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The present paper focuses on the characterization of compact sets of Minkowski space with a non-
Euclidean s-topology which is defined in terms of Lorentz metric. As an application of this study, it
is proved that the 2-dimensional Minkowski space with s-topology is not simply connected. Also,
it is obtained that the n-dimensionalMinkowski space with s-topology is separable, first countable,
path-connected, nonregular, nonmetrizable, nonsecond countable, noncompact, and non-Lindelöf.

1. Introduction

Non-Euclidean topologies on 4-dimensional Minkowski space were first introduced by
Zeeman [1] in 1967. These topologies include fine, space topology [2], time topology [3],
t-topology [3], and s-topology [3]. Studying the homeomorphism group of 4-dimensional
Minkowski space with fine topology, Zeeman in his paper [1] mentioned that it is
Hausdorff, connected, locally connected space that is not normal, not locally compact and
not first countable. His results were interesting both topologically and physically, because
its homeomorphism group was the group generated by the Lorentz group, translations and
dilatations which was exactly the one physicists would want it to be. Continuing the study
of non-Euclidean topologies, Nanda in his papers [2, 3] mentioned that the 4-dimensional
Minkowski space, with the space topology, is Hausdorff but neither normal nor locally
compact nor second countable and that with each of the t-topology and s-topology is a
nonnormal, noncompact Hausdorff space besides proving that the homeomorphism group
of 4-dimensional Minkowski space with space, t and s-topologies, is generated by the
Lorentz group, translations, and dilatations. Further, Nanda and Panda [4] introduced the
notion of a non-Euclidean topology, namely, order topology, and obtained that it is a non-
compact, non-Hausdorff, locally connected, connected, path connected, simply connected
space. In 2007, Dossena [5] proved that the n-dimensional Minkowski space, n > 1, with
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the fine topology is separable, Hausdorff, nonnormal, nonlocally compact, non-Lindelöff
and nonfirst countable. He further obtained that 2-dimensional Minkowski space with fine
topology is path connected but not simply connected and characterized its compact sets.
Quite recently, in 2009, Agrawal and Shrivastava [6] obtained a characterization for compact
sets ofMinkowski spacewith t-topology besides studying its topological properties. It may be
noted that t-topology on 4-dimensional Minkowski space is same as that of the well-known
path topology on strongly causal spacetime proposed by Hawking et al. in 1976 [7].

The present paper explores the s-topology on n-dimensional Minkowski space.
Section-wise description of the work carried out in this paper is given below.

Beginning with an introduction, necessary notation and preliminaries have been pro-
vided in Section 2. In Section 3, it is proved that the s-topology on n-dimensional Minkowski
space is strictly finer than the Euclidean topology by studying open sets, closed sets and
subspace topologies on certain subsets of Minkowski space with s-topology. Topological
properties of Minkowski space with s-topology are dealt in Sections 4, 5, and 6. In
Section 7, compact subsets of Minkowski space with s-topology have been characterized. As
a consequence of this study, it is proved that 2-dimensional Minkowski space with s-topology
is not simply connected. Finally, Section 8 concludes the paper.

2. Notation and Preliminaries

Let Λ denote an indexing set while R, N, and K denote the set of real, natural and rational
numbers, respectively. To avoid any confusion later, we mention here that the symbol Q, in
this paper, denotes the indefinite characteristic quadratic form. For a subset A of a set X,
X −A denotes the complement ofA in X. For x, y ∈ Rn, let dE(x, y) be the Euclidean distance
between x and y. For ε > 0,NE

ε (x) denotes the ε-Euclidean neighborhood about x given by
the set {y ∈ Rn : dE(x, y) < ε}. For x, y ∈ Rn, let [x, y] denote the line segment joining x and y.

The n-dimensional Minkowski Space, denoted by M, is the n-dimensional real vector
space Rn with a bilinear form g : Rn × Rn → R, satisfying the following properties:

(i) for all x, y ∈ Rn, g(x, y) = g(y, x), that is, the bilinear form is symmetric

(ii) if for all y ∈ Rn, g(x, y) = 0, then x = 0, that is, the bilinear form is nondegenerate,
and

(iii) there exists a basis {e0, e1, . . . , en−1} for Rn with

g
(
ei, ej

)
=

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = j = 0
−1 if i = j = 1, 2, . . . , n − 1
0 if i /= j.

