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We study chain Hamiltonians derived from a class of multidimensional, multiparameter braid matrices introduced and explored in
a series of previous papers. The N 2× N 2 braid matrices (for all N) have (1/2)𝑁2 free parameters for even N and (1/2)(𝑁 + 1)2 − 1
forN odd.We present systematic explicit constructions for eigenstates and eigenvalues of chain Hamiltonians for𝑁 = 2, 3, 4 and all
chain lengths r. We derive explicitly the constraints imposed on these states by periodic (circular) boundary conditions. Our results
thus cover both open and closed chains. We then indicate how our formalism can be extended for all (𝑁, 𝑟). The dependence of the
eigenvalues on the free parameters is displayed explicitly, showing how the energy levels and their differences vary in a particular
simple way with these parameters. Some perspectives are discussed in conclusion.

1. Introduction

In a series of previous paper [1–4], we have formulated and
studied a class of 𝑁2 × 𝑁2 braid matrices (𝑁 ≥ 2) with free
parameters whose numbers increase as 𝑁2. Chain Hamilto-
nians corresponding to these matrices were also presented.
Here, we undertake systematic study of chain Hamiltonians
derived from these braid matrices presenting iterative and
explicit constructions of eigenstates and eigenvalues for all
dimensions𝑁 and for all orders (chain lengths) 𝑟.

We recapitulate briefly the constructions of the braid
matrices 𝑅̂(𝜃) satisfying (in standard notations used in [1–4])

𝑅̂
12
(𝜃) 𝑅̂
23
(𝜃 + 𝜃

󸀠
) 𝑅̂
12
(𝜃
󸀠
) = 𝑅̂
23
(𝜃
󸀠
) 𝑅̂
12
(𝜃 + 𝜃

󸀠
) 𝑅̂
23
(𝜃) .

(1)

Our class has a nested sequence of projectors 𝑃(𝜖)
𝑖𝑗

as a
basis which are defined as follows. For 𝑁 even (𝑁 = 2𝑛,
𝑛 ≥ 1),

𝑃
(𝜖)

𝑖𝑗
=

1

2

{(𝑖𝑖) ⊗ (𝑗𝑗) + (𝑖 𝑖) ⊗ (𝑗 𝑗)

+𝜖 [(𝑖𝑖) ⊗ (𝑗𝑗) + (𝑖𝑖) ⊗ (𝑗𝑗)]} ,

(2)

where 𝑖, 𝑗 ∈ {1, . . . , 𝑁/2}, 𝜖 = ±, 𝑖 = 𝑁 + 1 − 𝑖, 𝑗 = 𝑁 + 1 − 𝑗.
Interchanging 𝑗 󴀕󴀬 𝑗 on the right, one obtains 𝑃(𝜖)

𝑖𝑗
with

𝑃
(𝜖)

𝑖𝑗
= 𝑃
(𝜖)

𝑖 𝑗
, 𝑃

(𝜖)

𝑖𝑗
= 𝑃
(𝜖)

𝑖𝑗
. (3)

(We use the notation (𝑎𝑏) for a matrix with only one
nonzero element, unity, on row 𝑎 and column 𝑏.) On such an
orthonormal complete basis of projectors, one defines (with
domains defined below (2))

𝑅̂ (𝜃) = ∑

𝜖

∑

𝑖,𝑗

𝑒
𝑚
(𝜖)

𝑖𝑗
𝜃
(𝑃
(𝜖)

𝑖𝑗
+ 𝑃
(𝜖)

𝑖𝑗
) . (4)

The crucial constraints on the free parameters

𝑚
(𝜖)

𝑖𝑗
= 𝑚
(𝜖)

𝑖𝑗
(5)
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give an𝑁2 × 𝑁2 braid matrix with

1

2

𝑁
2
= 2𝑛
2 (6)

free parameters. For 𝑁 odd (𝑁 = 2𝑛 − 1; 𝑛 ≥ 2), using our
definitions below (2),

𝑛 = 𝑁 − 𝑛 + 1 = 𝑛,

𝑃
(𝜖)

𝑖𝑛
= 𝑃
(𝜖)

𝑖𝑛
=

1

2

{(𝑖𝑖) + (𝑖 𝑖) + 𝜖 [(𝑖𝑖) + (𝑖𝑖)]} ⊗ (𝑛𝑛) ,

𝑃
(𝜖)

𝑛𝑖
= 𝑃
(𝜖)

𝑛𝑖
=

1

2

(𝑛𝑛) ⊗ {(𝑖𝑖) + (𝑖 𝑖) + 𝜖 [(𝑖𝑖) + (𝑖𝑖)]} ,

𝑃
𝑛𝑛
= (𝑛𝑛) ⊗ (𝑛𝑛) .

(7)

The braid matrix is now

𝑅̂ (𝜃) = 𝑒
𝑚𝑛𝑛𝜃
𝑃
𝑛𝑛
+∑

𝑖,𝜖

(𝑒
𝑚
(𝜖)

𝑛𝑖
𝜃
𝑃
(𝜖)

𝑛𝑖
+ 𝑒
𝑚
(𝜖)

𝑖𝑛
𝜃
𝑃
(𝜖)

𝑖𝑛
)

+∑

𝑖,𝑗𝜖

𝑒
𝑚
(𝜖)

𝑖𝑗
𝜃
(𝑃
(𝜖)

𝑖𝑗
+ 𝑃
(𝜖)

𝑖𝑗
)

(8)

(𝑖, 𝑗 ∈ {1, . . . , 𝑛 − 1}, 𝑖, 𝑗 ∈ {2𝑛 − 1, . . . , 𝑛 + 1}, 𝜖 = ±). The
number of free parameters is now

2𝑛
2
− 1 =

1

2

(𝑁 + 1)
2
− 1. (9)

(An overall factor 𝑒𝑚𝑛𝑛𝜃 and redefinitions of the 𝑚’s, 𝑚(𝜖)
𝑛𝑖
+

𝑚
𝑛𝑛
→ 𝑚

(𝜖)

𝑛𝑖
, etc. convert our previous convention for odd

𝑁 to the present one, which is more convenient for what
follows.)

Defining

̇
𝑅̂ (0) ≡ (

𝑑

𝑑𝜃

𝑅̂ (𝜃))

𝜃=0

, (10)

theHamiltonian acting on a chain of 𝑟+1 sites (𝑟 ≥ 1) is given
by the standard

𝐻 =

𝑟

∑

𝑘=1

𝐼 ⊗ ⋅ ⋅ ⋅ ⊗ 𝐼 ⊗
̇
𝑅̂
𝑘,𝑘+1
(0) ⊗ 𝐼 ⊗ ⋅ ⋅ ⋅ ⊗ 𝐼, (11)

where ̇
𝑅̂
𝑘,𝑘+1
(0) acts on the sites (𝑘, 𝑘 + 1). For circular

boundary conditions (or periodic),

𝑘 + 1 = 𝑟 + 1 ≈ 1. (12)

The Hamiltonians inherit the free parameters (see (6), (9))
of 𝑅̂. This is the most striking features of our construction.
The eigenvalues will be seen to depend linearly on these
parameters (given by simple sums of the 𝑚’s). So, by varying
them, one can vary the differences between the energy levels.
We will first present, in the following sections, explicit results
for the simplest cases. Then, an iterative formalism will be
implemented to generalize them. Also, we will start with
open chains and subsequently impose the constraints (12) for
periodicity.

2.𝑁= 2𝑛= 2

The 4 × 4 braid matrix [3] is

𝑅̂ (𝜃) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
+
0 0 𝑎

−

0 𝑎
+
𝑎
−
0

0 𝑎
−
𝑎
+
0

𝑎
−
0 0 𝑎

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (13)

where

𝑎
±
=

1

2

(𝑒
𝑚
(+)
11 𝜃
± 𝑒
𝑚
(−)
11 𝜃
) . (14)

Hence,

̇
𝑅̂ (0) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

x
+
0 0 x

−

0 x
+

x
−
0

0 x
−

x
+
0

x
−
0 0 x

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (15)

where

x
±
=

1

2

(𝑚
(+)

11
± 𝑚
(−)

11
) . (16)

The chains Hamiltonian for 𝑟 + 1 sites are

𝐻
(𝑟)
=
̇
𝑅̂
12
(0) +

̇
𝑅̂
23
(0) + ⋅ ⋅ ⋅ +

̇
𝑅̂
𝑟,𝑟+1
(0) (17)

(adapting the notation of (11)). For circular boundary condi-
tions (CBC),

̇
𝑅̂
𝑟,𝑟+1
(0) ≈

̇
𝑅̂
𝑟,1
(0) . (18)

The base spaces (for different 𝑟’s) will be spanned by the
tensor products of the fundamental states vectors

| 1⟩ ≡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

0
⟩ ,

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ ≡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

0

1
⟩ . (19)

Using the notations of our previous papers,

󵄨
󵄨
󵄨
󵄨
󵄨
111111⟩ ≡ |1⟩ ⊗

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ ⊗ |1⟩ ⊗

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ ⊗ |1⟩ ⊗ |1⟩ (20)

and so on.
We now increase 𝑟 stepwise as follows.

