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We classify the anti-involutions of the superalgebra of quantum pseudodifferential operators on the super circle 𝑆1|1 preserving
the principal gradation, producing in this way a family of Lie subalgebras minus fixed by these anti-involutions. We classify the
irreducible quasifinite highest weight representations of the central extension of these Lie subalgebras.

1. Introduction

The W-infinity algebras naturally arise in various physical
theories, such as conformal field theory and the theory of
quantum Hall effect (see [1, 2] and references therein). The
𝑊
1+∞

algebra, which is the central extension of the Lie
algebra D of differential operators on the circle, is the most
fundamental among these algebras.

The difficulty in understanding the representation theory
of a Lie algebra of this kind is that although 𝑊

1+∞
admits

a natural Z-gradation, each of the graded subspaces is
still infinite dimensional in contrast to the more familiar
cases such as the Virasoro algebra and Kac-Moody algebras.
Therefore, the study of the highest weight modules which
satisfy the quasifiniteness condition, that its graded subspaces
have finite dimension, becomes a nontrivial problem. The
systematic study of quasifinite highest weight modules of
𝑊
1+∞

was initiated by Kac and Radul in [2] and further
studied in [1, 3–5] and many others.

By analyzing for which parabolic subalgebras of 𝑊
1+∞

the corresponding generalized Verma modules are quasifi-
nite, Kac and Radul [2] gave a characterization of quasifinite
highest weight𝑊

1+∞
-modules in terms of certain generating

function of highest weights and these modules where con-
structed in terms of irreducible highest weight representa-
tions of the Lie algebra of infinite matrices.

The classification and construction of quasifinitemodules
for the matrix version (denoted by𝑊𝑁

1+∞
), super analog, 𝑞-

analog, and super 𝑞-analog of𝑊
1+∞

, were developed in [1, 2,
4, 6], respectively.

The Lie algebra𝑊𝑁
1+∞

, recently studied in [4], correspond
to the central extension of the algebra of matrix differential
operators on the circle.The study of the representation theory
of some interesting subalgebras of𝑊𝑁

1+∞
, and its 𝑞-analog and

super version [1], is not complete.
Another important example is the Lie algebra𝑊

∞
which

is a particular case of a family of subalgebras𝑊
∞,𝑝

of𝑊
1+∞

,
where 𝑊

∞,𝑝
(𝑝 ∈ C[𝑥]) is the central extension of the Lie

algebraD𝑝(𝑡𝜕
𝑡
) of differential operators on the circle that are

a multiple of 𝑝(𝑡𝜕
𝑡
).

This Lie algebra was studied by Kac and Liberati in [3];
observe that𝑊

∞
= 𝑊
∞,𝑥

. Following the ideas of Kac-Radul
[2], in [3] they obtained the classification of the irreducible
quasifinite highest weight modules over 𝑊

∞,𝑝
. They also

developed a general theory of quasifinite highest weight
modules over Z-graded Lie algebras. These general results
were extended to the super version in [6].

A natural source of subalgebras comes from the subalge-
bras minus fixed by an anti-involution of the corresponding
associative algebra, which preserve the gradation. In [7],
Bloch finds an anti-involution of𝑊

∞
and he shows a relation

between the representations of the corresponding subalgebra
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Table 1

𝑊
1+∞

𝑊
∞,𝑝

𝑊
𝑁

1+∞

super
𝑊
1+∞

q-
𝑊
1+∞

super
q-𝑊
1+∞

Algebra [2] [3, 11] [4] [1] [2] [6]

Anti-
involution [5]

[10]
(particular
case in [12])

Partial
results in
[13] and
others

[8] [9] Present
work

and certain values of the Riemann zeta function. In several
and recent papers ([5, 8–10]) the authors obtained the classi-
fication of the anti-involutions of certain algebras and then
they characterize the irreducible quasifinite highest weight
modules of the corresponding subalgebras minus fixed by
these anti-involutions, obtaining orthogonal and symplectic
subalgebras of𝑊

1+∞
,𝑊
∞,𝑝

, and so forth.
The main goal of this work is to present a 𝑞-analog of

Cheng-Wang [8] or a super-analog of Boyallian-Liberati [9];
namely, we classify the anti-involutions of the superalgebra
𝑞-SD that preserve the gradation, where 𝑞-SD is the
superalgebra of regular pseudodifferential operators on the
super circle 𝑆1|1. Then we present the classification of the
irreducible quasifinite highest weight modules over the Lie
subalgebras minus fixed by these anti-involutions.

Table 1 describes the map on the classification of irre-
ducible quasifinite highest weight modules over 𝑊

1+∞
, the

matrix version, super analog and 𝑞-analog, and for the
subalgebras constructed from the anti-involutions, showing
the place of the present results in this long-term program.

The work is organized as follows. In Section 2, we classify
the anti-involutions of 𝑞-SD that preserve the gradation,
where 𝑞-SD is the superalgebra of regular pseudodifferential
operators on the super circle 𝑆1|1. In Section 3, we recall
the general results on quasifinite modules over a graded
Lie superalgebra and we present the classification of the
irreducible quasifinite highest weight modules over the Lie
subalgebras minus fixed by the anti-involutions obtained in
Section 2.