(2.1)

The bilinear form g is called the Lorentz inner product.

Elements ofM are referred to as events. If x ≡ ∑n−1
i=0 xiei is an event, then the coordinate

x0 is called the time component and the coordinates x1, . . . , xn−1 are called the spatial components
of x relative to the basis {e0, e1, . . . , en−1}. In terms of components, the Lorentz inner product
g(x, y) of two events x ≡ ∑n−1

i=0 xiei and y ≡ ∑n−1
i=0 yiei is defined by x0y0 −

∑n−1
i=1 xiyi. Lorentz

inner product induces an indefinite characteristic quadratic form Q on M given by Q(x) =
g(x, x). Thus Q(x) = x2

0 −
∑n−1

i=1 x2
i . The group of all linear operators T on M which leave the

quadratic form Q invariant, that is, Q(x) = Q(T(x)), for all x ∈ M, is called the Lorentz group.
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A event x ∈ M is called spacelike, lightlike (also called null) or timelike vector according
asQ(x) is negative, zero, or positive. The sets CS(x) = {y ∈ M : y = x orQ(y−x) < 0}, CL(x)
= {y ∈ M : Q(y − x) = 0}, CT (x) = {y ∈ M : y = x or Q(y − x) > 0} are likewise, respectively
called the space cone, light cone (or null cone), and time cone at x. For given x, y ∈ M, the set
{x + t(y − x)|t ∈ R} is called a spacelike straight line or light ray or timelike straight line joining
x and y according as Q(y − x) is negative or zero or positive. For further details, we refer to
[8].

The Euclidean topology on the n-dimensional Minkowski space M is the topology
generated by the basis B = {NE

ε (x) : ε > 0, x ∈ M}. M with the Euclidean topology will be
denoted by ME.

The s-topology on the n-dimensional Minkowski space M is defined by specifying
the local base of neighborhoods at each point of x ∈ M given by the collection N(x) =
{Ns

ε(x) : ε > 0}, where Ns
ε(x) = NE

ε (x) ∩ CS(x). We call Ns
ε(x) the s-neighborhood of radius

ε. M endowed with s-topology is denoted by Ms. For a subset A of M, As (AE) denotes the
subspace A of Ms (ME).

3. Important Subsets and Subspaces of Ms

In this section, besides proving that the s-topology on M is strictly finer than the Euclidean
topology on M, important subsets and subspaces of Ms, which will use in the following
sections, are studied.

Lemma 3.1. Let M be the n-dimensional Minkowski space and x ∈ M. Then CT (x) − {x}, and
CS(x) − {x} are open inME and CL(x) is closed inME.

Proof. For u ∈ ME, define f : ME → R by f(u) = (u0 − x0)
2 − ∑n−1

i=1 (ui − xi)
2. Then f is

continuous and f−1(0,∞) = CT (x) − {x}, f−1(−∞, 0) = CS(x) − {x} and f−1{0} = CL(x). Since
(0,∞) and (−∞, 0) are open and {0} is closed inME, the results follow.

In the following lemma, it is proved that the s-neighborhoods are open in Ms.

Lemma 3.2. Let M be the n-dimensional Minkowski space and x ∈ M. Then Ns
ε(x), ε > 0 is open

inMs.

Proof. It is sufficient to show that Ns
ε(x) is a neighborhood of each of its point. For this, let

y ∈ Ns
ε(x) and y /=x. Then y ∈ CS(x)−{x}. By Lemma 3.1,Ns

ε(x)−{x} ≡ NE
ε (x)∩(CS(x)−{x}),

is open inME. Hence there exists a δ-Euclidean neighborhoodNE
δ (y) of y such thatNE

δ (y) ⊆
Ns

ε(x) − {x}. This implies that Ns
δ
(y) ⊆ NE

δ
(y) ⊆ Ns

ε(x). Therefore, N
s
ε(x) is a neighborhood

of y. Since Ns
ε(x) is a neighborhood of x, the result follows.

In the following proposition a subset of M is obtained which is open in Ms but not in
ME.

Lemma 3.3. LetM be the n-dimensional Minkowski space and x ∈ M. Then

(i) CS(x) is not open inME,

(ii) CS(x) is open inMs.