2.1. 𝑟 = 1. Here,

𝐻 = 𝐻
(1)
=
̇
𝑅̂
12
(0) . (21)

From (15), (19), and (20) (and with 𝜖 = ±),

𝐻
(1)
(|11⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) = 𝑚

(𝜖)

11
(|11⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) ,

𝐻
(1)
(

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) = 𝑚

(𝜖)

11
(

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) .

(22)

The key to generalization (𝑟 > 1) is that, for the same 𝜖, these
two eigenstates have the same eigenvalue. This degeneracy
opens the road to a simple iteration.
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2.2. 𝑟 = 2. Now,

𝐻 = 𝐻
(2)
=
̇
𝑅̂
12
(0) +

̇
𝑅̂
23
(0) . (23)

Define

𝑉
(𝜖1 ,𝜖2 ,𝜖3)

= (|1⟩ + 𝜖1

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) (|1⟩ + 𝜖3

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

(24)

= ((|11⟩ + 𝜖1
𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) + 𝜖

2
(

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩ + 𝜖

1
𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩))

× (|1⟩ + 𝜖3

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

(25)

= (|1⟩ + 𝜖1

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) ((|11⟩ + 𝜖2

𝜖
3

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩)

+𝜖
3
(

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩ + 𝜖

2
𝜖
3

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩)) .

(26)

In (23), ̇𝑅̂
12
(0) acts on the first two factors of 𝑉 and ̇

𝑅̂
23
(0)

acts on the last two. Hence, form (22) and (25),

̇
𝑅̂
12
(0) 𝑉
(𝜖1 ,𝜖2,𝜖3)

= 𝑚
(𝜖1𝜖2)

11
𝑉
(𝜖1 ,𝜖2 ,𝜖3)

(27)

and from (26),

̇
𝑅̂
23
(0) 𝑉
(𝜖1 ,𝜖2 ,𝜖3)

= 𝑚
(𝜖2𝜖3)

11
𝑉
(𝜖1 ,𝜖2,𝜖3)

. (28)

Summing

𝐻
(2)
𝑉
(𝜖1 ,𝜖2,𝜖3)

= (𝑚
(𝜖1𝜖2)

11
+ 𝑚
(𝜖2𝜖3)

11
)𝑉
(𝜖1 ,𝜖2,𝜖3)

. (29)

Since each (𝜖
1
, 𝜖
2
, 𝜖
3
) can have values (±) independently, we

obtain a complete basis (for 𝑟 = 2) of eigenstates with the
spectrum of eigenvalues

(2𝑚
(+)

11
, 𝑚
(+)

11
+ 𝑚
(−)

11
, 2𝑚
(−)

11
) (30)

with respective degeneracies (for the base space of 8 dimen-
sions)

2 (1, 2, 1) . (31)

The generalization is now evident.

2.3. General Case 𝑟 ≥ 2. Iterating factors as in (24) one can
define

𝑉
(𝜖1 ,𝜖2,...,𝜖𝑟+1)

= (|1⟩ + 𝜖1

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) ⋅ ⋅ ⋅ (| 1⟩ + 𝜖𝑟+1

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) .

(32)

Now,𝐻 = 𝐻(𝑟) = ̇𝑅̂
12
(0)+

̇
𝑅̂
23
(0)+ ⋅ ⋅ ⋅+

̇
𝑅̂
𝑟,𝑟+1
(0). In this sum,

̇
𝑅̂
𝑝,𝑝+1
(0) acts on the factors

(|1⟩ + 𝜖𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) (|1⟩ + 𝜖𝑝+1

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

= ((|11⟩ + 𝜖𝑝
𝜖
𝑝+1

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) + 𝜖

𝑝+1
(

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩ + 𝜖

𝑝
𝜖
𝑝+1

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩))

(33)

giving

̇
𝑅̂
𝑝,𝑝+1

(0) 𝑉
(𝜖1 ,𝜖2 ,...,𝜖𝑟+1)

= 𝑚

(𝜖𝑝𝜖𝑝+1)

11
𝑉
(𝜖1 ,𝜖2,...,𝜖𝑟+1)

, 𝑝 = 1, . . . , 𝑟.

(34)

Summing

𝐻
(𝑟)
𝑉
(𝜖1 ,𝜖2,...,𝜖𝑟+1)

= (𝑚
(𝜖1𝜖2)

11
+ 𝑚
(𝜖2𝜖3)

11
+ ⋅ ⋅ ⋅ + 𝑚

(𝜖𝑟𝜖𝑟+1)

11
)𝑉
(𝜖1 ,𝜖2,...,𝜖𝑟+1)

,

(35)

the full spectrum is given by

((𝑟 − 𝑘)𝑚
(+)

11
+ 𝑘𝑚
(−)

11
) , (𝑘 = 0, 1, 2, . . . , 𝑟) . (36)

The respective multiplicities are given by the coefficients of
the expansion

2(𝑥 + 𝑦)
𝑟

= 2

𝑟

∑

𝑘=0

(
𝑟

𝑘
)𝑥
𝑟−𝑘
𝑦
𝑘
. (37)

This provides the complete basis of eigenstates spanning the
base space of dimension 2𝑟+1. Thus, we arrive (by iterating
factors as in (32) at the complete solution for a chain of
arbitrary length ((𝑟 + 1) sites for any 𝑟). We have obtained
explicitly all eigenstates and the respective eigenvalues.

2.4. Cyclic Boundary Conditions (CBC). So far, we have been
dealing with open chains. Now, we impose periodic (cyclic)
boundary conditions, namely, (18). We start again with the
simplest cases which again indicate the general solution.

2.4.1. 𝑟 = 2. From (24),

𝑉
(𝜖1 ,𝜖2,𝜖3)

= (|1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) |1⟩ + 𝜖1

𝜖
3

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)
(P)

+ (𝜖
3 |
1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩

+𝜖
1

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) |1⟩)

(NP)
.

(38)

The part (P) satisfies the constraint (12) and the part (NP)
does not. The part (NP) is eliminated in the following
combination:
1

2

(𝑉
(+,𝜖2 ,−)

+ 𝑉
(−,𝜖2 ,+)

)

= |1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) |1⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩

= (|111⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
111⟩) + 𝜖

2
(

󵄨
󵄨
󵄨
󵄨
󵄨
111⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
111⟩) .

(39)

The condition

𝜖
1
𝜖
3
= −1 (40)

and the sum imposed above leave only two eigenstates with
the common eigenvalue

(𝑚
(+)

11
+ 𝑚
(−)

11
) . (41)



4 ISRNMathematical Physics

It will be shown below that for all 𝑟 the extreme eigenvalues
(𝑟𝑚
(+)

11
, 𝑟𝑚
(−)

11
) are eliminated under (CBC) and the dimension

of the base space is divided by a factor 4 (for𝑁 = 2).

2.4.2. General Case (All 𝑟). From (32), the (P) and (NP) parts
are

𝑉
(𝜖1 ,𝜖2 ,...,𝜖𝑟 ,𝜖𝑟+1)

= (|1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) ⋅ ⋅ ⋅ (| 1⟩ + 𝜖𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) |1⟩

+ 𝜖
1
𝜖
𝑟+1

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) ⋅ ⋅ ⋅ (| 1⟩ + 𝜖𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)
(P)

+ (𝜖
𝑟+1 |
1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) ⋅ ⋅ ⋅ (| 1⟩ + 𝜖𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩

+ 𝜖
1

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) ⋅ ⋅ ⋅ (| 1⟩ + 𝜖𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) |1⟩)

(NP)
.