2. Anti-Involution of SSas
𝑞

Preserving Its
Principal Gradation

Let 𝑞 ∈ C× with |𝑞| ̸= 1. Now, 𝑇
𝑞
denotes the following

operator on C[𝑧−1, 𝑧]:

𝑇
𝑞
(𝑓 (𝑧)) = 𝑓 (𝑞𝑧) . (1)

We denote bySas
𝑞
the associative algebra of all pseudodiffer-

ential operators, that is, the operators onC[𝑧−1, 𝑧] of the form

𝐸 = ∑

𝑘∈Z

𝑒
𝑘
(𝑧) 𝑇
𝑘

𝑞
, where 𝑒

𝑖
(𝑧) ∈ C [𝑧

−1
, 𝑧] (sum is finite) .

(2)

Any pseudodifferential operator can be written as linear
combinations of elements of the form 𝑧

𝑛
𝑓(𝑇
𝑞
), where 𝑓 ∈

C[𝑤−1, 𝑤] and 𝑛 ∈ Z. The product inSas
𝑞
is given by

𝑧
𝑛
𝑓 (𝑇
𝑞
) ⋅ 𝑧
𝑚
𝑔 (𝑇
𝑞
) = 𝑧
𝑛+𝑚
𝑓 (𝑞
𝑚
𝑇
𝑞
) 𝑔 (𝑇

𝑞
) . (3)

Letting 𝑤𝑡𝑧𝑛𝑓(𝑇
𝑞
) = 𝑛, we define the principal Z-gradation

ofSas
𝑞
.

Moreover, we denote by 𝑀(1|1) the set of 2 × 2 super-
matrices with coefficients in C, viewed as the associative
superalgebra of linear transformations of the complex (1|1)-
dimensional superspaceC(1|1). And we denote by 𝐸

𝑖𝑗
the 2×2

matrix with 1 in the 𝑖𝑗-place and 0 everywhere else. Declaring
𝐸
11
, 𝐸
22

even and 𝐸
12
, 𝐸
21

odd elements, we endow𝑀(1|1)
with a Z

2
-gradation where |𝑀| denotes the parity of the

homogeneous element𝑀 ∈ 𝑀(1|1).
We denote by SSas

𝑞
the associative superalgebra of 2 × 2

supermatrices with entries inSas
𝑞
, namely,

SS
as
𝑞
= S

as
𝑞
⨂𝑀(1|1) , (4)

and the product is given by the usual matrix multiplication.
LetSS

𝑞
denote the Lie superalgebra obtained fromSSas

𝑞
by

taking the usual bracket.
Now, we introduce the linear map Str

0
: SS
𝑞
→ C as

Str
0
(∑

𝑖𝑗

𝑓
𝑖𝑗
(𝑇
𝑞
) 𝐸
𝑖𝑗
) = (𝑓

11
(𝑇
𝑞
))
0
− (𝑓
22
(𝑇
𝑞
))
0
, (5)

where (𝑓(𝑇
𝑞
))
0
= 𝑓
0
if 𝑓(𝑇

𝑞
) = ∑

𝑘∈Z 𝑓𝑘𝑇
𝑘

𝑞
, and we define the

2-cocycle 𝜓 in SS
𝑞
by

𝜓 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑗
, 𝑧
𝑚
𝑔 (𝑇
𝑞
) 𝐸
𝑘𝑙
)

=

{{

{{

{

−(−1)
𝑖

𝑛−1

∑

𝑟=0

(𝑓 (𝑞
−𝑛+𝑟
𝑇
𝑞
) 𝑔 (𝑞

𝑟
𝑇
𝑞
))
0
𝛿
𝑗𝑘
𝛿
𝑖𝑙
, if 𝑛 = −𝑚 > 0,

0, otherwise.
(6)

Then we denote by ŜS
𝑞
the one-dimensional central exten-

sion of SS
𝑞
with central charge 𝐶 corresponding to the 2-

cocycle 𝜓, namely, ŜS
𝑞
= SS

𝑞
⨁C𝐶, where the bracket is

given by

[𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑗
, 𝑧
𝑚
𝑔 (𝑇
𝑞
) 𝐸
𝑘𝑙
]

= 𝑧
𝑛+𝑚
(𝑓 (𝑞
𝑚
𝑇
𝑞
) 𝑔 (𝑇

𝑞
) 𝛿
𝑗𝑘
𝐸
𝑖𝑙
− (−1)

|𝐸𝑖𝑗||𝐸𝑘𝑙|

× 𝑓 (𝑇
𝑞
) 𝑔 (𝑞

𝑛
𝑇
𝑞
) 𝛿
𝑙𝑖
𝐸
𝑘𝑗
)

+ 𝜓 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑗
, 𝑧
𝑚
𝑔 (𝑇
𝑞
) 𝐸
𝑘𝑙
) 𝐶.

(7)

Letting 𝑤𝑡(𝑧𝑛𝑓(𝑇
𝑞
)𝐸
12
+ 𝑧
𝑛+1
𝑔(𝑇
𝑞
)𝐸
21
) = 𝑛 + 1/2, 𝑤𝑡𝑧𝑛

𝑓(𝑇
𝑞
)𝐸
𝑖𝑖
= 𝑛 and 𝑤𝑡 𝐶 = 0, where 𝑖 = 1, 2, 𝑛 ∈ Z, defines

the principal (1/2)Z-gradation of SSas
𝑞
, SS

𝑞
and ŜS

𝑞
.



