj (ér t)Tj (¢(§r t))’

j=1

ui(s(t) £0,t) = D (D) (uo(s(t) £0,1)), (2.29)
j=1

B.tt0(s(1) £.0,8) = Xy (07 (to(s(6) £.0,1).
j=1

Here the f;_ are for u;(s(t) - 0,t) and the f;, are for u;(s(t) + 0,t), and so forth. Then the
matching conditions (2.12) are transformed into

glirilwaj(é, t) = Pje(t) = 6o(t)yj(t), j=1,...,n. (2.30)
Define o;(¢) =I;(¢)B(¢)r;(¢) > 0. Multiplying (2.28) by [;(¢), and using (2.29), we obtain

ajg +0;(9) " {1 (9)B (9) (i (#), 9e) + (3= ;(9))
= 0; () 'L () (o) + G(& ) + (b)) (231)

_anlo]-(fi))1ai(§,t)l,~(¢)3(¢)ri§<¢), ielom

and then we have the following result.



8 ISRN Mathematical Physics

Lemma 2.1. There is a smooth solution, a(¢,t), to (2.31) with the following property:

(5= A () "1 (u) [bow + G- + c(B)] + O(1) expl—al]}, &— —oo,
aj(¢,t) = (2.32)

(5= 41 (ur)) "1 (ur) [Boty + Gy + c(8)] + O(1) exp(-al]), & — +oo,

forj=1,...,n, where Gy = lim; _,,,,G(¢, t), and ay is a positive constant.

Proof. We use the standard iteration argument. Define a’(¢, t) = 0, and

¢ ¢ 1
160 = ep{-[ o 6@B@ @0 -y
: {O'f(‘i’)_llj (@) (bo(t)p + G(&, 1) +c(t))
—z"lof@)*ai(g,t>z]-<¢>B<¢>ng<¢>}dn, j<p,
¢ 4 1
A= [ p{ [ DD @) ) - AP(¢))dg}
. {O'p ((I))_llp (¢) (60(1‘)4) +G(¢,t) + C(t)) (2.33)
@) e 0, @B }dn,
+00 é 1
e =-| p{ [ 6@E@ 60 +s—A]-<¢>>dc}
: {Gf(d’)_llj (@) (bo(t)p + G(&, 1) +c(t))
SYIORATIOLOU0 }dn, i>p.
Set
My = Z sup |af(§,t)|, k=0,1,2,...,

0<i<n Rx[0,T]
(2.34)

Dy = Z sup

0<i<nRx[0,T]

@ -af@ ], k=012,....
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Then from the lax entropy condition (1.5), we can obtain
Dy <cuDps, k=1,2,..., (2.35)

where ¢ is independent of p1. And then for suitably small y, we have

M <cM;, k=0,1,..., (2.36)

and ak (¢, t) converges uniformly to a smooth bounded function, a(¢, t), which is a solution to
(2.31). The asymptotic behavior of the solution, a(¢,t), follows from the formulas (2.33).

With Lemma 2.1 and the matching condition (2.30) at hand, we can determine,
completely the same as in [2], f.(t), 60(t), and c(t), which guarantees the existence of U (¢, t)
and u(x,t). We give the sketch of this process. First, we use Lemma 2.1 and (2.30) for
incoming indices to get a system of (n + 1) equations for n + 1 unknowns, that is,

i(ur) [bour + c(8)] = (Bj+(t) = Soyj (1)) (8 = j(ur)) = i (ur)G., for 1<j<p, (2.37)
L) [3u, + c(t)] = (Bi-(t) = Soyi= () (8 = Xj(w)) + L (ur) (ur — u1) S0
—lij(u)G-, for (p+1)<j<n,
(1 ) (= 1)) 6o = (Ly (ur) = L (1)) (bottr + c(t)) + (8 = Ay (1)) Bp- (1)
= (8 = Xp () By (8) + Bo[yps (8 = 4p(ur)) = p- (8 = 4p(u))] (239
+1, ()G = i (u1) G-

(2.38)

Then we can solve for &ou, +c(t) from (2.37)-(2.38). Substituting the resulting expression into
(2.39), by writing fi, = (ﬁpf, ﬁ(ml)?, cois P Prs s :ﬁm)' we arrive at an ordinary differential
equation for &y:

60 + El(t)(SO = Ez(i’) . ﬂin + G1 (t), (240)

provided that p is suitably small. Here E;(t), Ex(t), and G;(t) are smooth known functions,
and E;(t) and E;(t) remain bounded even as y — 07*. Solving for &y from (2.37) up to a
constant, we obtain c¢(t) uniquely in terms of f3;,. Then substitute the expression of 6y and c(t)
into the equation of the matching condition for outgoing indices to yield the linear relations