(42)

Thus, the direct generalization of (39) is

1

2

(𝑉
(+,𝜖2 ,...,𝜖𝑟 ,−)

+ 𝑉
(−,𝜖2 ,...,𝜖𝑟,+)

)

= |1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) ⋅ ⋅ ⋅ (| 1⟩ + 𝜖𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) |1⟩

−

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) ⋅ ⋅ ⋅ (| 1⟩ + 𝜖𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ ,

(43)

which provides the 2𝑟−1 eigenstates satisfying (CBC) with the
spectrum of eigenvalues

((𝑟 − 𝑘)𝑚
(+)

11
+ 𝑘𝑚
(−)

11
) , (𝑘 = 1, 2, . . . , 𝑟 − 1) . (44)

3.𝑁= 4

We continue to study even dimensions. For 𝑁 = 2, we
had to deal with one pair of indices (|1⟩, |1⟩ of Section 2).
For 𝑁 = 2𝑛, the states involve tensor products of
(|1⟩, |1⟩; |2⟩, |2⟩; . . . ; |𝑛⟩, |𝑛⟩). For 𝑛 = 2, the basis involving
(|1⟩, |1⟩; |2⟩, |2⟩)will be studied using notations that facilitate
the passage to all 𝑛. For states involving only (|1⟩, |1⟩) or
(|2⟩, |2⟩), the results will be entirely analogous to those of
Section 2 (𝑛 = 1). But now, one has to include states involving
both pairs. Changing the notations of [3] for convenience, we
write (for𝑁 = 4) the 16 × 16Hamiltonian as

̇
𝑅̂ (0) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐷
11
0 0 𝐴

11

0 𝐷
22
𝐴
22
0

0 𝐴
22
𝐷
22

0

𝐴
11
0 0 𝐷

1 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (45)

where

𝐷
11
= 𝐷
1 1
= (

𝑎
+
0 0 0

0 𝑏
+
0 0

0 0 𝑏
+
0

0 0 0 𝑎
+

),

𝐷
22
= 𝐷
2 2
= (

𝑐
+
0 0 0

0 𝑑
+
0 0

0 0 𝑑
+
0

0 0 0 𝑐
+

),

𝐴
11
= 𝐴
11
= (

0 0 0 𝑎
−

0 0 𝑏
−
0

0 𝑏
−
0 0

𝑎
−
0 0 0

) ,

𝐴
22
= 𝐴
22
= (

0 0 0 𝑐
−

0 0 𝑑
−
0

0 𝑑
−
0 0

𝑐
−
0 0 0

) ,

(46)

𝑎
±
=

1

2

(𝑚
(+)

11
± 𝑚
(−)

11
) , 𝑏

±
=

1

2

(𝑚
(+)

12
± 𝑚
(−)

12
) ,

𝑐
±
=

1

2

(𝑚
(+)

21
± 𝑚
(−)

21
) , 𝑑

±
=

1

2

(𝑚
(+)

22
± 𝑚
(−)

22
) .

(47)

As compared to 𝑚(±)
11

of Section 2, there are now 8 indepen-
dent parameters.

The fundamental basis states are (as compared to (19))

| 1⟩ ≡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

0

0

0

⟩ ,

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ ≡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

0

0

0

1

⟩ ,

|2⟩ ≡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

0

1

0

0

⟩ ,

󵄨
󵄨
󵄨
󵄨
󵄨
2⟩ ≡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

0

0

1

0

⟩ .

(48)

The tensor products, using our standard notations, are
denoted as

󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩ = | 𝑖⟩ ⊗

󵄨
󵄨
󵄨
󵄨
𝑗⟩ , (49)

where, independently, 𝑖 = (1, 1, 2, 2), 𝑗 = (1, 1, 2, 2), and
correspondingly, 𝑖 = (1, 1, 2, 2) and similarly for 𝑗.

The crucial constraint (always to be kept in mind)

𝑚
(𝜖)

𝑖𝑗
= 𝑚
(𝜖)

𝑖𝑗
= 𝑚
(𝜖)

𝑖𝑗
= 𝑚
(𝜖)

𝑖𝑗
(50)

is incorporated in the blocks of (45) through (45), (47).
We will write 𝑚(𝜖)

12
for (𝑚(𝜖)

12
, 𝑚
(𝜖)

12
, 𝑚
(𝜖)

12
, 𝑚
(𝜖)

12
) and so on. A

fundamental consequence is

̇
𝑅̂ (0)

󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩ =

1

2

(𝑚
(+)

𝑖𝑗
+ 𝑚
(−)

𝑖𝑗
)
󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩ +

1

2

(𝑚
(+)

𝑖𝑗
− 𝑚
(−)

𝑖𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩

(51)
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for

𝑖 = (1, 1, 2, 2) with 𝑖 = (1, 1, 2, 2) (52)

and similarly for 𝑗. Hence,

̇
𝑅̂ (0) (

󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩) = 𝑚

(𝜖)

𝑖𝑗
(
󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩) , (53)

where 𝜖 = ± and (𝑖, 𝑗) assume the values (1, 1, 2, 2)
independently. Hence, due to (50), also

̇
𝑅̂ (0) (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩) = 𝑚

(𝜖)

𝑖𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗⟩) . (54)

3.1. (𝑟 = 2). Define

𝑉
(𝜖1 ,𝜖2 ,𝜖3)

= (
󵄨
󵄨
󵄨
󵄨
𝑖
1
⟩ + 𝜖
1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
1
⟩) (
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩ + 𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩) (
󵄨
󵄨
󵄨
󵄨
𝑖
3
⟩ + 𝜖
3

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
3
⟩)

(55)

exactly as in (25), (26) but with the domain (1, 2) for each
index (𝑖

1
, 𝑖
2
, 𝑖
3
). (Changing any 𝑖 to 𝑖 amounts to the same 𝑉

with the corresponding 𝜖 as factor.) Consider

𝑉
(𝜖1 ,𝜖2,𝜖3)

= ((
󵄨
󵄨
󵄨
󵄨
𝑖
1
𝑖
2
⟩ + 𝜖
1
𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
1
𝑖
2
⟩) + 𝜖

2
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
1
𝑖
2
⟩ + 𝜖
1
𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
1
𝑖
2
⟩))

× (
󵄨
󵄨
󵄨
󵄨
𝑖
3
⟩ + 𝜖
3

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
3
⟩)

= (
󵄨
󵄨
󵄨
󵄨
𝑖
1
⟩ + 𝜖
1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
1
⟩)

× ((
󵄨
󵄨
󵄨
󵄨
𝑖
2
𝑖
3
⟩ + 𝜖
2
𝜖
3

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
2
𝑖
3
⟩) + 𝜖

3
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
2
𝑖
3
⟩ + 𝜖
2
𝜖
3

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
2
𝑖
3
⟩)) .

(56)

Hence, (analogously to (27)–(29))

𝐻
(2)
𝑉
(𝜖1 ,𝜖2 ,𝜖3)

= (
̇
𝑅̂
12
(0) +

̇
𝑅̂
23
(0))𝑉

(𝜖1 ,𝜖2,𝜖3)

= (𝑚
(𝜖1𝜖2)

𝑖1𝑖2
+ 𝑚
(𝜖2𝜖3)

𝑖2𝑖3
)𝑉
(𝜖1 ,𝜖2,𝜖3)

.

(57)

The difference from (29) is that here the eigenvalues (taking
(50) into account) have the domain

(𝑚
(𝜖1𝜖2)

11
+ 𝑚
(𝜖2𝜖3)

11
) , (𝑚

(𝜖1𝜖2)

12
+ 𝑚
(𝜖2𝜖3)

12
) ,

(𝑚
(𝜖1𝜖2)

12
+ 𝑚
(𝜖2𝜖3)

21
) , (𝑚

(𝜖1𝜖2)

12
+ 𝑚
(𝜖2𝜖3)

22
) ,

(𝑚
(𝜖1𝜖2)

21
+ 𝑚
(𝜖2𝜖3)

21
) , (𝑚

(𝜖1𝜖2)

21
+ 𝑚
(𝜖2𝜖3)

12
) ,

(𝑚
(𝜖1𝜖2)

22
+ 𝑚
(𝜖2𝜖3)

21
) , (𝑚

(𝜖1𝜖2)

22
+ 𝑚
(𝜖2𝜖3)

22
) .