ISRNMathematical Physics 3

This equips SSas
𝑞
, SS
𝑞
, and ŜS

𝑞
with (1/2)Z-gradations

compatible with their Z
2
-gradation; thus,

ŜS
𝑞
= (ŜS

𝑞
)
0
⨁(ŜS

𝑞
)
1
,

(ŜS
𝑞
)
0
=⨁

𝑛∈Z

(ŜS
𝑞
)
𝑛
, (ŜS

𝑞
)
1
=⨁

𝑛∈Z

(ŜS
𝑞
)
𝑛+1/2

,

(8)

where

(ŜS
𝑞
)
𝑛

= {𝑧
𝑛
𝑓
1
(𝑇
𝑞
) 𝐸
11
+ 𝑧
𝑛
𝑓
2
(𝑇
𝑞
) 𝐸
22
:

𝑓
𝑖
∈ C [𝑤

−1
, 𝑤] , 𝑖 = 1, 2} + 𝛿

𝑛,0
C𝐶,

(ŜS
𝑞
)
𝑛+1/2

= {𝑧
𝑛
𝑓
1
(𝑇
𝑞
) 𝐸
12
+ 𝑧
𝑛+1
𝑓
2
(𝑇
𝑞
) 𝐸
21
: 𝑓
𝑖
∈ C [𝑤

−1
, 𝑤] ,

𝑖 = 1, 2} .

(9)

An anti-involution 𝜎 of SSas
𝑞

is an involutive anti-
automorphism of SSas

𝑞
; that is, 𝜎 : SSas

𝑞
→ SSas

𝑞

with 𝜎2 = 𝐼𝑑, 𝜎(𝑏𝐴 + 𝐵) = 𝑏𝜎(𝐴) + 𝜎(𝐵) and 𝜎(𝐴𝐵) =
(−1)
|𝐴||𝐵|

𝜎(𝐵)𝜎(𝐴), where 𝐴, 𝐵 ∈ SSas
𝑞
, and 𝑏 ∈ C.

The main result of this section is the following theorem
with the classification of all anti-involutions of SSas

𝑞
that

preserve the principal (1/2)Z-gradation.

Theorem1. Any anti-involution𝜎 ofSSas
𝑞
which preserves the

principal gradation is one of the following (𝑓 ∈ C[𝑤−1, 𝑤], 𝑛 ∈
Z):

(a)

𝜎
𝑎,𝑏,𝑐,𝑘

(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
)

= 𝑎
𝑛
𝑞
(𝑛−1)𝑛𝑘

𝑧
𝑛
𝑓 (𝑏𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
2𝑛𝑘

𝑞
𝐸
11
,

𝜎
𝑎,𝑏,𝑐,𝑘

(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
22
)

= 𝑎
𝑛
𝑞
(𝑛−2)𝑛𝑘

𝑧
𝑛
𝑓 (𝑏𝑞
−𝑛+1

𝑇
−1

𝑞
) 𝑇
2𝑛𝑘

𝑞
𝐸
22
,

𝜎
𝑎,𝑏,𝑐,𝑘

(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
12
)

= 𝑎
𝑛
𝑐𝑞
𝑛
2
𝑘
𝑧
𝑛+1
𝑓 (𝑏𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
(2𝑛+1)𝑘

𝑞
𝐸
21
,

𝜎
𝑎,𝑏,𝑐,𝑘

(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
21
)

= −𝑎
𝑛
𝑐
−1
𝑞
((𝑛−1)

2
−𝑛)𝑘
𝑧
𝑛−1
𝑓 (𝑏𝑞
−𝑛+1

𝑇
−1

𝑞
) 𝑇
(2𝑛−1)𝑘

𝑞
𝐸
12
,

(10)

with 𝑎, 𝑏, 𝑐 ∈ C×, 𝑘 ∈ Z such that −𝑎𝑏𝑘 = 𝑞𝑘;

(b)

𝜎
𝑎,𝑏,𝑐,𝑘,𝑙

(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
)

= 𝑎
𝑛
𝑞
(𝑛(𝑛−1)/2)𝑘

𝑧
𝑛
𝑓 (𝑏𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘

𝑞
𝐸
22
,

𝜎
𝑎,𝑏,𝑐,𝑘,𝑙

(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
22
)

= 𝑎
𝑛
𝑞
(𝑛(𝑛−1)/2)𝑘+𝑛𝑙

𝑧
𝑛
𝑓 (𝑏𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘

𝑞
𝐸
11
,

𝜎
𝑎,𝑏,𝑐,𝑘,𝑙

(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
12
)

= 𝑎
𝑛
𝑐𝑞
(𝑛(𝑛−1)/2)𝑘+𝑛𝑙

𝑧
𝑛
𝑓 (𝑏𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘+𝑙

𝑞
𝐸
12
,

𝜎
𝑎,𝑏,𝑐,𝑘,𝑙

(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
21
)

= −𝑎
𝑛
𝑐
−1
𝑞
(𝑛(𝑛−1)/2)𝑘

𝑧
𝑛
𝑓 (𝑏𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘−𝑙

𝑞
𝐸
21
,

(11)

with 𝑎, 𝑏, 𝑐 ∈ C×, 𝑘, 𝑙 ∈ Z such that 𝑎2𝑏𝑘 = 𝑞𝑘−𝑙 and
𝑏
𝑙
𝑐
2
= 1.