ﬁout = E(t) . ﬁin + F(t)/ (241)

where fout = (B1., 2., -+, Pp-1)_, Bp+1),,-- -, Pn.), and F(t) € R"1 is a smooth known function,
E(t) is a smooth (n — 1) x (n + 1) matrix and remains bounded even as ¢ — 0*. Then the
theory of linear hyperbolic equations [19, 20] shows that the problem (2.3), (2.41) has a
solution smooth up to the shock provided that the initial value, u;(x,0), is chosen to satisfy
the appropriate compatibility conditions at x = s(0). Thus u (x, ) is completely determined,
which in turn gives 6y and c(t) by (2.37)-(2.38), and therefore U (¢, t). O
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Now we summarize the above discussion to achieve the following.

Proposition 2.2. If y is suitably small, then uy (x,t), U1(¢,t) and &g can be established such that

(1) ui(x, t) and its derivatives are uniformly continuous up to x = s(t), and

PN

(ii) U1 (¢, t) and &y are smooth functions, and there are an a > 0, such that

2
ok (x, t)| dx dt < . (2.42)

Ui (1) = ur(s(t) £0,1) + (§ - 60)Oxuo(s(t) £0,£) + O(1) exp{-alé|}, as§— +o0.  (243)

The above constructions can be carried out to any order. In particular, we can
determine u;, U; and 6;1 (i = 2,3) simultaneously and similar results as in Proposition 2.2
hold for them.

2.4. Approximate Solutions

Now we can construct an approximate solution to (1.1) by patching the truncated outer and
inner solutions in the previous discussion as in [2]. Define

— 3 . —
I(x,t) = (j)(x s(t) + 80+ €6 + 562,t> + Ze’ll,-(x s(t) + 60 +e6 + 562,t>,
€ par) € (2.44)
O(x,t) = ug(x, t) + eur (x, t) + €2un (x, t) + e2us(x, 1).
Let m € C{(R) satisfy 0 <m(y) <1, and
Loyl<1,
m(y) = (2.45)
0, |y|z2

Lety € (5/7,1) be a constant. Then we define the approximate solution to (1.1) as

0F (x, 1) = m<x_g—f(t)>1(x, £ + <1 - m(x = s®) >)O(x, B +d(x, b), (2.46)

ey

where d(x, t) is a higher-order correction term to be determined.
Using the structures of the various orders of inner and outer solutions, we compute
that

v + f(v°), —e(B(v°)v5), = iqi(x, t)+di— (B(ml + (1 -m)O)dy),
i=3
—&qux(x,1) + (f(v°) = f(v° = d)),

(2.47)
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where
q(x,t) = (1-m){[f(O) =T(f(0))], - e[B(O)Ox ~T(B(O)Ox)].},
G, b) = m{ [F(I) -T(f(I))], - e[BUDI, ~-T(BIDI,)], +£Us

+£4 <52u1 + 61U2 + 60113 + SSzUz + 651U3 + 8252U3> },

gs(x,t) = my(I = O) + m.(f(I) - £(O)) (2.48)

+{f(ml + (1-m)O) - (mf(I) + (1 -m)f(0))},
—emy(B(I)Ix - B(O)Ox),
ga(x,t) = B(v*)(v® —d), —mB(I)I, — (1 -m)B(O)Ox + (B(v*) — B(v® — d))dy,
where I'(f (O)), I'(B(O)Oy) denote the truncated Taylor’s expansion of f(O), B(O)Ox, respec-
tively, at up, including all the terms of O(1),0(1)e, O(1)e?,0(1)e?, and T'(f(I)),T(B(I)Ly)
denote the truncated Taylor’s expansion of f(I), B(I)I,, respectively, at ¢, including all the

terms of O(1),0(1)e, O(1)e?, O(1)&3.
In view of our construction, we have

(i) supp q1(x,t) C {(x,t) : [x = s(t)| 2 €7,0< ¢t < T}, and

T 1/2
0.1 (x,t) = O(1)e*™, (jum«on> <O(1)et,
0

(2.49)
T 5 1/2
<J‘ aic‘h(/ t)” dt> < 0(1)847(17(1/2)”, 1=1,2,3,
0
(if) supp g2(x, 1) € {(x, ) : [x —s(t)| <267,0 < £ < T}, and
okga(x,t) = O(1)e®, 1=0,1,2,3, (2.50)
(iii) supp g3(x,t) C {(x,t) : &' < |x —s(t)| <2¢,0<t < T}, and
0lgs(x,t) = O(1)e®, 1=0,1,2,3, (2.51)

where we have used the estimates 0'.(I - 0) = O(1)e®* ™Y on {(x,t) : € < |x—s(t)| <26}, | =
0,1,2,3.
We now choose d(x, t) to satisfy

dy— (B(ml +(1-m)O)dy), = —iqi(x,t),
i=1 (2.52)

d(x,0) =0,
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so that v° satisfies
vf + f(v°), = e(B(v°)v}), — €qax + (f (¥°) — f(v° = d)). (2.53)