(58)

For each case, independently,

(𝜖
1
, 𝜖
2
) = (+, −) , (𝜖

2
, 𝜖
3
) = (+, −) . (59)

Each entry in (57) provides 8 possibilities (including multi-
plicities, easily counted) and thus in total spans the 42+1 =
8 × 8 = 64 dimensional base space for 𝑟 = 2.

3.2. General Case (𝑟=2, 3,4,. . .). We generalized (24) to (55)
in passing from 𝑁 = 2 to 𝑁 = 4. Similarly, for all 𝑟, we
generalize (32) to

𝑉
(𝜖1 ,𝜖2 ,...,𝜖𝑟+1)

= (
󵄨
󵄨
󵄨
󵄨
𝑖
1
⟩ + 𝜖
1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
1
⟩) (
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩ + 𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩) ⋅ ⋅ ⋅ (

󵄨
󵄨
󵄨
󵄨
𝑖
𝑟+1
⟩ + 𝜖
𝑟+1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
𝑟+1
⟩)

(60)

with the domain (1, 2) for each 𝑖. Now,𝐻(𝑟) = ̇𝑅̂
12
(0)+

̇
𝑅̂
23
(0)+

⋅ ⋅ ⋅ +
̇
𝑅̂
𝑟,𝑟+1
(0) and the evident generalization of (35) is

𝐻
(𝑟)
𝑉
(𝜖1 ,𝜖2 ,...,𝜖𝑟+1)

= (𝑚
(𝜖1𝜖2)

𝑖1𝑖2
+ 𝑚
(𝜖2𝜖3)

𝑖2𝑖3
+ ⋅ ⋅ ⋅ + 𝑚

(𝜖𝑟𝜖𝑟+1)

𝑖𝑟𝑖𝑟+1
)𝑉
(𝜖1 ,𝜖2,...,𝜖𝑟+1)

.

(61)

Each term can contribute

(𝑚
(±)

11
, 𝑚
(±)

12
, 𝑚
(±)

21
, 𝑚
(±)

22
) (62)

for the full range of the 𝑖’s and the 𝜖’s. But for a given value of 𝑖
2

in𝑚(𝜖1𝜖2)
𝑖1𝑖2

, one must have the same 𝑖
2
in𝑚(𝜖2𝜖3)
𝑖2𝑖3

and so on.This
introduces constraints. Thus, for 𝑟 = 3 (𝑟 + 1 = 4), for fixed
𝑖’s, the 𝜖’s provide 24 possibilities (including multiplicities)
and for each set of 𝜖’s, the 𝑖’s (each being 1 or 2) furnish 24
possibilities. These together indeed span the base space of
2
4
× 2
4
= 4
3+1 dimensions.

3.3. CBC. Circular boundary conditions can be imposed
now. As compared to the case𝑁 = 2, alongwith strong analo-
gies, there are crucial differences. One evident difference is
the larger domains of the indices. The constraints 𝑖

𝑟+1
= 𝑖
1

leave, for𝑁 = 2, the possibilities

𝑖
𝑟+1
= 𝑖
1
= (1, 1) . (63)

Now, one can have

𝑖
𝑟+1
= 𝑖
1
= (1, 1, 2, 2) . (64)

For𝑁 = 2𝑛, one can have

𝑖
𝑟+1
= 𝑖
1
= (1, 1, 2, 2, . . . , 𝑛, 𝑛) . (65)

But there is a somewhat more subtle difference. The funda-
mental constraint (5) and the symmetries of the projectors
(see (3)) lead to

𝑚
(𝜖)

𝑖𝑗
= 𝑚
(𝜖)

𝑖𝑗
= 𝑚
(𝜖)

𝑖𝑗
= 𝑚
(𝜖)

𝑖𝑗
(66)

for our free parameters. But we do not indent to impose,
diminishing number of free parameters, which are an essen-
tial feature of our formalism, additional restrictions as𝑚(𝜖)

𝑖𝑗
=

𝑚
(𝜖)

𝑗𝑖
(𝑖 ̸= 𝑗), and so on. Let us explore the consequences for

(CBC) for𝑁 > 2.
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3.3.1. 𝑟 = 2. From (53), (54), one obtains periodic states by
starting with

𝑉
(𝑖,𝑗,𝑖)

(𝜖1 ,𝜖2)
= (
󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩ + 𝜖

1
𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩) + (𝜖

1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩ + 𝜖

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩) , (67)

𝑉
(𝑖,𝑗,𝑖)

(𝜖1 ,𝜖2)
= (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩ + 𝜖

1
𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩) + (𝜖

1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩ + 𝜖

2

󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩) (68)

as
1

2

(𝑉
(𝑖,𝑗,𝑖)

(+,−)
+ 𝑉
(𝑖,𝑗,𝑖)

(−,+)
) = (

󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩) (69)

1

2

(𝑉
(𝑖,𝑗,𝑖)

(+,−)
− 𝑉
(𝑖,𝑗,𝑖)

(−,+)
) = (

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩ −

󵄨
󵄨
󵄨
󵄨
𝑖𝑗𝑖⟩) . (70)

But for 𝑗 = (𝑖, 𝑖), these are not eigenstates of𝐻(2) if𝑚
12
̸= 𝑚
21
.

For 𝑗 = (𝑖, 𝑖) only, one obtains eigenvalues

(𝑚
(+)

𝑖𝑖
+ 𝑚
(−)

𝑖𝑖
) . (71)

3.3.2. 𝑟 > 2. Displaying explicitly the indices in the general-
izations of (69), (70), the periodic states are

1

2

(𝑉
(𝑖1 ,𝑖2,...,𝑖𝑟,𝑖1)

(+,𝜖2 ,𝜖3,...,𝜖𝑟−1,−)
+ 𝑉
(𝑖1 ,𝑖2,...,𝑖𝑟,𝑖1)

(−,𝜖2 ,𝜖3,...,𝜖𝑟−1,+)
)

1

2

(𝑉
(𝑖1 ,𝑖2 ,...,𝑖𝑟 ,𝑖1)

(+,𝜖2 ,𝜖3 ,...,𝜖𝑟−1,−)
− 𝑉
(𝑖1 ,𝑖2 ,...,𝑖𝑟 ,𝑖1)

(+,𝜖2 ,𝜖3 ,...,𝜖𝑟−1,−)
) .

(72)

They are eigenstates only under constraints

𝑖
2
= (𝑖
1
, 𝑖
1
) , 𝑖

𝑟
= (𝑖
1
, 𝑖
1
) (73)

(independent of each other). The first and the second terms
of (72) or (3.30) contribute to differing eigenvalues by

(𝑚
(+)

𝑖1𝑖2
+ 𝑚
(−)

𝑖𝑟𝑖1
) − (𝑚

(−)

𝑖1𝑖2
+ 𝑚
(+)

𝑖𝑟𝑖1
) (74)

which vanishes for (73) (along with (66)). Hence the results.
For 𝑟 = 2, there is one constraint less. The restrictions on
the eigenvalues and on the dimensions of the base spaces can
now be obtained in a straightforward fashion. Along with, as
in Section 2, 𝜖

1
𝜖
𝑟
= −1, there are now (71) and (73).

We have preferred to study the case 𝑁 = 4 (rather than
𝑁 = 3) directly after 𝑁 = 2, since all even (𝑁 = 2𝑛) cases
can be treated coherently together while all odd ones (𝑁 =
2𝑛−1, 𝑛 = 2, 3, . . .) have features in commonwhich are absent
for 𝑁 = 2𝑛. The prototype is provided by 𝑁 = 3. We study
this case in some detail in the following section.Then, we will
only try to understand generalizations necessary for arbitrary
dimensions𝑁 = (2, 3, 4, 5, 6, . . .).

4.𝑁= 3

The definition below (2), 𝑖 = 𝑁 + 1 − 𝑖 (𝑖 = 𝑁 + 1 − 𝑖 = 𝑖),
gives, for𝑁 = 2𝑛 − 1,

𝑛 = 𝑁 + 1 − 𝑛 = 𝑛. (75)

While, for all other indices, 𝑖 ̸= 𝑖. This is the central fact
inducing special properties for odd𝑁 (for even 𝑁 no 𝑖 = 𝑖).