We divide the proof of Theorem 1 into several results.
Let 𝜎 be an anti-involution of SSas

𝑞
which preserves the

principal gradation; then, 𝜎 defines linear maps 𝜎
𝑖,𝑗
: Sas
𝑞
→

Sas
𝑞
preserving the principal gradation

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑖
) = 𝜎
𝑖,1
(𝑧
𝑛
𝑓 (𝑇
𝑞
)) 𝐸
11
+ 𝜎
𝑖,2
(𝑧
𝑛
𝑓 (𝑇
𝑞
)) 𝐸
22
.

(12)

Lemma 2. Let 𝜎 be an anti-involution of SS𝑎𝑠
𝑞

preserving
the principal gradation. Then 𝜎 satisfies one of the following
conditions:

(a)

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
) = 𝜎
1,1
(𝑧
𝑛
𝑓 (𝑇
𝑞
)) 𝐸
11
,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
22
) = 𝜎
2,2
(𝑧
𝑛
𝑓 (𝑇
𝑞
)) 𝐸
22
,

𝜎 (𝐸
12
) = 𝑧𝑓

21
(𝑇
𝑞
) 𝐸
21
,

𝜎 (𝐸
21
) = 𝑧
−1
𝑔
12
(𝑇
𝑞
) 𝐸
12
;

(13)

(b)

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
) = 𝜎
1,2
(𝑧
𝑛
𝑓 (𝑇
𝑞
)) 𝐸
22
,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
22
) = 𝜎
2,1
(𝑧
𝑛
𝑓 (𝑇
𝑞
)) 𝐸
11
,

𝜎 (𝐸
12
) = 𝑓
12
(𝑇
𝑞
) 𝐸
12
,

𝜎 (𝐸
21
) = 𝑔
21
(𝑇
𝑞
) 𝐸
21
.

(14)

For some 𝑓
𝑖𝑗
, 𝑔
𝑖𝑗
∈ C[𝑤−1, 𝑤], where 1 ⩽ 𝑖, 𝑗 ⩽ 2 and 𝑖 ̸= 𝑗.

Proof. Since 𝜎 preserves the principal gradation, we have that

𝜎 (𝐸
12
) = 𝑓
12
(𝑇
𝑞
) 𝐸
12
+ 𝑧𝑓
21
(𝑇
𝑞
) 𝐸
21
,

𝜎 (𝐸
21
) = 𝑧
−1
𝑔
12
(𝑇
𝑞
) 𝐸
12
+ 𝑔
21
(𝑇
𝑞
) 𝐸
21
,

(15)

for some 𝑓
𝑖𝑗
, 𝑔
𝑖𝑗
∈ C[𝑤−1, 𝑤], with 1 ⩽ 𝑖, 𝑗 ⩽ 2 and 𝑖 ̸= 𝑗.
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Then, since 0 = 𝜎(𝑧𝑛𝑓(𝑇
𝑞
)𝐸
11
⋅ 𝑧
𝑚
𝑔(𝑇
𝑞
)𝐸
22
) = 𝜎(𝑧

𝑚
𝑔(𝑇
𝑞
)

𝐸
22
)𝜎(𝑧
𝑛
𝑓(𝑇
𝑞
)𝐸
11
), we have two possibilities

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
) = 𝜎
1,1
(𝑧
𝑛
𝑓 (𝑇
𝑞
)) 𝐸
11
,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
22
) = 𝜎
2,2
(𝑧
𝑛
𝑓 (𝑇
𝑞
)) 𝐸
22
,

(16)

or

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
) = 𝜎
1,2
(𝑧
𝑛
𝑓 (𝑇
𝑞
)) 𝐸
22
,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
22
) = 𝜎
2,1
(𝑧
𝑛
𝑓 (𝑇
𝑞
)) 𝐸
11
.

(17)

Moreover, since 0 = 𝜎(𝐸2
𝑖𝑗
) = −𝜎(𝐸

𝑖𝑗
)
2, for 1 ⩽ 𝑖, 𝑗 ⩽ 2, 𝑖 ̸= 𝑗,

from (15) we have that

𝜎 (𝐸
12
) = 𝑓
12
(𝑇
𝑞
) 𝐸
12

or 𝜎 (𝐸
12
) = 𝑧𝑓

21
(𝑇
𝑞
) 𝐸
21
,

𝜎 (𝐸
21
) = 𝑔
21
(𝑇
𝑞
) 𝐸
21

or 𝜎 (𝐸
21
) = 𝑧
−1
𝑔
12
(𝑇
𝑞
) 𝐸
12
.

(18)

Finally, since

𝜎 (𝐸
11
) = −𝜎 (𝐸

21
) 𝜎 (𝐸

12
) , (19)

the result follows from (16), (17), (18), and (19).

Corollary 3. Let 𝜎 be an anti-involution of SSas
𝑞

which
preserves the principal gradation. Then one has the following.

(a) If 𝜎 satisfies Lemma 2(a), then 𝜎
𝑖,𝑗
(1) = 𝛿

𝑖,𝑗
, for all 1 ⩽

𝑖, 𝑗 ⩽ 2.
(b) If 𝜎 satisfies Lemma 2(b), then 𝜎

𝑖,𝑗
(1) = 1 − 𝛿

𝑖,𝑗
, for all

1 ⩽ 𝑖, 𝑗 ⩽ 2.

Proof. It is clear that 𝜎(𝐼𝑑) = 𝐼𝑑; then the result follows from
Lemma 2.