4 ISRN Mathematical Physics

Proof. (i) We assert that x is not an interior point of CS(x) in ME. To prove the assertion,
consider the Euclidean neighbourhood NE

ε (x) of radius ε containing x. Then it is easy to see
that NE

ε (x) is not contained in CS(x). Since x ∈ CS(x), the result follows.
(ii) Let y ∈ CS(x). Then either y ∈ CS(x) − {x} or y = x. If y ∈ CS(x) − {x}, then,

by Lemma 3.1, there exists a δ, such that NE
δ
(y) ⊆ CS(x) − {x} and hence Ns

δ
(y) ⊆ CS(x). If

y = x, then for any ε, Ns
ε(x) ⊆ CS(x). Hence in either case, x is an interior point of CS(x) in

Ms. This proves the result.

It is known that on 4-dimensional Minkowski space, s-topology is finer than the
Euclidean topology. In the following proposition, we prove this result for the n-dimensional
Minkowski space. In fact, the s-topology is shown to be strictly finer than the Euclidean
topology.

Proposition 3.4. LetM be the n-dimensional Minkowski space. Then the s-topology onM is strictly
finer than the Euclidean topology on M.

Proof. Let G be open inME and x ∈ G. Then there exists a Euclidean neighbourhooodNE
ε (x)

of x, such that NE
ε (x) ⊆ G. Hence Ns

ε(x) ⊆ G. This proves that G is open in Ms. Hence the
s-topology on M is finer than the Euclidean topology on M. That it is strictly finer than the
Euclidean topology follows from Lemma 3.3 (i) and (ii).

Lemma 3.5. (i) Let σ be a spacelike straight line joining p and x ∈ M. Then u−v is a spacelike vector
for u, v ∈ σ.

(ii) Let τ be a timelike straight line joining p and x ∈ M. Then u − v is a timelike vector for
u, v ∈ τ .

(iii) Let λ be a light ray joining p and x ∈ M. Then u − v is a lightlike vector for u, v ∈ λ.

Proof. (i) For u, v ∈ σ, there exist α, β ∈ R such that u = p +α(x − p) and v = p + β(x − p). Then
Q(u − v) = (α − β)2Q(x − p). This implies that u − v is a spacelike vector, as Q(x − p) < 0.

(ii) Similar to that of (i).
(iii) Similar to that of (i).

Remark 3.6. Lemma 3.5 (i), (ii) and (iii) can be reinterpreted as follows.

(i) If σ is a spacelike straight line, then for w ∈ σ, σ is contained in CS(w).

(ii) If τ is a timelike straight line, then for w ∈ τ , τ is contained in CT (w).

(iii) If λ is a light ray, then for w ∈ λ, λ is contained in CL(w).

Proposition 3.7. LetM be the n-dimensionalMinkowski space. Then spacelike straight lines, timelike
straight lines, and light rays are closed inMs.

Proof. It follows from Proposition 3.4 and the facts that the spacelike straight lines, timelike
straight lines, and light rays are all closed inME.

It is mentioned in [3] that the s-topology on the 4-dimensional Minkowski space
induces Euclidean topology on every spacelike hyperplane. In the following proposition, it is
proved that the s-topology on n-dimensional Minkowski space induces Euclidean topology
on every spacelike straight line.
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Proposition 3.8. Let M be the n-dimensional Minkowski space. Then the subspace topology on a
spacelike straight line induced from the s-topology on M is same as the subspace topology induced
from the Euclidean topology.

Proof. Let σ be the spacelike straight line joining x and y. In view of the fact that the Euclidean
topology on M is coarser than s-topology, it is sufficient to show that for ε > 0, Ns

ε(x) ∩ σ is
open in σE, for all x ∈ M. This easily follows by noting that

Ns
ε(x) ∩ σ =

⎧
⎨

⎩

NE
ε (x) ∩ σ if x ∈ σ

(
NE

ε (x) − {x}) ∩ σ if x /∈ σ.
(3.1)

It has been stated in [3] that the s-topology on the 4-dimensional Minkowski space
induces discrete topology on a light ray. The following proposition generalizes this result to
the n-dimensional Minkowski space.

Proposition 3.9. Let M be the n-dimensional Minkowski space. Then the s-topology on M induces
discrete topology on a light ray.