Since B is smooth and positive definite, by the standard energy estimates for the linear
parabolic system and Sobolev’s inequalities, we have the following results.

Lemma 2.3. Let d(x,t) be the solution of (2.52). Then the following estimates hold for all t € [0, T]:

ohd(,n) . <0Me? D), for120,1,2,3,

(2.54)
oLd(., t)” <O, 1=0,1,2,3,4.
Then for qa, we have
dhasl| < O)e? 0, 120,12 (2.55)
And by our construction, we obtain the following.
Lemma 2.4. One has
up(x,t) + O(l)e, |x—s(t)| > e,
v (x,t) =
P, 1) +OM)e?,  |x-s(t)] <2, (2.56)
ovt 1 ove
Frel Em@;g’b +0O(1), prl O(1).

3. Stability Analysis

We now show that there exists an exact solution to (1.1) in a neighborhood of the approximate
solution v°(x,t), and that the asymptotic behavior of the viscous solution is given by v° for
small viscosity e.

Suppose that u®(x,t) is the exact solution to (1.1) with the initial data u°(x,0) =
v°(x,0). We decompose the solution as

ut(x,t) =0°(x,t) +w(x,t), (x,t)€Rx[0,T]. (3.1)
Then using the relation (2.53) for v*, we compute that

w; + (f' ()W), + Q(v°, W), = e(Bu)us - B(v*)vy), + £qax + (f(v° - d) - f(v9)),,
w(x,0) =0,

(3.2)

where Q(v°, w) = f(u°) — f(v°) - f'(v°)w satisfies |Q| < O(1)w for small w.
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Set w(x,t) = wy(x,t) in (3.2) and integrate the resulting equation with respect to x to
give

W + (f'(v°)D)  + Q(v°, @) = e(B(u)us, - B(v°)vy) + £qa + f(v° - d) - f(v°),

(3.3)
w(x,0) =0,
by making the following scalings,
B =ew(yr), y=2"0 =L (34
we transform (3.3) into
w; - swy + f'(v)w, + Q(v°,wy) = B(v)w,, + (B(u°) - B(v°))uy,
+eqs+ f(v° - d) - f(v), (3.5)

w(y,0) = 0.

Then we only need to show that for suitably small ¢, (3.5) has a unique “small” smooth
solution up to T = T/ €. By the standard existence and uniqueness theory, and the continuous
induction argument for parabolic equations [21], this will follow from the following a priori
estimate.

Proposition 3.1. Suppose that the Cauchy problem (3.5) has a solution w € C'([0,70] : H*(R"))
for some Ty € (0,T/¢€]. Then there exist positive constants p,e1 and C, which are independent of €
and Ty, such that if

O<e<e,  supllw,7)lls+p<p, (3.6)
0<t<1)
then
0
sup |lw(-, 7)||3 + f l|wy ¢, 7) ||2dT < CE™3, (3.7)
0<7<1) 0

where y is defined in Section 2.4.

The proof of the proposition occupies the rest of this section. We separate it into several
parts. First we diagonalize the system (3.5). Define
0(y,7) = L()w(y,7),
M(y,T) = (3yL(v")) - R(¥), (3.8)
N(y,7) = (6:L(v°)) - R(v).
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Then we have

0y = M6 + Lw,,
0, = NO+ Lw;, (3.9)

Byy = (M6), + M6, — M?6 + Lw,,.

Using the identity (3.9), we can rewrite (3.5) as

0r + (A -35)0, + (s —A)MO - N6 + LQ(v°, RO, + R,0)
= L(v") B(@°)R(v) (B — (M), - M) + M) (3.10)

+ L(v°)(B(u®) - B(vs))u +eL(v°)gqs — AL(v°)d + L(v°) Q1 (v7, d).

In what follows, we use c to denote any positive constant which is independent of ¢, y,
and 7;c to denote any positive constant which is independent of € and y. And we set e < 1.
Now we do the following estimates on transversal waves.

