
International Scholarly Research Network
ISRN Mathematical Physics
Volume 2012, Article ID 806231, 7 pages
doi:10.5402/2012/806231

Research Article
Numerical Study of the Elastic Pendulum on
the Rotating Earth
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The elastic pendulum is a simple physical system represented by nonlinear differential equations.
Analytical solutions for the bob trajectories on the rotating earth may be obtained in two limiting
cases: for the ideally elastic pendulum with zero unstressed string length and for the Foucault
pendulum with an inextensible string. The precession period of the oscillation plane, as seen by
the local observer on the rotating earth, is 24 hours in the first case and has a well-known latitude
dependence in the second case. In the present work, we have obtained numerical solutions of the
nonlinear equations for different string elasticities in order to study the transition from one
precession period to the other. It is found that the transition is abrupt and that it occurs for a quite
small perturbation of the ideally elastic pendulum, that is, for the unstressed string length equal to
about 10−4 of the equilibrium length due to the weight of the bob.

1. Introduction

The pendulum is such a fundamental physical system that all the details and various aspects
of its motion are of interest. In the limit of inextensible suspension strings and small ampli-
tudes, the behaviour of the system is described by simple, linear equations. However, a pen-
dulum with an elastic suspension string is described by nonlinear differential equations,
which couple horizontal and vertical oscillations [1]. This coupling has been mainly investi-
gated in the vicinity of the so-called autoparametric resonance, where the string elasticity is
such that the frequency of vertical, that is, spring-mode oscillations is double the frequency
of horizontal, that is, pendulum-mode oscillations [1, 2].

It is perhaps surprising that no published work about the influence of earth’s rotation
on the behaviour of the nonlinear elastic pendulum could be found in the available literature.
In the limit of an inextensible suspension string, one obtains the well-known and popular
Foucault pendulum, for which the oscillation plane rotates, that is, precesses at a constant
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Figure 1: Views along the y, y′ axes (a) and z, z′ axes (b) of reference systems S and S′, which have parallel
axes, that are fixed relative to the distant stars. The origin of S is at earth’s center, and the origins of S′ and
S′′ are at the pendulum suspension point. The local lab system S′′ has the z′′ axis vertical, the x′′ axis
southward, and the y′′ axis eastward.

rate [3]. This rate is given by ω sinλ, where ω is earth’s angular velocity, and λ is the
geographical latitude of the site. The precession period would therefore be T = (24/ sinλ)h.
In the other limit of extreme elasticity, where the force of the suspension string is proportional
to the total string length (i.e., the unstressed length is equal to zero), the equation of motion
becomes linear and leads to a precession period equal to earth’s rotation period, that is, to 24
hours [4]. The precession period is therefore an interesting parameter of the elastic pendulum,
which undergoes a transition from a latitude-independent value of 24 h in the case of an ex-
tremely soft string to the latitude-dependent value of (24/ sinλ)h in the case of a very stiff
suspension string. In an attempt to learn more about this transition, we have performed
numerical studies for various elasticities of the suspension string and for different latitudes
of the pendulum site. Some results and basic findings are presented below.

2. Method of Analysis

Instead of directly solving the equations of motion in the noninertial laboratory system by
including the centrifugal and the Coriolis inertial forces, we have calculated the pendulum
trajectories using a slightly different procedure. Such a procedure was followed also in deriv-
ing analytical solutions for the ideal elastic pendulum [4].

By neglecting the tidal gravitational forces of external bodies, such as the sun and
moon, we have a quasi-inertial system S, with origin at the earth’s centre and with the orien-
tation of coordinate axes fixed with respect to the distant stars (Figure 1). Let the z axis of S
coincidewith earth’s rotation axis. In the present work, the equations for the elastic pendulum
are solved numerically in the noninertial reference system S′, the origin of which is fixed at
the point of pendulum suspension, and its coordinate axes remain parallel to the axes of



ISRN Mathematical Physics 3

the inertial system S (Figure 1). The system S′ is thus circulating, but it is not rotating. The
differential equations are solved in S′, and the solutions are then transformed into the system
of the local observer S′′, where the z′′ axis points vertically upward, the x′′ axis points south-
ward, and the y′′ axis points eastward (Figure 1). Since the inertial forces in the circulating
system S′ are less complicated than those in the circulating and rotating system S′′, one might
expect that also the trajectories are simpler in S′ than in S′′ (see below). A famous historical
example is given by the simple heliocentric planetary orbits as compared to their geocentric
counterparts.