Proof. Let λ be a light ray and p ∈ λ. Then from Remark 3.6 (iii), it follows that λ ⊆ CL(p).
Hence, for ε > 0, Ns

ε(p) ∩ λ = {p}. This proves the result.

It has been stated in [3] that the s-topology on the 4-dimensional Minkowski space
induces discrete topology on a timelike straight line. Following proposition generalizes this
result to the n-dimensional Minkowski space.

Proposition 3.10. LetM be the n-dimensional Minkowski space. Then the s-topology onM induces
discrete topology on a timelike straight line.

Proof. Similar to that of Proposition 3.9.

4. Separability and Countability Axioms

In this section, it is proved that Ms is a separable, first countable space that is not second
countable.

Proposition 4.1. Let M be the n-dimensional Minkowski space. Then Ms is separable.

Proof. SinceKn is countable, it remains to show thatKn is dense inMs. Hence, it is sufficient
to show that for x ∈ M and ε > 0, Ns

ε(x) ∩ Kn /=φ. If x ∈ Kn, then Ns
ε(x) ∩ Kn /=φ. So let

x /∈ Kn. ThenNs
ε(x)∩Kn = (Ns

ε(x)−{x})∩Kn = NE
ε (x)∩(CS(x)−{x})∩Kn. From Lemma 3.1,

it follows thatNE
ε (x)∩ (CS(x)−{x}) is open inME. SinceKn is dense inME,Ns

ε(x)∩Kn /=φ.
This completes the proof.

The following lemma puts an upper bound on the cardinality of the set C(Ms,R).

Lemma 4.2. LetM be the n-dimensional Minkowski space. Then the cardinality of the set C(Ms,R)
of all continuous real-valued functions on Ms is at most equal to 2ℵ0 .
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Proof. From Proposition 4.1, Ms is separable. Let D be a countable subset of Ms. Then
|C(D,R)| is at most equal to (|R|)|D| = (2ℵ0)ℵ0 = 2ℵ0 . Since two continuous maps are equal
if they agree on a dense subset, hence |C(Ms,R)| is at most equal to 2ℵ0 . This completes the
proof.

Proposition 4.3. Let M be the n-dimensional Minkowski space. Then Ms is first countable.

Proof. Given x ∈ M, the collection η(x) = {Ns
ε(x) : ε ∈ K} is a countable local base at x for

the s-topology on M. This shows that Ms is first countable.

Proposition 4.4. Let M be the n-dimensional Minkowski space. Then Ms is not second countable.

Proof. LetMs be second countable. Then since second countability is a hereditary property, it
follows that a light ray is second countable. From Proposition 3.9, the induced topology on a
light ray is discrete and hence it is not second countable, a contradiction.

5. Separation Axioms

In this section, besides studying other properties, it is proved that Ms is a nonregular space.
It is known that Ms, for n = 4, is T2 and hence T1 [3]. Indeed Ms is T2 for all n. In the

following proposition, we prove that Ms is not regular.

Proposition 5.1. Let M be the n-dimensional Minkowski space. Then Ms is not regular.

Proof. Let λ be a light ray passing through 0. Then by Propositions 3.4 and 3.9, λ is a closed
discrete subspace of Ms. Hence λ − {0} is closed in Ms. We claim that λ − {0} and 0 cannot
be separated by disjoint open sets. For this, let G1 and G2 be open sets in Ms containing 0
and λ − {0}, respectively. Then for some ε > 0, 0 ∈ Ns

ε(0) ≡ NE
ε (0) ∩ Cs(0) ⊆ G1. Notice

that NE
ε (0) ∩ λ/= {0}, for otherwise {0} would be open in LE, a contradiction. Choose x ∈

NE
ε (0)∩λ, x /= 0. Then x ∈ λ−{0} and hence there exists a δ > 0 such that x ∈ Ns

δ
(x) ⊆ G2. Then

it can be verified that Ns
ε(0) ∩ Ns

δ(x)/=φ. Hence, G2 ∩ G1 /=φ. This completes the proof.

Proposition 5.2. Let M be the n-dimensional Minkowski space. Then Ms is not normal.

Proof. Let Ms be normal. Then since Ms is T1, Ms is T4. The fact that a T4 space is regular
implies that Ms is regular, a contradiction to Proposition 5.1.