We now study such features in some detail for 𝑁 = 3. The
9 × 9 braid matrices are (in notations analogous to (45))

𝑅̂ (𝜃) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐷
11
0 𝐴

11

0 𝐷
22
0

𝐴
11
0 𝐷

1 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (76)

where

𝐷
11
= 𝐷
1 1
= (

𝑎
+
0 0

0 𝑏
+
0

0 0 𝑎
+

) ,

𝐷
22
= (

𝑐
+
0 𝑐
−

0 𝑑 0

𝑐
−
0 𝑐
+

) ,

𝐴
11
= 𝐴
11
= (

0 0 𝑎
−

0 𝑏
−
0

𝑎
−
0 0

) ,

(77)

where

𝑎
±
=

1

2

(𝑒
𝑚
(+)
11 𝜃
± 𝑒
𝑚
(−)
11 𝜃
) , 𝑏

±
=

1

2

(𝑒
𝑚
(+)
12 𝜃
± 𝑒
𝑚
(−)
12 𝜃
) ,

𝑐
±
=

1

2

(𝑒
𝑚
(+)
21 𝜃
± 𝑒
𝑚
(−)
21 𝜃
) , 𝑑 = 𝑒

𝑚22𝜃
.

(78)

As compared to our conventions for odd𝑁 in previous papers
[1, 3, 5], the above one differs by the introduction of an overall
factor 𝑒𝑚22𝜃 and redefinitions (for (𝑖, 𝑗) ̸= (2, 2))𝑚(±)

𝑖𝑗
+𝑚
22
→

𝑚
(±)

𝑖𝑗
. This is convenient for our present purposes. Now,

̇
𝑅̂ (0) =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝛼
+
0 0 0 0 0 0 0 𝛼

−

0 𝛽
+
0 0 0 0 0 𝛽

−
0

0 0 𝛼
+
0 0 0 𝛼

−
0 0

0 0 0 𝛾
+
0 𝛾
−
0 0 0

0 0 0 0 𝛾 0 0 0 0

0 0 0 𝛾
−
0 𝛾
+
0 0 0

0 0 𝛼
−
0 0 0 𝛼

+
0 0

0 𝛽
−
0 0 0 0 0 𝛽

+
0

𝛼
−
0 0 0 0 0 0 0 𝛼

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (79)

where

𝛼
±
=

1

2

(𝑚
(+)

11
± 𝑚
(−)

11
) , 𝛽

±
=

1

2

(𝑚
(+)

12
± 𝑚
(−)

12
) ,

𝛾
±
=

1

2

(𝑚
(+)

21
± 𝑚
(−)

21
) , 𝛿 = 𝑚

22
.

(80)

(Compare this to (47), (48).) We have now 7 free parameters.
The chainHamiltonian is now (𝐼 being a 9×9 unitmatrix)

𝐻
(𝑟)
=

𝑟

∑

𝑘=1

𝐼 ⊗ ⋅ ⋅ ⋅ ⊗
̇
𝑅̂(0)
𝑘,𝑘+1

⊗ ⋅ ⋅ ⋅ ⊗ 𝐼

≡
̇
𝑅̂
12
(0) +

̇
𝑅̂
23
(0) + ⋅ ⋅ ⋅ +

̇
𝑅̂
𝑟,𝑟+1
(0) (𝑟 = 2, 3, . . .) .

(81)

Again for periodicity for 𝑘+1 = 𝑟+1 ≈ 1, the generalizations
for𝑁 = (5, 7, . . .) are straight forward.
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4.1. Eigenstates and Eigenvalues. The base space is now
spanned by tensor products of the fundamental states

(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

0

0

⟩ ,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

0

1

0

⟩ ,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

0

0

1

⟩ ,) ≡ (|1⟩ , | 2⟩ ,

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) . (82)

The eigenstates and eigenvalues of ̇𝑅̂
12
(0) (≡ 𝐻

(1)
) are (with

𝜖 = ±)

𝐻
(1)
(|11⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) = 𝑚

(𝜖)

11
(|11⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) ,

𝐻
(1)
(

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) = 𝑚

(𝜖)

11
(

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) ,

𝐻
(1)
(|12⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
12⟩) = 𝑚

(𝜖)

12
(|12⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
12⟩) ,

𝐻
(1)
(|21⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
21⟩) = 𝑚

(𝜖)

21
(|21⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
21⟩) ,

𝐻
(1)
| 22⟩ = 𝑚22 |

22⟩ .

(83)

Comparing this with (53), one notices how the 16-
dimensional basis for 𝑁 = 4 is reduced (“contracted”)
to a 9-dimensional one for the identification (for𝑁 = 3)

2 = 2. (84)

We will come back to this point.

4.1.1. 𝑟 = 2. We continue to elucidate the role of (84) by
treating this case in detail. Here,

𝐻
(2)
=
̇
𝑅̂
12
(0) +

̇
𝑅̂
23
(0) . (85)

For states involving only (1, 1), one proceeds exactly as for
𝑁 = 2 (see (24)–(32)). One thus recovers formally the
eight eigenstates not involving |2⟩. But now, one also has
the following possibilities in the iterative structure of the
eigenstates:

(1) (|11⟩ + 𝜖1

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) |2⟩ + 𝜖2

(

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩ + 𝜖

1

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) |2⟩

= |1⟩ (|12⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
12⟩) + 𝜖

1

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩ (

󵄨
󵄨
󵄨
󵄨
󵄨
12⟩ + 𝜖

2 |
12⟩) ,

(2) (|12⟩ + 𝜖
1

󵄨
󵄨
󵄨
󵄨
󵄨
12⟩) (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

= (|1⟩ + 𝜖1

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) (|21⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
21⟩) ,

(3) (|21⟩ + 𝜖
1

󵄨
󵄨
󵄨
󵄨
󵄨
21⟩) (|1⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩)

= |2⟩ ((|11⟩ + 𝜖1
𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) + 𝜖

2
(

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩ + 𝜖

1
𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩)) ,

(4) (|12⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
12⟩) |2⟩ = (|1⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) |22⟩ ,

(5) (|21⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
21⟩) |2⟩ = |2⟩ (|12⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) ,

(6) |22⟩ (|1⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
1⟩) = |2⟩ (|21⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
21⟩) ,

(7) |222⟩ .

(86)

The total action of𝐻(2) is evident form the left and the right
factorizations displayed. The eigenvalues are, respectively,

(1) (𝑚
(𝜖1)

11
+ 𝑚
(𝜖2)

12
) ,

(2) (𝑚
(𝜖1)

12
+ 𝑚
(𝜖2)

21
) ,

(3) (𝑚
(𝜖1)

21
+ 𝑚
(𝜖1𝜖2)

11
) ,

(4) (𝑚
(𝜖)

12
+ 𝑚
22
) ,

(5) (𝑚
(𝜖)

21
+ 𝑚
(𝜖)

12
) ,

(6) (𝑚
22
+ 𝑚
(𝜖)

21
) ,

(7) 2𝑚
22
.

(87)

Counting the possible values of the 𝜖’s, these provide (12+6+
1) = 19 eigenstates. Along with 8 states involving only (1, 1),
one thus obtains the full basis of 27 dimensions for 𝑟 = 2
(three sites with three possibilities (1, 1, 2) for each). It is again
instructive to note how the corresponding results for 𝑁 = 4
(54)–(56) reduce to those for𝑁 = 3 under (84).

4.1.2. 𝑟 = 3. Before passing to the general case, it is helpful to
display the role of the state |2⟩ for 𝑟 = 3. Consider the state

(| 𝑖⟩ + 𝜖1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖⟩) (

󵄨
󵄨
󵄨
󵄨
𝑗⟩ + 𝜖

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑗⟩) (|𝑘⟩ + 𝜖3

󵄨
󵄨
󵄨
󵄨
󵄨
𝑘⟩) (| 𝑙⟩ + 𝜖4

󵄨
󵄨
󵄨
󵄨
󵄨
𝑙⟩) .