Neglecting dissipative forces, we have Newton’s law for the motion of the pendulum
bob

Fg + Fs = ma, (2.1)

where Fg is the force of earth’s gravity, Fs is the force of the suspension string, m is the mass
of the bob, and a is the bob acceleration in the inertial system S. Since the coordinate axes of
systems S and S′ remain parallel, the accelerations a and a′, measured by observers in S and
S′, respectively, are simply related by a = a0+a′, where a0 is the acceleration of the origin of S′

as measured by the observer in S. Therefore, a0 is the centripetal acceleration perpendicular
to earth’s rotation axis, that is, to the z axis of S.

We further assume that Fg = mg0 is of constant magnitude and has a fixed direction in
the meridional plane containing the origin of S′. As both g0 and a0 lie in the meridional plane,
by appropriately choosing t = 0, one obtains the effective gravity in S′ as

gef = g0 − a0 = −gef(cosλ cos(ωt), cosλ sin(ωt), sinλ). (2.2)

Here, gef = |g0−a0|, and, as already mentioned,ω is the angular velocity of the earth, and λ is
the angle of gef with respect to the equatorial plane.

The force of the string is proportional to its dilatation and points towards the suspen-
sion point, that is, towards the origin of S′,

Fs = −k(r ′ − l0
) r′

r ′
, (2.3)

where r′(t) is the vector of the instantaneous bob position in S′, and l0 is the unstressed length
of the string. The elastic constant is then k = mgef/(le − l0), where le is the equilibrium length
of the string, subject to the weight mgef of the bob. The string force may therefore be written
as

Fs = −mgef
r ′ − l0
le − l0

r′

r ′
. (2.4)

By inserting all this into Newtons law (2.1) and rearranging the terms, we obtain a nonlinear
differential equation for the position vector r′(t) of the bob in S′,

d2r′

dt2
+

gef

le − l0

r ′ − l0
r ′

r′ = g0 − a0, (2.5)
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where g0 − a0 is given by (2.2) above. The solution of the differential equation in S′, obtained
for a given set of parameters, is then transformed into the system S′′ of the local observer. The
transformation consists of a rotation around the z′ axis for ωt followed by a rotation around
the y′′ axis for π/2 − λ [4]. One has to transform also the initial conditions, because they are
usually given in S′′, but the equation is solved in S′.

Let us observe that the above nonlinear differential equation (2.5) reduces to a linear
differential equation for the case of an ideal elastic suspension string, that is, for l0 = 0. The
analytical solutions for such a case have been derived in [4].

From the differential equation (2.5), we see that the suspension string is determined
by two parameters: the unstressed string length l0 and the equilibrium length le. The present
calculations have been performed with a fixed equilibrium length le = 10m, but with the un-
stressed length l0 varying between l0 = 0 (ideally elastic string) and l0 = le = 10m (inextensi-
ble string). For a given mass of the bob, this corresponds to variation of the suspension string
elastic constant. The two parameters, l0 and le, also determine the angular frequenciesωp and
ωs of pendulum-mode and of spring-mode oscillations, respectively. For a fixed-string length
le, and for small amplitudes, we have the pendulum-mode angular frequency

ωp =

√
gef

le
, (2.6)

while the spring-mode angular frequency is given by

ωs =

√
k

m
=

√
gef

le − l0
. (2.7)

It follows that the ratio ωs/ωp of frequencies is determined by the ratio l0/le,

ωs

ωp
=

√
le

le − l0
. (2.8)

The spring-mode frequency is thus always greater than the pendulum mode frequency and
therefore determines the computation time. On the PC with an Intel Pentium, dual core,
3GHz, and 64-bit processor, the Mathematica programme package requires between a few
minutes and a few hours to calculate the bob trajectory during the first 48 hours of oscillation.

The motion of the bob has been studied for the usual initial conditions with which a
Foucault pendulum is started in the system S′′ of the local observer

r′′(0) = le
(
sin θ0 cosφ0, sin θ0 sinφ0,− cos θ0

)
,

v′′(0) = (0, 0, 0).
(2.9)

Here, θ0 is the initial angle between the pendulum string and the negative z′′ axis, and φ0 is
the initial angle between the oscillation plane and the y′′ = 0 plane. All the calculations have
been performed with θ0 = 5◦ and with φ0 = 0◦ (displacement towards the south).
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Figure 2: The dependence of the azimuth angle of the oscillation plane on time for latitude 55◦. Different
curves represent different string elasticities (see text).

The oscillation plane is defined with the z′′ axis and with the vector of bob position r′′

at moments of maximum displacement. This amplitude vector is obtained with a special fit-
ting procedure. The current maximum displacement vector therefore defines the oscillation
plane, which is time dependent, that is, it precesses.

3. Results

For various values of the string elasticity, we show in Figure 2 the azimuth angle of the oscilla-
tion plane (defined in the previous section) as a function of time at 55◦ geographical latitude.
The string elasticity varied by varying the unstressed string length (l0), while keeping the
equilibrium length (le), due to the bob weight, at a constant value of 10 meters.