Proposition 4. Let 𝜎 be an anti-involution of SS𝑎𝑠
𝑞

which
preserves the principal gradation and let one assume that
it satisfies Lemma 2(a). Then 𝜎 is one of the 𝜎

𝑎,𝑏,𝑐,𝑘
from

Theorem 1(a).

In order to prove Proposition 4wewill need the following
result.

Lemma 5. Let 𝜎 be as in Proposition 4; then,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑖
) = 𝑎
𝑛

𝑖
𝑞
(𝑛(𝑛−1)/2)𝑘𝑖𝑧

𝑛
𝑓 (𝑏
𝑖
𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘𝑖

𝑞
𝐸
𝑖𝑖
,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
12
)

= 𝑎
𝑛

1
𝑐𝑞
(𝑛(𝑛−1)/2)𝑘1+𝑛𝑘𝑧

𝑛+1
𝑓 (𝑏
1
𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘1+𝑘

𝑞
𝐸
21
,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
21
)

= −𝑎
2
𝑐
−1
𝑞
(𝑛𝑘2/2−𝑘)(𝑛−1)𝑧

𝑛−1
𝑓 (𝑏
2
𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘2−𝑘

𝑞
𝐸
12
,

(20)

where 𝑎
𝑖
, 𝑏
𝑖
, 𝑐 ∈ C×, 𝑘

𝑖
, 𝑘 ∈ Z such that 𝑎2

𝑖
𝑏
𝑘𝑖

𝑖
= 𝑞
𝑘𝑖 , with 𝑖 =

1, 2.

Proof. It is easy to check that 𝜎
𝑖,𝑖
is a anti-involution of Sas

𝑞

with 𝑖 = 1, 2; then, from Section 3 in [9] and hypothesis, we
obtain that

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑖
) = 𝑎
𝑛

𝑖
𝑞
(𝑛(𝑛−1)/2)𝑘𝑖𝑧

𝑛
𝑓 (𝑏
𝑖
𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘𝑖

𝑞
𝐸
𝑖𝑖
,

(21)

with 𝑘
𝑖
∈ Z, 𝑎

𝑖
, 𝑏
𝑖
∈ C× such that 𝑎2

𝑖
𝑏
𝑘𝑖

𝑖
= 𝑞
𝑘𝑖 , 𝑖 = 1, 2. Besides,

from Corollary 3(a) and hypothesis, we have that

𝐸
11
= −𝜎 (𝐸

21
) 𝜎 (𝐸

12
) = −𝑔

12
(𝑞𝑇
𝑞
) 𝑓
21
(𝑇
𝑞
) 𝐸
11
. (22)

Therefore 𝑓
21
(𝑇
𝑞
) = 𝑐𝑇

𝑘

𝑞
and 𝑔

12
(𝑇
𝑞
) = −𝑐

−1
𝑞
𝑘
𝑇
−𝑘

𝑞
with 𝑐 ∈

C×, 𝑘 ∈ Z; then,

𝜎 (𝐸
12
) = 𝑐𝑧𝑇

𝑘

𝑞
𝐸
21
,

𝜎 (𝐸
21
) = −𝑐

−1
𝑞
𝑘
𝑧
−1
𝑇
−𝑘

𝑞
𝐸
12
.

(23)

Moreover,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑗
) = 𝜎 (𝐸

𝑖𝑗
) 𝜎 (𝑧

𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑖
) , (24)

with 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗. The proof follows from (21) and by
replacing (21) and (23) in (24).

Proof of Proposition 4. From Lemma 5, we have that

𝐸
12
= 𝜎
2
(𝐸
12
) = 𝑐𝜎 (𝐸

21
) 𝜎 (𝑧𝑇

𝑘

𝑞
𝐸
22
)

= −𝑎
2
𝑏
𝑘

2
𝑞
−𝑘
𝑇
𝑘2−2𝑘

𝑞
𝐸
12
,

(25)

𝐸
12
= 𝜎
2
(𝐸
12
) = 𝑐𝜎 (𝑧𝑇

𝑘

𝑞
𝐸
11
) 𝜎 (𝐸

21
)

= −𝑎
1
𝑏
𝑘

1
𝑞
𝑘−𝑘1𝑇
𝑘1−2𝑘

𝑞
𝐸
12
.

(26)

Then from (25)-(26), we obtain that

𝑘
1
= 𝑘
2
= 2𝑘, (27)

and also from (26)-(27) we obtain

−𝑎
1
𝑏
𝑘

1
= 𝑞
𝑘
. (28)

Then, from (27) and again using Lemma 5, we have that

𝜎 (𝑧
𝑛
𝑇
𝑙

𝑞
𝐸
12
) = 𝑎
𝑛

1
𝑏
𝑙

1
𝑐𝑞
(𝑛𝑘−𝑙)𝑛

𝑧
𝑛+1
𝑇
(2𝑛+1)𝑘−𝑙

𝑞
𝐸
21
, (29)

𝜎 (𝑧
𝑛
𝑇
𝑙

𝑞
𝐸
12
) = 𝜎 (𝑧

𝑛
𝑇
𝑙

𝑞
𝐸
22
) 𝜎 (𝐸

12
)

= 𝑎
𝑛

2
𝑏
𝑙

2
𝑐𝑞
(𝑛𝑘−𝑙)(𝑛+1)

𝑧
𝑛+1
𝑇
(2𝑛+1)𝑘−𝑙

𝑞
𝐸
21
,

(30)

for all 𝑛, 𝑙 ∈ Z. Comparing (29) with (30), we obtain that

𝑎
𝑛

1
𝑏
𝑙

1
= 𝑎
𝑛

2
𝑏
𝑙

2
𝑞
𝑛𝑘−𝑙
, ∀𝑛, 𝑙 ∈ Z; (31)

in particular,

if 𝑛 = 0, 𝑙 = 1, 𝑏
2
= 𝑏
1
𝑞,

if 𝑛 = 1, 𝑙 = 0, 𝑎
2
= 𝑎
1
𝑞
−𝑘
.