Lemma 3.2. There exist suitably small positive constants yy, €;, independent of € and Ty, such that

> A (9)
kﬂfla Ap(9)|6cdy < —— [WKM@) > dy]

e cet) [ mlo, 1, (9) 63y G
— 2 — 2 2
+ (cu+ce)||0,(C, 1) + cy”ayw(-,r) “

+cel|0¢, T)|]* + ce” 2

provided that ||0(-, T)||L= is bounded.

Proof. Using (3.10), we compute that for k #p,

[10,1, )16y

- [a,1,(9)e3ay =2 [ 1, ()es0,00dy

(=)
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X [— (M (©%) = Xk () ) Oy — Okr — {($ = A)MO — NO + ALd + L(Q — Q1) }«
+ { L(v°) B(v°)R(v°) (eyy - (M0), - M6, + M29>

+ L(v°) (B(uf) - B(v*)us, + eL(vf)q4}k]dy

= Z],
i=1
(3.12)
We now estimate J; (1 < j < 12) separately as follows:
1 .
0 )‘P (¢) B S> 2
=| — A () =4 0.d

Iay<lk(¢)—$ (e = (@) 6ty (3.13)

')Lp(d)) -5 e £ 2
D= @ v

EIl +12.

By Lemma 2.4,

0 )‘P(‘i)) -5 e 2 € 2
L< J“@(Ak(d)) - s>‘|()tk(v ) = i (9)) |0y < Cf|ay¢||()tk(v )~ 4 ($))[6xdy

Scfll 7Iay)tp(d))ll()tk(vg)—lk(¢))|9idy+cf 10,01 (@)~ A4($)) O3ely
yl<er -

(>

< ce J‘lay)‘p (9)|65dy + cell6x (-, 7).
(3.14)

For the second term I, since

|V Ak (0%)0,0° = VA ()0, p| = |VAk (v)mdy — VAi($)0y ¢ + O(1)e|
< |VAk(9) (m —1)0, 9|
+ | (VA (%) = VAk(¢))mdy | + O(1)e
<O()e+0(1)e"m|d, A, ()],

(3.15)

0y (y,7) = m(ﬁ“}/) 0y +O(1)e, (3.16)
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which follows from Lemma 2.4. Then we have

IzSJ

< cue” [19,4,(9) €3y + cpelBuc 7|

.
Ap(9) =8 ‘ | Vi (2),° - YAk ()0, 05dy

() -5

Consequently, we obtain
Ji=L+1 <ce f|8ylp (P)|02dy + cellk (-, 7)1
Using the estimate (d/dt)((Ap(¢) — 8)/ Ak (P) — $) = O(1)g, we find
3 Ap(P) -8
]2 = —2j<m>6k9k-pdy
_ d )‘P(d))_s 2 d )‘P(d))_s 2
_ _5J<lk(¢) _s_>9kdy+f% ORI

d ((L(9)-s
= Tdr J (W}Qid}/ + cel|6i (-, 7).

Notice that the facts

M = m<gl-Yy) (VL()d,$)R(v°) + O(1) &

|s =4 (P)| <,

we arrive at

~ Ap(9) -8 . .
J3= —ZI<W>9k[(S - A(v°))MO], dy

< (Cu+ce) fm|ayAp(¢) |8 dy + ce|6(, 7)|1%,

s
-2 <AZ£; - Z>9k[N9]kdy < el DI,

m(e17y) (VL($)0,9)R($) + O(W)e"m(e1 7y )0, + O(1)e,

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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where we have used the estimate |[N(y, 7)| < O(1)e. From Lemma 2.3,

~ P
J5 = —2J.<)L:(¢) - $>6k(ALd)kdy

< pellOe (PP + ce? fdzdy

(3.23)

< pel|6k (-, 7)|1* + g2,

Using Lemma 2.4 again, we have
IL(0)(Q - Q1)| < (T +ce?) <|,;1|2 +|R(v)0, + R, (UE)9|2) . (3.24)

Then it follows from Lemma 2.3 and (3.16) that

~ Ap(9) =6
Jo = —ZJ‘<W>9HL(Q - Q1) ]kdy

< p(e +ce) {f|9k||d|2dy +(c+ce) f|9k| |6, | dy + f|9k| |Ry(v€)9|2dy}

_ 1 1 _ _
< p(@+ e { 3ellen, I+ 67t [Iditdy + @+ cenlenl ey ¢,

_ (3.25)
+(cp+ ce”) 10kl J‘m|ay)‘p<¢) |61 dy + ce?||xll |I9(-,T)||2}

< cpe1 4 (T + e ) 10k, )16, (7))

+ cpe(1+ €l 0k, 7)) 16, 7)I?