The following remark gives an alternate proof to the fact that Ms is not normal.

Remark 5.3. Let Ms be normal, λ a light ray, and A ⊆ λ. Then by Propositions 3.7 and 3.9, λ is
a closed discrete subspace of Ms. Hence A and λ − A are closed in Ms. Since Ms is normal,
by Urysohn’s lemma, there exists a continuous map f : Ms → R such that f(A) = {0} and
f(λ−A) = {1}. This implies there would be at least as many real-valued continuous functions
on Ms as there are subsets of λ. Hence |C(Ms,R)| would be at least (22

ℵ0 ), a contradiction to
Lemma 4.2.

Corollary 5.4. LetM be the n-dimensional Minkowski space. Then Ms is not metrizable.

Proof. Since a metrizable space is regular, the result follows from Proposition 5.1.
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6. Connectedness and Compactness

In this section, it is proved thatMs is a path-connected, noncompact, non-Lindelöf, nonlocally
compact, nonparacompact, non-locally m-Euclidean space.

Proposition 6.1. Let M be the n-dimensional Minkowski space. Then Ms is path-connected

Proof. Let x, y ∈ M. Then either Q(x − y) < 0 or Q(x − y) ≥ 0. If Q(x − y) < 0, define
γ : [0, 1] → Ms by γ(t) = x + t(y − x). Then γ(0) = x and γ(1) = y. By Proposition 3.8,
γ : [0, 1] → [x, y] is continuous. This implies that γ : [0, 1] → Ms is continuous. Hence γ
is the required path in Ms joining x and y. If Q(x − y) ≥ 0, then choose z ∈ Cs(x) ∩ Cs(y).
Define γ : [0, 1] → Ms to be the join of γ1 : [0, 1] → Ms and γ2 : [0, 1] → Ms, where

γ1(t) = x + t(z − x); t ∈ [0, 1]

γ2(t) = x + t
(
y − z

)
; t ∈ [0, 1].

(6.1)

Then by Proposition 3.8, γ1 : [0, 1] → [x, z] and γ2 : [0, 1] → [z, y] are continuous.
Hence γ1 : [0, 1] → Ms and γ2 : [0, 1] → Ms are continuous. Hence γ1 and γ2 are paths inMs

joining x, z and z, y, respectively. Since the join of two paths is a path, γ is the required path
in Ms joining x and y. This completes the proof.

Corollary 6.2. Ms is connected.

Proof. Since a path-connected space is connected, the result follows from Proposition 6.1.

It has been stated in [3] that the 4-dimensional Minkowski space with s-topology is not
compact. The following proposition proves this result for n-dimensional Minkowski space.

Proposition 6.3. Let M be the n-dimensional Minkowski space. Then Ms is not compact.

Proof. It follows from Proposition 3.4 and the fact that ME is not compact.

Proposition 6.4. Let M be the n-dimensional Minkowski space. Then Ms is not Lindelöf.

Proof. Let Ms be Lindelöf and λ a light ray. Then by Proposition 3.9, λ is a discrete subspace
of Ms and hence it is not Lindelöf. The fact that Lindelöfness is closed hereditary, together
with Proposition 3.7, implies that λ is Lindelöf, a contradiction.

Proposition 6.5. Let M be the n-dimensional Minkowski space. Then Ms is not paracompact.

Proof. Since a paracompact Hausdorff space is normal [9], henceMs is not paracompact from
Proposition 5.2.

Proposition 6.6. Let M be the n-dimensional Minkowski space. Then Ms is not locally compact.

Proof. Since a Hausdorff locally compact space is regular [9], the result follows from
Proposition 5.1.

Proposition 6.7. LetM be the n-dimensional Minkowski space. ThenMs is not locallym-Euclidean.



8 ISRN Mathematical Physics

Proof. It follows from Proposition 6.6 and the fact that a locally m-Euclidean space is locally
compact [9].

7. Compact Sets and Simple Connectedness

The concept of Zeno sequences was originally defined by Zeeman [1] for 4-dimensional
Minkowski space with fine topology. In this section, we develop the notion of Zeno sequence
in n-dimensional Minkowski Space with s-topology to characterize the compact subsets of
Ms. As a consequence of this study the two dimensional Minkowski space with s-topology
is proved to be not simply connected. The study of Zeno sequences is also used to obtain a
sufficient condition for continuity of maps from a topological space intoMs.