(32)

From (28) and replacing (27) and (32) in (20), we obtain
that 𝜎 = 𝜎

𝑎1 ,𝑏1 ,𝑐,𝑘
, finishing the proof.
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Proposition 6. Let 𝜎 be an anti-involution of SS𝑎𝑠
𝑞

which
preserves the principal graduation, and let one assume that
it satisfies Lemma 2(b). Then 𝜎 is one of the 𝜎

𝑎,𝑏,𝑐,𝑘,𝑙
from

Theorem 1(b).

In order to prove Proposition 6wewill need the following
result.

Lemma 7. Let 𝜎 be as in Proposition 6, then

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
) = 𝑎
𝑛

1
𝑞
(𝑛(𝑛−1)/2)𝑘1𝑧

𝑛
𝑓 (𝑏
1
𝑞
𝑛𝑚1𝑇
𝑚1

𝑞
) 𝑇
𝑛𝑘1

𝑞
𝐸
22
,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
22
) = 𝑎
𝑛

2
𝑞
(𝑛(𝑛−1)/2)𝑘2𝑧

𝑛
𝑓 (𝑏
2
𝑞
𝑛𝑚2𝑇
𝑚2

𝑞
) 𝑇
𝑛𝑘2

𝑞
𝐸
11
,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
12
)

= 𝑎
𝑛

1
𝑐𝑞
(𝑛(𝑛−1)/2)𝑘1+𝑛𝑙𝑧

𝑛
𝑓 (𝑏
1
𝑞
𝑛𝑚1𝑇
𝑚1

𝑞
) 𝑇
𝑛𝑘1+𝑙

𝑞
𝐸
12
,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
21
)

= −𝑎
2
𝑐
−1
𝑞
(𝑛(𝑛−1)/2)𝑘2−𝑛𝑙𝑧

𝑛
𝑓 (𝑏
2
𝑞
𝑛𝑚2𝑇
𝑚2

𝑞
) 𝑇
𝑛𝑘2−𝑙

𝑞
𝐸
21
,

(33)

where 𝑎
𝑖
, 𝑏
𝑖
, 𝑐 ∈ C×, 𝑘

𝑖
, 𝑚
𝑖
, 𝑙 ∈ Z, and 𝑖 = 1, 2.

Proof. From hypothesis and Corollary 3(b), we have that

𝐸
11
= 𝜎 (𝑇

𝑞
𝐸
22
𝑇
−1

𝑞
𝐸
22
) = 𝜎
2,1
(𝑇
−1

𝑞
) 𝜎
2,1
(𝑇
𝑞
) 𝐸
11
,

𝐸
22
= 𝜎 (𝑇

𝑞
𝐸
11
𝑇
−1

𝑞
𝐸
11
) = 𝜎
1,2
(𝑇
−1

𝑞
) 𝜎
1,2
(𝑇
𝑞
) 𝐸
22
,

𝐸
11
= 𝜎 (𝑧𝐸

22
𝑧
−1
𝐸
22
) = 𝜎
2,1
(𝑧
−1
) 𝜎
2,1
(𝑧) 𝐸
11
,

𝐸
22
= 𝜎 (𝑧𝐸

11
𝑧
−1
𝐸
11
) = 𝜎
1,2
(𝑧
−1
) 𝜎
1,2
(𝑧) 𝐸
22
,

(34)

𝐸
11
= −𝜎 (𝐸

12
) 𝜎 (𝐸

21
) = −𝑓

12
(𝑇
𝑞
) 𝑔
21
(𝑇
𝑞
) 𝐸
11
. (35)

Then, using (34), we have that

𝜎
𝑖,𝑗
(𝑇
±1

𝑞
) = 𝑏
±1

𝑖
𝑇
±𝑚𝑖

𝑞
,

𝜎
𝑖,𝑗
(𝑧) = 𝑎

𝑖
𝑧𝑇
𝑘𝑖

𝑞
,

𝜎
𝑖,𝑗
(𝑧
−1
) = 𝑎
−1

𝑖
𝑞
𝑘𝑖𝑧
−1
𝑇
−𝑘𝑖

𝑞
,

(36)

and by induction we obtain that

𝜎 (𝑇
𝑚

𝑞
𝐸
𝑖𝑖
) = 𝑏
𝑚

𝑖
𝑇
𝑚𝑖𝑚

𝑞
𝐸
𝑗𝑗
, ∀𝑚 ∈ Z,

𝜎 (𝑧
𝑛
𝐸
𝑖𝑖
) = 𝑎
𝑛

𝑖
𝑞
(𝑛(𝑛−1)/2)𝑘𝑖𝑧

𝑛
𝑇
𝑛𝑘𝑖

𝑞
𝐸
𝑗𝑗
, ∀𝑛 ∈ Z,

(37)

where 𝑎
𝑖
, 𝑏
𝑖
∈ C×, 𝑘

𝑖
, 𝑚
𝑖
∈ Z, 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗. Then, from (37)

we have that

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑖
) = 𝜎 (𝑓 (𝑇

𝑞
) 𝐸
𝑖𝑖
) 𝜎 (𝑧
𝑛
𝐸
𝑖𝑖
)

= 𝑎
𝑛

𝑖
𝑞
(𝑛(𝑛−1)/2)𝑘𝑖𝑧

𝑛
𝑓 (𝑏
𝑖
𝑞
𝑛𝑚𝑖𝑇
𝑚𝑖

𝑞
) 𝑇
𝑛𝑘𝑖

𝑞
𝐸
𝑗𝑗
,

(38)

with 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗.