+p(cp+ce") 0k (-, 7)o Jm|6ylp (9) |2|9|2dy.

In view of (3.16)—(3.21),

1 .
J7 = 2,[<)L:g§ - Z>9k [L(v°)B(v°)R(v°)0,, ], dy

L
_ 4[(%)9@ [L(v")B(v*)R(v")8, ], dy

')Lp(d)) -5 £ e 3
IN(E -

< w@+ N0, I+ [(lag] + 10,0 Dlewl ey ldy
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< (@ +cen)[oy DI + & 1,4, (@) el |0y |y + ce [leulley |y

1 _
<5 [l @ li8Pdy + @+ co)llo, I + celet I,

A (‘i)) -8 £ 3 3
o2 <A:(¢) - S_>9k [L")B") R (M), dy

- ZJ‘ <J){Z Eg : z>y9k[L(US)B(UE)R(UE)MQ]kdy

A .
+2 j <)LZ g; - z> Oky [L(v°)B(v°)R(v°) MO], dy

< (c+ceh) f|ay¢| |0k|MO|dy + |6, (-, T) ||2 + u(c + ce”) f |M6*dy
< ull6y ¢, 1) > + (G + ce?) j|ay1p(¢) |16k *dy + ce||0 ¢, 7)|>.
(3.26)

Same bounds hold for Jy and Jyg.
Applying Cauchy inequality and (3.21), Ji1 can be estimated as

A (¢) _s £ £ £ £
Ji = 2,[();((]3) _S.>9k[L(U )(B(u®) - B(v ))”y]kd.‘/

<cu f|9k [L(v°)(B(u") = B(vf))wyy | k'dy

(3.27)
+zﬂf|ek [L(vg)(B(ug) - B(vf))v;]k|dy
=K; + K,.
Lemma 2.4 yields,
K1 < u(c + ce”) f|9k||wy| |a§w|dy
2
< (cpu+ce?) ||a§w(-, 7) ” + (Tp + ce”) |6k f |, |*dy
2
< (cpu+ce”) ||a§w(-, 7) ” + (Cp+ ce”) |0k <||9y(-, )|’ + j |M6|2dy) (3.28)
2
< (cpu+ce) ”E)iw(-, T)” + (cp + ce”) |67 -

{16, + (e ce) [ mla A, (@)OPdy + celloc, MIF .
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where we used the fact w, = R, — RM0. Similarly,
Ki < y(E+ch)I|6k||wy||6yvs|dy
< (@ ce”) (18016110, |dy + G+ ce”) [IMl6F (0, dy
< (@ cen)|oy I + @+ ce”) [ 0P 1a,e7 dy
(G ce”) [IM16F (0,0 dy
< (cp+ce)||0, (., 7)||” + (cp + ce?) fm|ayAp(¢) [0 dy + cel|0¢, 7).

Thus, combining the above two inequality together, we obtain
Jii=Ki+K>

< (cp +ce’) ”6510(-,7') ”2 + <1 + ”9k”%°°>

x { (cu+cen)||6,(,7) ||2 + (cp+ce) Jm|6y/\p (¢)||9|2dy + ce||6(-,7')||2}.

Finally,

e i

<elon I + i [ |as Pty

< |0k, )| + ce™

Summing all the inequalities for k # p, we arrive at

k¢pf|3l(¢)|92dy< [HPJ(;«% > dy]

 @ece?) [ mlo,,(9) €3y

2
+ (eu+ce) ||y ¢, ) ||° + (cu + ce?) ”aiw(-, T) H
+cellOC, T + e,

provided that ||0(-, T)||» is bounded.
We complete the proof of Lemma 3.2.

19

(3.29)

(3.30)

(3.31)

(3.32)
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Lemma 3.3. Suppose that the conditions in Proposition 3.1 be satisfied. Then
(-, T)|If + f |y (., 7)||3dT + I fm|6yAp(¢)||w|2dy dr < ce’"?, (3.33)
0 0

forall T € [0, 1], where c is independent of Ty and e.