(88)

Now, 𝐻(3) = ̇
𝑅̂
12
(0) +

̇
𝑅̂
23
(0) +

̇
𝑅̂
34
(0), when (𝑖, 𝑗, 𝑘, 𝑙) are all

(1, 1) on proceeds as in the foregoing sections. For (𝑖, 𝑗, 𝑘, 𝑙),
respectively, 2, the state reduces (due to 2 = 2) to (with (𝑖, 𝑗, 𝑘)
each (1, 1))

(1 + 𝜖
1
) |2⟩ (

󵄨
󵄨
󵄨
󵄨
𝑗⟩ + 𝜖

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑗⟩) (|𝑘⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑘⟩) (| 𝑙⟩ + 𝜖4

󵄨
󵄨
󵄨
󵄨
󵄨
𝑙⟩) ,

(1 + 𝜖
2
) (| 𝑖⟩ + 𝜖1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖⟩) |2⟩ (|𝑘⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑘⟩) (| 𝑙⟩ + 𝜖4

󵄨
󵄨
󵄨
󵄨
󵄨
𝑙⟩) ,

(1 + 𝜖
3
) (| 𝑖⟩ + 𝜖1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖⟩) (

󵄨
󵄨
󵄨
󵄨
𝑗⟩ + 𝜖

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑗⟩) |2⟩ (| 𝑙⟩ + 𝜖4

󵄨
󵄨
󵄨
󵄨
󵄨
𝑙⟩) ,

(1 + 𝜖
4
) (| 𝑖⟩ + 𝜖1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖⟩) (

󵄨
󵄨
󵄨
󵄨
𝑗⟩ + 𝜖

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑗⟩) (|𝑘⟩ + 𝜖3

󵄨
󵄨
󵄨
󵄨
󵄨
𝑘⟩) |2⟩ .

(89)

The factors (2 for 𝜖 = 1 for each case) can be ignored. The
eigenvalues are in order

𝑚
(𝜖2)

21
+ 𝑚
(𝜖2𝜖3)

11
+ 𝑚
(𝜖3𝜖4)

11
,

𝑚
(𝜖1)

11
+ 𝑚
(𝜖2)

21
+ 𝑚
(𝜖3𝜖4)

11
,

𝑚
(𝜖1𝜖2)

11
+ 𝑚
(𝜖2)

12
+ 𝑚
(𝜖3)

21
,

𝑚
(𝜖1𝜖2)

11
+ 𝑚
(𝜖2𝜖3)

11
+ 𝑚
(𝜖3)

12
.

(90)
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For multiple Index 2, one can have

(𝑖, 𝑗, 𝑘, 𝑙) = (2, 2, 𝑘, 𝑙) , (2, 𝑗, 2, 𝑙) , (2, 𝑗, 𝑘, 2) ,

(𝑖, 2, 2, 𝑙) , (𝑖, 2, 𝑘, 2) , (𝑖, 𝑗, 2, 2) , (2, 2, 2, 𝑙) ,

(2, 2, 𝑘, 2) , (2, 𝑗, 2, 2) , (𝑖, 2, 2, 2) ,

(2, 2, 2, 2) .

(91)

The corresponding states, eigenvalues, and multiplicities are
easily written down factorizing out more and more 𝜖’s. For
example, for (𝑖, 𝑗, 𝑘, 𝑙) = (2, 2, 𝑘, 𝑙), one has

(1 + 𝜖
1
) (1 + 𝜖

2
) |2⟩ |2⟩ (|𝑘⟩ + 𝜖3

󵄨
󵄨
󵄨
󵄨
󵄨
𝑘⟩) (| 𝑙⟩ + 𝜖4

󵄨
󵄨
󵄨
󵄨
󵄨
𝑙⟩) (92)

with eigenvalue

𝑚
22
+ 𝑚
(𝜖3)

21
+ 𝑚
(𝜖3𝜖4)

11
. (93)

One ends with

𝐻
(3)
| 2222⟩ = 3𝑚22 |

2222⟩ . (94)

4.1.3. 𝑟 > 3. The situation is analogous for all 𝑟, with ever
increasing possibilities and subcases as 𝑟 increases. We do
not intend to track down such proliferations systematically.
Let us, however, briefly indicate some essential features. Now,
𝐻
(𝑟)
=
̇
𝑅̂
12
(0) + ⋅ ⋅ ⋅ +

̇
𝑅̂
𝑟,𝑟+1
(0). One, correspondingly, starts

with base states

(
󵄨
󵄨
󵄨
󵄨
𝑖
1
⟩ + 𝜖
1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
1
⟩) (
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩ + 𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩) ⋅ ⋅ ⋅ (

󵄨
󵄨
󵄨
󵄨
𝑖
𝑟+1
⟩ + 𝜖
𝑟+1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
𝑟+1
⟩) .

(95)

When each (𝑖, 𝑖) is (1, 1), |2⟩ being absent, one proceeds as in
Section 2. The multiplicity of |2⟩ can now be (when present)

(0, 1, 2, . . . , 𝑟 + 1) . (96)

The number of possibilities (generalizing results as (92)) for
the subsets is, respectively,

(
𝑟 + 1

0
) , (
𝑟 + 1

1
) , (
𝑟 + 1

2
) , . . . , (

𝑟 + 1

𝑟
) , (
𝑟 + 1

𝑟 + 1
) . (97)

One ends with

𝐻
(𝑟)
| 22 ⋅ ⋅ ⋅ 2⟩ = 𝑟𝑚22 |

22 ⋅ ⋅ ⋅ 2⟩ . (98)

4.2. CBC. The Index 2 (2) again plays a special role concern-
ing CBC for 𝑁 = 3. For states involving only (1, 1), one
proceeds exactly as for 𝑁 = 2 (Section 2). But |2⟩ now leads
to additional possibilities as shown below.

4.2.1. 𝑟 = 1. Apart from

𝐻
(1)
(|11⟩ ±

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) = 𝑚

(±)

11
(|11⟩ ±

󵄨
󵄨
󵄨
󵄨
󵄨
11⟩) , (99)

one now has also

𝐻
(1)
| 22⟩ = 𝑚22 |

22⟩ . (100)

4.2.2. 𝑟 = 2. Apart from periodic states (corresponding to
(39))

𝐻
(2)
(|111⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
111⟩) = (𝑚

(+)

11
+ 𝑚
(−)

11
) (|111⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
111⟩) ,

𝐻
(2)
(

󵄨
󵄨
󵄨
󵄨
󵄨
111⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
111⟩) = (𝑚

(+)

11
+ 𝑚
(−)

11
) (

󵄨
󵄨
󵄨
󵄨
󵄨
111⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
111⟩) ,

(101)

one now has also

𝐻
(2)
(|212⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
212⟩) = (𝑚

(𝜖)

21
+ 𝑚
(𝜖)

12
) (|212⟩ + 𝜖

󵄨
󵄨
󵄨
󵄨
󵄨
212⟩) ,

𝐻
(2)
| 222⟩ = 2𝑚22 |

222⟩ .

(102)

4.2.3. 𝑟 > 2. In (43), the sum on the left eliminates the (NP)
part of (42). For states of the class (as compared to (42))

| 2⟩ (
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩ + 𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩) ⋅ ⋅ ⋅ (

󵄨
󵄨
󵄨
󵄨
𝑖
𝑟
⟩ + 𝜖
𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
𝑟
⟩) |2⟩ , (103)

a sum like (43) is no longer necessary. One has a periodic state
with

𝐻
(𝑟)
(|2⟩ (

󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩ + 𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩) ⋅ ⋅ ⋅ (

󵄨
󵄨
󵄨
󵄨
𝑖
𝑟
⟩ + 𝜖
𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
𝑟
⟩) |2⟩)

= (𝑚
(𝜖2)

2𝑖2
+ 𝑚
(𝜖2𝜖3)

𝑖2𝑖3
+ ⋅ ⋅ ⋅ + 𝑚

(𝜖𝑟−1𝜖𝑟)

𝑖𝑟−1𝑖𝑟
+ 𝑚
(𝜖𝑟)

𝑖𝑟2
)

× (|2⟩ (
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩ + 𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
2
⟩) ⋅ ⋅ ⋅ (

󵄨
󵄨
󵄨
󵄨
𝑖
𝑟
⟩ + 𝜖
𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
𝑖
𝑟
⟩) |2⟩)

(104)

if (𝑖
2
, . . . , 𝑖

𝑟
) are each (1, 1). If one or more of them are (2), the

corresponding 𝜖’s factor out as (1+𝜖) giving (for 𝜖 = +1) a set
of periodic states spanning a space of corresponding lesser
dimension. Since a sum like (43) is not here necessarily, a
problem like that analyzed for 𝑁 = 4 (see (67)–(74)) does
not arise.