On the other hand, from (35) we have that 𝑓
12
(𝑇
𝑞
) = 𝑐𝑇

𝑙

𝑞

and 𝑔
21
(𝑇
𝑞
) = −𝑐

−1
𝑇
−𝑙

𝑞
with 𝑐 ∈ C× and 𝑙 ∈ Z; therefore,

𝜎 (𝐸
12
) = 𝑐𝑇

𝑙

𝑞
𝐸
12
, 𝜎 (𝐸

21
) = −𝑐

−1
𝑇
−𝑙

𝑞
𝐸
21
. (39)

Moreover,

𝜎 (𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑗
) = 𝜎 (𝐸

𝑖𝑗
) 𝜎 (𝑧

𝑛
𝑓 (𝑇
𝑞
) 𝐸
𝑖𝑖
) , (40)

with 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗. The proof follows from (38) and by
replacing (38) and (39) in (40).

Proof of Proposition 6. By Lemma 7, we have that

𝑇
𝑞
𝐸
11
= 𝜎
2
(𝑇
𝑞
𝐸
11
) = 𝑏
1
𝑏
𝑚1

2
𝑇
𝑚1𝑚2

𝑞
𝐸
11
,

𝑧𝐸
𝑖𝑖
= 𝜎
2
(𝑧𝐸
𝑖𝑖
) = 𝑎
𝑖
𝑎
𝑗
𝑏
𝑘𝑖

𝑗
𝑞
𝑚𝑗𝑘𝑖𝑧𝑇

𝑚𝑗𝑘𝑖+𝑘𝑗

𝑞 𝐸
𝑖𝑖
,

𝐸
12
= 𝜎
2
(𝐸
12
) = 𝑏
𝑙

1
𝑐
2
𝐸
12
,

(41)

𝜎 (𝑧𝐸
12
) = 𝑎
1
𝑐𝑞
𝑙
𝑧𝑇
𝑘1+𝑙

𝑞
𝐸
12
, (42)

𝜎 (𝑧𝐸
12
) = 𝜎 (𝑧𝐸

22
) 𝜎 (𝐸

12
) = 𝑎
2
𝑐𝑧𝑇
𝑘1+𝑙

𝑞
𝐸
12
. (43)

Then, using (41), we have that

𝑚
1
= 𝑚
2
= 1 or 𝑚

1
= 𝑚
2
= −1, (44)

𝑏
1
= 𝑏
−𝑚1

2
, (45)

𝑎
𝑖
𝑎
𝑗
𝑏
𝑘𝑖

𝑗
𝑞
𝑚𝑗𝑘𝑖 = 1, (46)

𝑚
𝑗
𝑘
𝑖
= −𝑘
𝑗
, (47)

𝑏
𝑙

1
𝑐
2
= 1, (48)

where 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗. Suppose that 𝑚
1
= 𝑚
2
= 1; then,

from (45) and (47) we have that 𝑏
1
= 𝑏
−1

2
, 𝑘
1
= −𝑘
2
, and by

replacing them in (46), we obtain that 𝑞2𝑘1 = 1, but since 𝑞
is not a root of unity, we necessarily have that 𝑘

1
= 𝑘
2
= 0.

Then, using Lemma 7 we get

𝜎 (𝑧𝑇
𝑞
𝐸
11
) = 𝑎
1
𝑏
1
𝑞𝑧𝑇
𝑞
𝐸
22
; (49)

moreover,

𝜎 (𝑧𝑇
𝑞
𝐸
11
) = 𝑞
−1
𝜎 (𝑧𝐸
11
) 𝜎 (𝑇

𝑞
𝐸
11
) = 𝑎
1
𝑏
1
𝑞
−1
𝑧𝑇
𝑞
𝐸
22
.

(50)

Comparing (49) with (50), we obtain that 𝑞2 = 1 which is
a contradiction. Therefore, by (44) and the aforementioned
result, we get that

𝑚
1
= 𝑚
2
= −1. (51)

Then replacing (51) in (45) and (47) we obtain that

𝑏
1
= 𝑏
2
, 𝑘

1
= 𝑘
2
. (52)
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On the other hand, comparing (42) with (43), we have that

𝑎
2
= 𝑎
1
𝑞
𝑙
, (53)

and by replacing (51), (52), and (53) in (46), we obtain that

𝑎
2

1
𝑏
𝑘1

1
= 𝑞
𝑘1−𝑙. (54)

Using (48) and (54) and by replacing (51), (52), and (53) in
(33), we obtain that 𝜎 = 𝜎

𝑎1 ,𝑏1 ,𝑐,𝑘1 ,𝑙
, finishing the proof.

Proof of Theorem 1. It is straightforward to check that the two
cases are anti-involutions. Reciprocally, from Lemma 2 and
Propositions 4 and 6, it is clear that any anti-involution of
SSas
𝑞
which preserves the principal gradation satisfies (a) or

(b), finishing the proof.