Proof. Multiplying (3.10) on the left by 6! and integrating over R!, we obtain after integration
by parts that

d%_”@(-, )| = f@tL(vE)B(UE)R(US)nydy - f 0 (A - $)6,dy

N =

- f 0 (s — AYMO dy — jefNedy - f 0'LQ(v*, RO, + R,0)dy
+ f 0'LQ: (vF, d)dy - fefALd dy (3.34)
+ f 0'L(v°) B(v°)R(v°) <—(M6)y - M6, + M29>dy

+ j 6'L(v°)(B(u%) - B(v°))u5dy + e I 0'L(v°)qady.
Next we estimate each term on the right hand side above. First, it follows from (3.16) that

f@tL(vg)B(vE)R(v‘E)nydy
- f 0! L(v°)B(v°)R(v%)0,dy — f 0" (L(v°) B(v*)R(v)), 0, dy
< (=Cp + ce)||6, (, 7)||* + (€ + ce”) f|ayzf||6| |6, |dy
(3.35)

C _
< (-Co+ee)]|8y (DI + T8I + €+ ce) f |6,0° 216y

C _
< (<Co+cen|8,( )+ S2NBC DI + @k ce?) [ md,4,(8) 10y

+cell0C, 7)1
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Here Cy > 0 is the minimum of the eigenvalues, valued at u and ¢, of (1/2)(LBR + (LBR)")
and (1/2)(B + B!). And

—f@f(A -$)0,dy = % f iayxi(vs)el?dy
i=1
1 n
=5 fm<§ayxi(¢)9§->dy
1 n
+ Efm<§(wi(v£) - wi(¢))ay¢9§>dy + st(l)szy (3.36)

1
<5 [ o1, (@) 163y +cer [ mlo,,(9) 63y

+(@C+ce)d, fm|ay)t,,(¢) |67dy + cel6, 7).
k#p

By virtue of (3.16)—(3.21), one finds

- f 0'(s - A(of)) MOdy = Jet(A(gb) _§)Mbdy + f 6'(A(v) - A(¢)) MOdy
< <% +cop+ CgY) J‘m|ay’\r’ (‘7’) |9;d3/ (3.37)

s @reeny j m|d, A, ($)]62dy + cel|(, 7) %
k#p

Now the remaining terms on the right hand side of (3.34) can be estimated in a similar way
to that in the proof of Lemma 3.2. We list them below:

f O'NOdy < cel0¢, 7)1,
- [L@-Qudy < ce17 + @+ cenlel DI + celt +elel, o6 (338)
+ (cp+ce”) 10| J‘mlaylp (®)]107dy.
Lemma 2.3 leads to

- f O'ALddy < ]|0(,T)||* + ce™ fdzdy <el|l0C, T)|* + e 2. (3.39)
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Continuing, we compute that

- fQtL(UE)B(vE)R(UE)(MG)ydy,

- fe;L(vE)B(UE)R(UE)Medy+fef(L(vs)B(vg)R(vg))yMedy
(3.40)
Co
< =
— 10
&
— 10

e, ) ||2 +(C+ce") J |MBPdy + (cpo + ce") f|M||9|2dy

16, (¢, 7) |? + (e + ce?) Jm|6yip(¢) [16dy + ce[|0(, )|

Same bounds hold for [ 8'L(v*) B(v*)R(v*) (-M8, +M?0)dy. As before, using Lemma 2.4 and
(3.16)-(3.20), we obtain

f@tL(vE)(B(uE) - B(v°))u;dy

= ’[QtL(UE)(B(uE) - B(v*))wy, dy + IQtL(UE)(B(uE) - B(v%))v,dy

. 2 (3.41)
< (o + @+ centel. ) 10, DI + 6l 5o, )|
(G cen) [ mloy (@) 10Pdy + celloc 7P
In view of (2.55),
SJGtL(US)q4dy <ell6¢, )| + csf |q4|2dy <el|l0C, T)|* + e 2. (3.42)
Collecting all the estimates previously we have achieved, we get
1d 3 > 3
3 218G+ 2Colloy (1) + 3 [ mlo A, (@) 63y
_ 2
< @+ ceN) 6l [0y ¢ )| + 1161l || 820 7| (3.43)

+(cp+ce’) D J‘m|6y)tp (¢)|02dy + ce||O¢, T)|]* +ce™ 72,
k#p

provided that ||6(-, T)||» is bounded.
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Insert (3.11) into (3.43) to arrive at

d 3 3
2186 TR+ 3Calley () + 5 [[mla,4,(9) €3ty

N =

2
< @+ a0l |8y ¢, ) 1* + 101 |2, 7 |

& G+ ce?) [ mlo, 4y (9) 63y

A ()
+ (c+ce") { [ > dy]
k#p I<Ak(¢) (3.44)