Definition 7.1. Let z ∈ M and let (zn)n∈N be a sequence of distinct terms in M such that
zn /= z, for every n ∈ N. Then (zn)n∈N is called a Zeno sequence in Ms converging to z ∈ M,
if (zn)n∈N converges to z in ME but not in Ms. The image of a Zeno sequence (zn)n∈N will
mean the set Z = {zn|n ∈ N}. The completed image of a Zeno sequence (zn)n∈N will mean
the set Z ∪ {z}.

Example 7.2. Let z ∈ M. Consider the collection {λn : λn is a light ray passing through z, n ∈
N}. For n ∈ N, choose zn ∈ λn such that 0 < dE(zn, z) < 1/n and zn /= zi, for i = 1, 2, . . . , n −
1, n > 1. Then (zn)n∈N converges to z inME but not inMs, since any s-neighborhood about z
contains no zn. Hence (zn)n∈N is a Zeno sequence inMs.

Example 7.3. Let z ∈ M. Consider the collection {τn : τn is a timelike straight line passing
through z, n ∈ N}. For n ∈ N, choose zn ∈ τn such that 0 < dE(zn, z) < 1/n and zn /= zi,
for i = 1, 2, . . . , n − 1, n > 1. Then (zn)n∈N converges to z in ME but not in Ms, since any
s-neighborhood about z contains no zn. Hence (zn)n∈N is a Zeno sequence inMs.

Example 7.4. Let z ∈ M. Consider the collection {σn : σn is a spacelike straight line passing
through z, n ∈ N}. For n ∈ N, choose zn ∈ σn such that 0 < dE(zn, z) < 1/n and zn /= zi, for
i = 1, 2, . . . , n − 1, n > 1. Then (zn)n∈N converges to z inME and inMs. Hence (zn)n∈N is a not
a Zeno sequence inMs.

Proposition 7.5. Let (zn)n∈N be a Zeno sequence in Ms converging to z. Then (zn)n∈N admits a
subsequence whose image is closed inMs but not inME.

Proof. Since (zn)n∈N does not converge to z inMs, there exists an open setU inMs containing
z that leaves outside infinitely many terms of the sequence (zn)n∈N . Let (znk)k∈N be the
subsequence of (zn)n∈N formed by these infinitely many terms and letA be its image. Clearly,
(znk)k∈N converges to z in ME. Since z /∈ A, A is not closed in ME. To see that A is closed in
Ms, notice first that any point of M other than z is not a limit point of A in ME and hence in
Ms. Further, sinceU ∩A is empty, z is not a limit point ofA inMs. ThusA has no limit point
in Ms. This completes the proof.

In the following proposition, it is proved that a compact subset of Ms cannot contain
a Zeno sequence.

Proposition 7.6. Let C be a subset of M and Cs be a compact. Then C does not contain image of a
Zeno sequence.
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Proof. To the contrary, let (zn)n∈N be a Zeno sequence converging to z. Then from
Proposition 7.5, (zn)n∈N admits a subsequence whose image, sayA, is closed inMs but not in
ME. ThenA is compact inMs. This implies thatA is compactME and hence closed inME, a
contradiction to Proposition 7.5.

Lemma 7.7. Let C be a subset of M, such that C does not contain the completed image of any Zeno
sequence. Then for p ∈ C and every open set Gs

p in Ms containing p, there exists an open set GE
p

containing p of ME such that C ∩GE
p ⊆ C ∩Gs

p.

Proof. Suppose for some p ∈ C and an open set Gs
p inMs containing p, there is no open setGE

p

inME such thatC∩GE
p ⊂ C∩Gs

p. For each n ∈ N, choose xn ∈ C∩NE
1/n(p) such that xn /∈ C∩Gs

p

and xn /=xi, for i = 1, 2, . . . , n − 1, n > 1. Then (xn)n∈N is a Zeno sequence in Ms converging to
p, which is a contradiction since completed image of (xn)n∈N is contained in C.

The following proposition determines a class of subsets C of M for which Cs = CE.