5. (𝑁, 𝑟)

We are now in a position to consider the situation for𝑁 and
for any chain length 𝑟. In fact, after our detailed study of the
cases𝑁 = 2, 3, 4 in the previous sections for all 𝑟 values (𝑟 =
2, 3, . . .), no really new technic is necessary for𝑁 > 4. As the
domains of the indices labeling the states spanning the base
space increase as

𝑖 = (1, 1) , (2, 2) , . . . , (𝑛, 𝑛) (for 𝑁 = 2𝑛) ,

𝑖 = (1, 1) , (2, 2) , . . . , (𝑛 − 1, 𝑛 − 1) , (𝑛 = 𝑛) ,

(for 𝑁 = 2𝑛 − 1) ,

(105)

the dimensions of the base space increase as𝑁𝑟+1 displaying
explicitly all eigenvalues, and each one with its specific multi-
plicity becomes prohibitive, not due to subtle new features,
but due to the sheer length of enumeration necessary. We
do not intend to meet this aspect head on. But we claim
that the essential problems have been solved in the preceding
sections. let us consider examples. For𝑁 = 6,

𝑖 = (1, 1) , (2, 2) , (3, 3) . (106)
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In constructing periodic states (for CBC), 𝑖
1
in (73) can now

be not only (1, 1, 2, 2) but also (3, 3). But the constraints (73)
remain formally the same. For𝑁 = 5,

𝑖 = (1, 1) , (2, 2) , (3 = 3) . (107)

Here, features arising for𝑁 = 4,

𝑖 = (1, 1) , (2, 2) , (108)

and or𝑁 = 3,

𝑖 = (1, 1) , (2 = 2) (109)

will coexist. But they can be analyzed systematically com-
bining the formalisms developed for 𝑁 = 4 (Section 3) and
𝑁 = 3 (Section 4). Similar statements hold for higher𝑁.

6. Higher Order ‘‘Hamiltonians’’
(Conserved Quantities)

In Section 4 of [5], higher order Hamiltonians were briefly
discussed (see also Section 1.5 of [6]). For simplicity, we
consider here only even dimensions (𝑁 = 2, 4, . . .). (For
odddimensions one obtains corresponding results by starting
from (4.20) of [5].) For even𝑁,

𝑑
𝑙

𝑑𝜃
𝑙
𝑅̂ (𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

= ∑

𝑖,𝑗,𝜖

(𝑚
(𝜖)

𝑖𝑗
)

𝑙

(𝑃
(𝜖)

𝑖𝑗
+ 𝑃
(𝜖)

𝑖𝑗
) . (110)

This crucial result is to be implemented in

𝐻
𝑙
=

𝑑
𝑙

𝑑𝜃
𝑙
log T(𝜖) (𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

. (111)

Here,𝐻
1
is our previous𝐻. Now, we set

𝐻 = 𝐻
1
+ 𝑐
1
𝐻
2
+ 𝑐
3
𝐻
3
+ ⋅ ⋅ ⋅ (112)

For 𝑙 = 2, for example, one obtains for a 𝑟-chain (as a
generalization of (11))

𝑑
2

𝑑𝜃
2
(𝑅̂
12
(𝜃) ⊗ 𝑅̂

23
(𝜃) ⊗ ⋅ ⋅ ⋅ ⊗ 𝑅̂

𝑟,𝑟+1
(𝜃))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜃=0

=
̈
𝑅̂
12
(0) ⊗ 𝐼 ⊗ ⋅ ⋅ ⋅ ⊗ 𝐼 +

̇
𝑅̂
12
(0) ⊗

̇
𝑅̂
23
(0) ⊗ ⋅ ⋅ ⋅ ⊗ 𝐼

+ ⋅ ⋅ ⋅ + 𝐼 ⊗ 𝐼 ⊗ ⋅ ⋅ ⋅ ⊗
̈
𝑅̂
𝑟,𝑟+1
(0) .

(113)

Implementing the basic result (110), one can collect together
the coefficients in a particular simple form.

Let us start with a simple example, which, however, clearly
indicates how to perform generalization. For (𝑟 = 2, 𝑙 = 2)

with 𝑎 = (𝑖, 𝑖) and so on, as compared to (23)–(29), one
obtains
𝐻
2
(|𝑎⟩ + 𝜖1 |

𝑎⟩ ) (|𝑏⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏⟩) (| 𝑐⟩ + 𝜖3 |

𝑐⟩ )

= ((𝑚
(𝜖1𝜖2)

𝑎𝑏
)

2

+ 𝑚
(𝜖1𝜖2)

𝑎𝑏
𝑚
(𝜖2𝜖3)

𝑏𝑐

+𝑚
(𝜖2𝜖3)

𝑏𝑐
𝑚
(𝜖1𝜖2)

𝑎𝑏
+ (𝑚
(𝜖2𝜖3)

𝑏𝑐
)

2

)

× (|𝑎⟩ + 𝜖1 |
𝑎⟩ ) (|𝑏⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏⟩) (| 𝑐⟩ + 𝜖3 |

𝑐⟩ )

= (𝑚
(𝜖1𝜖2)

𝑎𝑏
+ 𝑚
(𝜖2𝜖3)

𝑏𝑐
)

2

× (|𝑎⟩ + 𝜖1 |
𝑎⟩ ) (|𝑏⟩ + 𝜖2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏⟩) (| 𝑐⟩ + 𝜖3 |

𝑐⟩ ) .

(114)

The general result, derived iteratively, is with (as in (32)), for
𝑟-chain,

𝑉 = (
󵄨
󵄨
󵄨
󵄨
𝑎
1
⟩ + 𝜖
1

󵄨
󵄨
󵄨
󵄨
𝑎
1
⟩) (
󵄨
󵄨
󵄨
󵄨
𝑎
2
⟩ + 𝜖
2

󵄨
󵄨
󵄨
󵄨
𝑎
2
⟩) ⋅ ⋅ ⋅

(
󵄨
󵄨
󵄨
󵄨
𝑎
𝑟+1
⟩ + 𝜖
𝑟+1

󵄨
󵄨
󵄨
󵄨
𝑎
𝑟+1
⟩) ,

(115)

𝐻
𝑙
𝑉 = (𝑚

(𝜖1𝜖2)

𝑎1𝑎2
+ 𝑚
(𝜖2𝜖3)

𝑎2𝑎3
+ ⋅ ⋅ ⋅ + 𝑚

(𝜖𝑟𝜖𝑟+1)

𝑎𝑟𝑎𝑟+1
)

2

𝑉. (116)

This involves a systematic use of (111) and a stepwise general-
ization of (114).

We now briefly study the higher order Hamiltonians that
modify the transition matrix elements. We again concentrate
on a particular simple example. With in (110) 𝑐

𝑙
= 0(𝑙 > 2)

and 𝑟 = 2 in (115), (116),

| 𝑎𝑏𝑐⟩ =

1

2
3
((|𝑎⟩ + |𝑎⟩ ) + (|𝑎⟩ − |𝑎⟩ ))

× ((|𝑏⟩ +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏⟩) + (|𝑏⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏⟩))

× ((| 𝑐⟩ + | 𝑐⟩ ) + (| 𝑐⟩ − | 𝑐⟩ ))

(117)

expressing |𝑎𝑏𝑐⟩ as a linear combination of basis states
appearing in (115). Next, we apply (116) on the product (|𝑎⟩ +
𝜖
1
|𝑎⟩)(|𝑏⟩ + 𝜖

2
|𝑏⟩)(|𝑐⟩ + 𝜖

3
|𝑐⟩) for all (𝜖

1
, 𝜖
2
, 𝜖
3
) and collect

together terms with coefficients (𝑚(𝜖)
𝑎𝑏
+𝑚
(𝜖
󸀠
)

𝑏𝑐
). We obtain (for

terms with nonzero coefficients)
4𝐻
1 |
𝑎𝑏𝑐⟩

= (𝑚
(+)

𝑎𝑏
+ 𝑚
(+)

𝑏𝑐
) (|𝑎𝑏𝑐⟩ +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩ + |𝑎𝑏𝑐⟩ +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩)

+ (𝑚
(+)

𝑎𝑏
+ 𝑚
(−)

𝑏𝑐
) (|𝑎𝑏𝑐⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩ − |𝑎𝑏𝑐⟩ +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩)

+ (𝑚
(−)

𝑎𝑏
+ 𝑚
(+)

𝑏𝑐
) (|𝑎𝑏𝑐⟩ +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩ − |𝑎𝑏𝑐⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩)

+ (𝑚
(−)

𝑎𝑏
+ 𝑚
(−)

𝑏𝑐
) (|𝑎𝑏𝑐⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩ + |𝑎𝑏𝑐⟩ −

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩)

(118)
or

𝐻
1 |
𝑎𝑏𝑐⟩ =

1

2

((𝑚
(+)

𝑎𝑏
+ 𝑚
(−)

𝑎𝑏
+ 𝑚
(+)

𝑏𝑐
+ 𝑚
(−)

𝑏𝑐
) |𝑎𝑏𝑐⟩

+ (𝑚
(+)

𝑎𝑏
+ 𝑚
(−)

𝑎𝑏
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩

+ (𝑚
(+)

𝑏𝑐
− 𝑚
(−)

𝑏𝑐
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩ ) .