 @er cer) [ mlo, A, (9163

+ (e co) 10, I + 2| o, )|

+c.€||9(-,7')||2 + c577_2}
+cel|0C, 7)|)* + ce" 2,
which gives
1d 3 » 3
3 2186+ 2Collo, (1) + 3 [ mloy A, (@)]63dy
< @+ ce”) (101l + 2+ ce) |10, ¢, 1)

+ (10l + 2+ ceh) | 2o, 1)

reranfls (282 Ya

+(cp +ce”) f m|y A, (§)|05dy + cel| (., 7)|* + ce”
(3.45)

Differentiating (3.5) with respect to y, multiplying the resulting equation by d,w" on the left
and integrating over R!, we obtain after integration by parts that

1d .
§£||wy(-,‘l')||2 = —f@ith(v )657,0 dy

+ J‘aiwt(f’(vg)wy +Q(v%,wy) - (f(v° —d) - f(v°)) —eqa)dy
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2, .t £ £ 2 £
- fayw (B(u®) - B(v ))<ayw + vy>dy
) 2
< ~Co|@3w (., 7

* %||a§w("”||2 +(c+eel) f<|wy|2 +Jwy|* +1dP + €| qa]*) dy

2 2
+ zf |(B(u5) - B(vf))a§w| dy + Ef |(B(u€) - B(v))v5 | dy.
(3.46)
Using Sobolev’s inequality, we have
_ C 2 _
[ty < e . eyl <2l ] < L 5ot o s2llwoml’, G4
and so
2 4 Co |l 2 _ 4 2
(I + feoy| )ty < 2|20 )|+ 2(1+ oy DI 0y D
(3.48)
C 2 _
< §°||a;w(-,7)|| + c<1 +y%> ||y (-, T)||2.
Lemma 2.3 gives
f<|d|2 + 52|q4|2>dy <ce (3.49)
The last term can be estimated as
EI |(B(uf) - B(v‘g))aiwrdy + EJ |(B(u£) - B(v%))} "y
< CI |wy|2|8§w|2dy +(C+ce) f |wy|2|6yvg|2dy
2
< clw(, DB||e2w(, )| + @p + ey ¢, 0| (3:50)

2
< clw, DB||e2wt, )| + @+ cen)lloy ¢, o)

+ (Eyz + C£Y> Im|aykp (¢)|10Pdy + cello ¢, )II.
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By taking ||w||> to be sufficiently small, we get

1d C 2 _ 2
sl P+ B n|| <21+ ) 18,C ) + e+ cenlley (o)

+ (cu(1 + ) +ce") Im|ay)tp(¢) [16Pdy + cellO¢, 7).
(3.51)

Denote the constant c(1 + p %) in this inequality by ¢7. Insert (3.11) into (3.51) to give

1d C )
EE"wy("T)llz * ?O”aiw(ﬂ-)” - C1”9y('r7')||2

< (Eﬂ(l + y2> - ceY> 6, + <E/42 (1 + /f) - ceY> Hajw(-, 7) ”2

(3.52)
- @) e 3o |3 [ IG gi - > dy]
k#p g °

+ (Ey(l + y2> + ceV> fm|6y)tp (9)|63dy + cel|O¢, T)|* + ce”" 2

Multiplying suitably small constants to (3.11) and (3.52), respectively, then adding the

resulting inequalities to (3.45) and taking |0/, p and ¢ sufficiently small, we can obtain
the following inequality:

L1071 + oy )7 + 18,7 + [0, 2| + fmlayip@)llefdy

< (E(l +u > + ch [ J‘<%>Gidy] +ce||0¢, T)|* + ce”
i7p

Integrating the above inequality to give

(3.53)

10C, TP + ||y (D) || + L <||9y(-, D + |8t 7 ||2>d7' + fo f m|dy,\, () |10Pdy dr

< (5(1 + ,42> + ch>yZ 18, T)|1% + ce fo 16¢, 7)| + cTe™2

k#p
(3.54)
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Take p suitably small to yield

16¢, ) + [[ewy ¢, 7)]|* + fo <||9y(-, 7)|* + ||a§,w(-,7) ||2>dr + L fm|ay)tp(¢) |62 dy dr

T
< csf 0¢, 7)||* + cTe 2.
0

(3.55)
It follows from the Gronwall’s inequality that
2 2 (" 2 2
1062+ oy ) + [ (10,62 + [t )| )
N (3.56)
+ f fm|6yip(¢)||6|2dydT <cel?,
0
In particular,
gf l6C, 7)||°dT < ce” . (3.57)
0
By the fact w = RO and w, = R6, — RM6, we obtain
lwo (-, 7)IIF + f |y (-, 7)||3dT + f fm|6ylp(¢)||w|2dy dr < ce”>. (3.58)
0 0 0
Lemma 3.4. Let the conditions in Proposition 3.1 be satisfied. Then
o, oo “dr < ce3 0 3.59
” y’w(-,T)”1 + . ” yw(-,T)”l T<ce,  for T €[0,10], (3.59)

with the constant ¢ independent of Ty and .