Proposition 7.8. Let C be a subset of M, such that C does not contain completed image of any Zeno
sequence. Then Cs = CE.

Proof. From Lemma 7.7, it follows that the subspace Euclidean topology on C is finer than the
subspace s-topology on C. Proposition 3.4 now completes the proof.

The following proposition characterizes the compact subset ofMs.

Proposition 7.9. Let C be subset ofM such that C does not contain the completed image of any Zeno
sequence. Then CE is compact if and only if Cs is compact.

Proof. It follows from Proposition 7.8.

The following proposition characterizes the continuous maps from a topological space
intoMs.

Proposition 7.10. Let X be a topological space and f : X → ME a map such that f(X) does not
contain completed image of any Zeno sequence. Then f : X → ME is continuous iff f : X → Ms is
continuous.

Proof. Let f : X → Ms be continuous. Then by Proposition 3.4, f : X → ME is continuous.
Conversely, let f : X → ME is continuous. Then f : X → f(X)E is continuous and hence by
Proposition 7.8 f : X → f(X)s is continuous. This proves that f : X → Ms is continuous.

Lemma 7.11. Let G be an open set in ME and z ∈ G. Then there exists a Zeno sequence in Ms

converging to z with its terms in G.

Proof. Clearly NE
ε (z) ⊆ G, for some ε > 0. For n ∈ N, choose zn ∈ NE

ε (z) ∩ CL(z) such that
dE(zn, z) < ε/n and zn /= zi, for i = 1, 2, . . . , n−1, n > 1. Then (zn)n∈N converges to z inME but
not inMs. This proves that (zn)n∈N is a Zeno sequence, as required.

Proposition 7.12. LetM be the 2-dimensional Minkowski space. ThenMs is not simply connected.
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Proof. SinceMs is path connected, it is sufficient to prove that the fundamental group ofMs at
some fixed base point is nontrivial. For this, fix the base point at (0, 0) denoted by O. Choose
distinct ordered pairs of spacelike vectors (ui, vi) for i = 1, 2 such that ui − vi is a spacelike
vector. For i = 1, 2, let γi : [0, 1] → Ms be defined by

γsi (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

O + 3tui; s ∈
[
0,

1
3

]

ui + (3t − 1)
(
vi − ui

)
; s ∈

[
1
3
,
2
3

]

vi + (3t − 2)
(
O − vi

)
; s ∈

[
1
3
, 1
]

(7.1)

Then in view of Proposition 3.8 and the fact that the join of paths is a path, it follows
that γi : [0, 1] → Ms is a path, for i = 1, 2. Since γi(0) = γi(1), for i = 1, 2, hence γi’s are
loops based at O. We claim that γ1 is not path homotopic to γ2. Suppose, on the contrary,
that they are path-homotopic. Let H : [0, 1] × [0, 1] → Ms be a path homotopy between
γ1 and γ2 and T1, T2 be the compact triangles in ME with boundaries γ1([0, 1]) and γ2([0, 1]),
respectively. Then since (u1, v1)/= (u2, v2) at least one of int(T1)−T2 or int(T2)−T1 is nonempty,
where int(A) denotes the interior of set A in ME. Let int(T1) − T2 /=φ. If p ∈ int(T1) − T2, then
p ∈ H([0, 1] × [0, 1]), for otherwise H would be a path homotopy between T1 and T2 in the
punctured plane ME − {p} which is not possible as T1 winds around p while T2 does not.
Hence int(T1) − T2 ⊆ H([0, 1] × [0, 1]). Since int(T1) − T2 is open in ME, from Lemma 7.11
int(T1) − T2 contains image of a Zeno sequence inMs converging to p. This is a contradiction
to Proposition 7.6, since H([0, 1] × [0, 1]) is compact in Ms. This completes the proof.

8. Conclusion

The present paper is focused on a detailed topological study of the physically relevant s-
topology on 4-dimensional Minkowski space. Often the mathematical structure of a physical
theory, especially the topology on the underlying space, is never completely determined
by the physics of the processes it seeks to describe. This nonuniqueness of the topology
on underlying space motivates to identify and study those topologies that are significant
from the perspective of the physical theory. One of the most important physical theories is
the Einstein’s special theory of relativity, formulated on 4-dimensional Minkowski space, the
underlying space for s-topology.
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