(119)
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Note that, for 𝐻
1
, the coefficient of |𝑎𝑏𝑐⟩ is zero on the

right. We now compute the action of 𝐻
2
on |𝑎𝑏𝑐⟩. Using the

decomposition (117) and (116) with 𝑙 = 2, one obtains on
carefully grouping terms the following result:

𝐻
2 |
𝑎𝑏𝑐⟩ = 𝑓0 |

𝑎𝑏𝑐⟩ + 𝑓1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩ + 𝑓

2 |
𝑎𝑏𝑐⟩ + 𝑓3

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎𝑏𝑐⟩

(120)

with

4𝑓
0
= ((𝑚

(+)

𝑎𝑏
+ 𝑚
(+)

𝑏𝑐
)

2

+ (𝑚
(+)

𝑎𝑏
+ 𝑚
(−)

𝑏𝑐
)

2

+(𝑚
(−)

𝑎𝑏
+ 𝑚
(+)

𝑏𝑐
)

2

+ (𝑚
(−)

𝑎𝑏
+ 𝑚
(−)

𝑏𝑐
)

2

) ,

2𝑓
1
= (𝑚
(+)

𝑎𝑏
+ 𝑚
(−)

𝑎𝑏
+ 𝑚
(+)

𝑏𝑐
+ 𝑚
(−)

𝑏𝑐
) (𝑚
(+)

𝑏𝑐
− 𝑚
(−)

𝑏𝑐
) ,

2𝑓
2
= (𝑚
(+)

𝑎𝑏
− 𝑚
(−)

𝑎𝑏
) (𝑚
(+)

𝑏𝑐
− 𝑚
(−)

𝑏𝑐
) ,

2𝑓
3
= (𝑚
(+)

𝑎𝑏
− 𝑚
(−)

𝑎𝑏
) (𝑚
(+)

𝑎𝑏
+ 𝑚
(−)

𝑎𝑏
+ 𝑚
(+)

𝑏𝑐
+ 𝑚
(−)

𝑏𝑐
) .

(121)

Note that, for 𝑙 = 2, the coefficient of |𝑎𝑏𝑐⟩ is no longer zero
(as for 𝑙 = 1) for general values of parameters.

Decomposing |𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑟
𝑎
𝑟+1
⟩ as in (117) to give factors

(|𝑎
𝑘
⟩ + 𝜖

𝑘
|𝑎
𝑘
⟩) (𝑘 = 1, 2, . . . , 𝑟) which appear in eigen-

functions (115), implementing the action of 𝐻
𝑙
(from (116))

and then again collecting together coefficients of states
generalizing the right hand members of (120), one obtains
transition matrix elements for all (𝑟, 𝑙). We will not try to
present such results explicitly. The foregoing ones clearly
indicate the successive steps. However, some general features
are worth noting. When 𝑟 increases, the action of (112) on
basis states induced of simultaneous flips between different
closely or well separately sites. The corresponding transition
matrix elements can be obtained systematically for the full
action of (112) if so desired. Short and long range correlations
can thus be extracted and explicitly formulated.

7. Discussions

The central feature of our class of braid matrices and
associated Hamiltonians is the number of free parameters
(of the order of 𝑁2) coexisting with simple symmetries
permitting systematic, explicit construction of eigenstates
and eigenvalues for all dimensions and chain lengths (𝑁, 𝑟).

There exists a rich class of multidimensional, multipa-
rameter Yang-Baxter (and hence braid) matrices [7, 8], where
progress has been made in the construction of eigenstates
of transfer matrices [9]. (See the discussion added in [5].)
For this class, however, the parameters enter via multiple
rapidities (in contrast to our single 𝜃), making the situation
basically different. For our case the symmetries leading to
complete, explicit solutions restrict the properties of the
models. But the solutions show how one can pass from one
sector to another by varying the relative magnitudes of the
parameters.

The simplest case,𝑁 = 2 becomes trivial for𝑚(+)
11
= 𝑚
(−)

11
.

For 𝑚(+)
11
> 𝑚
(−)

11
, the highest and the lowest eigenvalues

(for chain length 𝑟) are, respectively, 𝑟𝑚(+)
11

and 𝑟𝑚(−)
11
. The

situation is reversed for 𝑚(+)
11
< 𝑚
(−)

11
. The relative spacing

of the levels depend on 𝑚(+)
11
− 𝑚
(−)

11
. It is also clearly seen

how the highest and lowest levels 𝑟𝑚(±)
11

are excluded for
closed chains (as noted below (41)). For 𝑁 > 2, the
number of parameters, increasing as𝑁2, leads to elaborating
possibilities for classifying accessible sectors. For𝑁 = 4, one
already has 8 parameters and the general expression for the
eigenvalues for chain length 𝑟 (from (61)) is (𝑚(𝜖1𝜖2)

𝑖1𝑖2
+𝑚
(𝜖2𝜖3)

𝑖2𝑖3
+

⋅ ⋅ ⋅+𝑚
(𝜖𝑟𝜖𝑟+1)

𝑖𝑟𝑖𝑟+1
), where each 𝑖 can be (1, 1, 2, 2) and each 𝜖 can be

(+, −) independently. This and its direct generalization for all
𝑁 display the possibilities concerning the number of sectors
and crossovers according to 𝑚’s chosen. We cannot propose
physical significances corresponding to such multisector
patterns. One may contrast it, however, with the domains of
the single parameter of the 6-vertexmodel and the associated
(antiferromagnetic, critical, and ferromagnetic) regimes [10,
11]. We have presented a thorough study of eigenstates and
eigenvalues. But other directions remain to be explored.
We intend to study elsewhere correlations in our models.
It would be interesting to compare the situation with those
encountered for famous familiar cases [12].

It would be interesting to study higher order conserved
magnitudes obtained through higher order 𝜃-derivatives of
the braid matrix [6]. We intend to generalize in another
direction, the nested sequence of projectors (2) that can be
generalized by including parameters. A 4 × 4 example can be
found in the paper where nested sequences were introduced
[13]. It appeared in the context of U

𝑞
(
̂
𝑠𝑙
2
) (Section 5, [13]).

We aim to present a systematic generalization of higher
dimensions and corresponding Baxterized braid matrices.

Finally, we briefly point out that theHamiltonians studied
here can be carried over without change for a class of unitary
braid matrices presented in the context of entanglement [14].
It was pointed out [3, 14] that for all 𝑚’s imaginary (𝑚(𝜖)

𝑗𝑘
→

i𝑚(𝜖)
𝑗𝑘
, with𝑚’s real on the right) 𝑅̂(𝜃) of (4) becomes unitary.

A further overall factor −i gives the same ̇𝑅̂(0) as for real𝑚’s.
Hence, the result, in [14], another class of unitary 𝑅̂(𝜃), was
constructed. Namely,

𝑅̂
±1
(𝜃) =

1

√
1 + tanh2𝜃

(𝐼 ⊗ 𝐼 ± tanh 𝜃𝐾 ⊗ 𝐽) , (122)

where

𝐽 =

𝑛

∑

𝑖=1

((−1)
𝑖
(𝑖𝑖) + (−1)

𝑖
(𝑖𝑖)) , 𝐾 =

𝑛

∑

𝑖=1

((𝑖𝑖) + (𝑖𝑖)) .

(123)

Now,

̇
𝑅̂ (0) = 𝐾 ⊗ 𝐽 (124)

contains no parameters. The Hamiltonians can be studied
quite simply.
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