Proof. Applying a’y to (3.5), multiplying on the left of the resulting equation by 8lywt, and
integrating over R!, we compute that

1dyy 2 141, fal-1 £\ A2
Ed—T|ayw(-,T)|| =_Iay+ w'd), <B(v )6yw>dy
+ J‘al;lwtaly‘l{f’(vg)wy +Q(vf, wy)

~(f(@ - d) - f(v°)) - equ}dy
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- f 6’;1wtaly‘l{(3(u£) - B(vf))a;w}dy

- f 6ly+1wtaly‘1{(B(u£) - B(vf))v;}dy.

In the case [ = 1, this gives
el ol = ot (Bonaze) av
[ (), + 0 w),
~(f (0 = d) - f(v9)),, - eaquy }dy
- fa;wf{ (B(uf) - B(vE))aiw}ydy

- fa;wf{ (B(u®) - B(v))v }ydy

Using Cauchy inequality, we obtain
Ry =- j 0, w' (B(vﬂbiw)ydy
=- f 0, w'B(v°)d,w dy - f 6;wt(B(vg))y6§w dy
<-Col|ahw )| + %”a;w(.,f)”z + |,
Lemma 2.3 and Sobolev’s inequality give

R < %”a;w(-,ﬂnz

o [ R R T L R P P B

< % |a§w(.,r)”2 + c<1 + ||wy||iw> <||wy||2 N ||8§w||2> e
< Sl + o +10tE) (el ) et

C 2 2
< §0||a~;’w(-,T)|| +c(||wy||2 + ||a§w” ) +ceM T,

27

(3.60)

(3.61)

(3.62)

(3.63)
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provided that ||w||, is bounded. For the last two terms, we have
Ry = — f 0, w' (B(uf) - B(v°))d, wdy - Ja;wf(B(uf) - B(v")), 0y wdy

< Cf|wy| |6§w|2dy+ cﬂa‘;’w|<|wy| + 'Eﬁw') |8§w|dy

<ol Jiwen [ » e ot ol o]
< c||w||2||6§w(-,’r)||j +||gze, ) ||3/2||a]3,w(.,7)||3/2 (3.64)
<otate ot vt (et o oo
< clfwl |3, )|
Ry < %Haiw(-, T) ”2 + c||wy(-,‘r)||f.
Choose ||w||, sufficiently small to yield
el + e <y ol v e 369)
Integrate the above inequality, and use Lemma 3.3 to give
[l + ] foe o] e e
Similarly, for the case | = 2, we can obtain
[+ [ oot o <o cer)
This finishes the proof of Lemma 3.4. O

Combining the results of Lemmas 3.3-3.4, we complete the proof of Proposition 3.1.

4. Proof of Theorem 1.2

Using Proposition 3.1 and the standard continuous induction argument, we conclude the
following.
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Proposition 4.1. There exist positive constants 1o, po, and C, which are independent of € such that
if0 < &< gy, and 0 < p < po, then the Cauchy problem (3.5) has a unique solution w € C'([0,T/€] :
H3(RY)). Furthermore, the following inequality holds

T/e
2 _
sup [lw(-, )| +f |y (., £)]|5dt < CeN2. (4.1)
0<t<T/e 0

Now we choose y € (1,1) N ((5/7),1). Then due to (4.1), we have

sup || (u* = %) (-, )|I* = sup ||@« (-, 1)

0<t<T 0<t<T
(4.2)
=¢ sup ||wy(',’r)||2 < CeM2 < Cé°.
0<7<T/e
On the other hand, it follows from Lemma 2.4 that
sup [|(v° ~ u0) (-, 1)||* < Ce” < Ce'. (4.3)
0<t<T
Consequently,
sup [|(uf = uo) (-, 1)|* < sup [|(u° = 0°) (-, )| + sup [|(v° —uo) (, 1)|* < ce, (4.4)
0<t<T 0<t<T 0<t<T
which gives (1.8). Finally,
1@ = 0) Dl = oy (B < clleoy G2 Bl b < e 2 < e 45)

This yields (1.9) by using Lemma 2.4 again. We complete the proof of Theorem 1.2.
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