In the limit of a very stiff string, that is, for l0 = le, we obtain the Foucault pendulum
with a constant precession rate, which is represented by the straight line in Figure 2. For
λ = 55◦, the corresponding precession velocity is 12.3◦ per hour, so the precession period is
29.3 hours. For softer strings (l0 < le), the oscillation plane initially keeps upwith the Foucault
pendulum, but after about 15 hours, it falls behind, resulting in a longer precession time. At
string elasticity corresponding to about l0 ≈ 10−4le (see below), a discontinuity occurs. Instead
of slowing down after 15 hours, the precession speeds up, completing a full circle in less time.
As the string elasticity parameter l0 is reduced towards zero, the precession time tends to-
wards 24 hours.

In the limit of an ideally elastic string (l0 = 0), the equation of motion of the pendulum
bob (2.5) becomes linear and may be solved analytically. As has been shown in a previous
publication [4], the solution, as seen by an observer in S′, is quite simple. The trajectory is an
ellipse with fixed orientation relative to the distant stars, but with the center of the ellipse
moving on a circle. However, the local observer S′′, with whomwe are mainly concerned, will
see a more complicated bob trajectory, which is obtained by a time-dependent transformation
of the ellipse into the local system S′′ (with z′′ axis vertical, y′′ axis eastward, and x′′ axis
southward). Consider, for example, an elliptical orbit, initially in the horizontal plane at la-
titude 45◦. For the local observer in S′′, the trajectory would be such that after 12 hours the
ellipse will appear to be in a vertical plane. Alternatively, the relatively complicated bob
trajectory as seen by the local observer S′′ may be attributed to the inertial forces (centrifugal
and Coriolis) present in the noninertial system S′′. However, it seems easier to understand
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Figure 3: The dependence of pendulum precession time on the suspension string elasticity, that is, on the
length l0 of the unstressed string at fixed equilibrium length le = 10m. The curves connect points corre-
sponding to a given geographical latitude.

the 24-hour period by considering the periodic transformation of the elliptical orbit from the
system S′ to the system S′′. The addition of a small perturbation to the ideally elastic pen-
dulum, in the form of a small nonzero unstressed string length l0, might be expected to con-
tribute some modifications to the trajectory. Such trajectories therefore represent the faster
branch in Figure 2.

In order to learn more about the transition from the 24-hour precession time to the
precession time of the Foucault pendulum, we plot in Figure 3 the time required for the
oscillation plane to return to its initial position and precession velocity as a function of string
elasticity at different geographical latitudes. In Figure 2, for example, one obtains these pre-
cession times at the interception of the curves with a horizontal line going through 360◦. (We
note that for latitudes below 45◦ the oscillation plane does not necessarily complete a full
rotation, but may oscillate between positive and negative azimuth angles). We see in Figure 3
that the transition between the two limiting values of precession time is abrupt and occurs at
surprisingly low values of the elasticity parameter l0 ≈ 10−4le. The exact value of the elasticity
at which the transition occurs seems to depend on latitude (Figure 3). This, as well as a de-
pendence of the transition on initial conditions and on earth’s angular velocity, remains to be
the subject of further studies.

Finally, we should point out that in addition to the discontinuity in precession time
at l0/le ≈ 10−4, our calculations show a structure at the elasticity given by l0/le = 3/4 (see
Figure 3). This structure corresponds to the well-known parametric resonance for which
ωs/ωp = 2 (2.8).

4. Conclusions

We have performed calculations of the precession of the elastic pendulum and have found a
most interesting behaviour of the precession time as a function of suspension string elasticity.
In the limit of an ideally elastic string with zero unstressed string length (l0 = 0), the pre-
cession is periodic with a period of 24 hours. Introduction of a small perturbation (l0 = 10−4le)
causes a discontinuous transition from the 24-hour precession time to the latitude-dependent
precession time of the Foucault pendulum (T = (24/ sinλ)h). In the broad range of l0 be-
tween 10−4le and le, the precession time mainly has the value as for the inextensible Foucault
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pendulum. An exception is the structure observed at l0/le = 3/4, which is due to the par-
ametric resonance (ωs/ωp = 2). We may therefore conclude that the agreement of our nu-
merical results with limiting cases where analytical solutions exist, as well as with the well-
known parametric resonance, allows for confidence in the correctness of the procedure and
the results.

Surely, the reader is wondering why should there be a discontinuity of the pendulum
precession time and why should it appear at that particular value of string elasticity. The
authors do not have answers to these questions, but they do believe that answers will be
found by further investigation of the long-term behaviour of the elastic pendulum. Maybe,
this simple system can teach us something about more complex systems.
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