Now, given an anti-involution 𝜎 of SSas
𝑞
, one can check

that the set of points minus 𝜎-fixed is a subalgebra of SS
𝑞
.

Moreover, if𝜎preserves the principal (1/2)Z-graduation, this
subalgebra inherits the (1/2)Z-graduation.These subalgebras
are described in the last part of this section.

We define the following automorphisms of SSas
𝑞
by

Θ
𝑠
(𝑀) = (𝑧

−𝑠
𝐼𝑑) ⋅ 𝑀 ⋅ (𝑧

𝑠
𝐼𝑑) , ∀𝑀 ∈ SS

as
𝑞
,

Φ
𝑠

󵄨󵄨󵄨󵄨(SSas
𝑞
)
0

= 𝑖𝑑,

Φ
𝑠
(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
12
+ 𝑧
𝑛+1
𝑔 (𝑇
𝑞
) 𝐸
21
)

= 𝑠𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
12
+ 𝑠
−1
𝑧
𝑛+1
𝑔 (𝑇
𝑞
) 𝐸
21
,

(55)

with 𝑠 ∈ C×. On the other hand, given 𝑛,𝑚 ∈ Z, we denote

C[𝑤
−1
, 𝑤]
(𝑛,𝑚)

:= {𝑓 ∈ C [𝑤
−1
, 𝑤] : 𝑓 (𝑤) = −(−1)

𝑛
𝑓 (𝑤
−1
)𝑤
𝑚
} .

(56)

Remark 8. We see that 𝑓(𝑤) ∈ C[𝑤−1, 𝑤]
(𝑛,𝑚) with 𝑓(𝑤) =

∑𝑓
𝑗
𝑤
𝑗 if and only if 𝑓

𝑗
= −(−1)

𝑛
𝑓
𝑚−𝑗

, for all 𝑗 ∈ Z.

TheCase𝜎
𝑎,𝑏,𝑐,𝑘

.Let 𝑎, 𝑏, 𝑐 ∈ C×, 𝑘 ∈ Z, be such that−𝑎𝑏𝑘=𝑞𝑘.
We denote by SS𝑎,𝑏,𝑐

𝑞,𝑘
the Lie subalgebra of SS

𝑞
consisting

of −𝜎
𝑎,𝑏,𝑐,𝑘

-fixed points; then, it inherits a (1/2)Z-gradation
from SS

𝑞
; therefore, SS𝑎,𝑏,𝑐

𝑞,𝑘
= ⨁
𝑗∈(1/2)Z(SS

𝑎,𝑏,𝑐

𝑞,𝑘
)
𝑗

, where

(SS
𝑎,𝑏,𝑐

𝑞,𝑘
)
𝑗
= {𝑀 ∈ (SS

𝑞
)
𝑗
: 𝜎
𝑎,𝑏,𝑐,𝑘

(𝑀) = −𝑀} . (57)

Moreover, we denoteSS
𝑞,𝑘
:= SS

−𝑞
𝑘
,1,1

𝑞,𝑘
and𝜎
𝑞,𝑘
:= 𝜎
−𝑞
𝑘
,1,1,𝑘

.

The following lemma gives a description of SS𝑎,𝑏,𝑐
𝑞,𝑚

.

Lemma 9. Let 𝑎, 𝑏, 𝑐, 𝑘 be as aforementioned; then,SS𝑎,𝑏,𝑐
𝑞,𝑘

≃

SS
𝑞,𝑘

and

(SS
𝑞,𝑘
)
𝑛

= {𝑧
𝑛
𝑓 (𝑞
𝑛/2
𝑇
𝑞
) 𝐸
11
+ 𝑧
𝑛
𝑔 (𝑞
(𝑛−1)/2

𝑇
𝑞
) 𝐸
22
:

𝑓, 𝑔 ∈ C[𝑤
−1
, 𝑤]
(𝑛,2𝑛𝑘)

} ,

(SS
𝑞,𝑘
)
𝑛+1/2

= {𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
12
− (−1)

𝑛
𝑞
(𝑛+1)𝑛𝑘

𝑧
𝑛+1
𝑓 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
(2𝑛+1)𝑘

𝑞
𝐸
21
:

𝑓 ∈ C [𝑤
−1
, 𝑤]} ,

(58)

for all 𝑛 ∈ Z.

Proof. First, it is easy to check that

Θ
−𝑠
𝜎
𝑎,𝑏,𝑐,𝑘

Θ
𝑠
= 𝜎
𝑎𝑞
−2𝑘𝑠
,𝑏𝑞
2𝑠
,𝑐𝑞
−𝑘𝑠
,𝑘
,

Φ
−𝑡
𝜎
𝑎,𝑏,𝑐,𝑘

Φ
𝑡
= 𝜎
𝑎,𝑏,𝑐𝑡
2
,𝑘
.

(59)

Then if we take 𝑠, 𝑡 ∈ C× such that 𝑏−1 = 𝑞2𝑠 and 𝑡2 = 𝑐−1𝑞𝑘𝑠,
from (59) and the relation between 𝑎, 𝑏, 𝑐, 𝑘, we obtain that
SS𝑎,𝑏,𝑐
𝑞,𝑘

≃ SS
𝑞,𝑘
.

On the other hand, by Theorem 1(a) and linearity of 𝜎
𝑞,𝑘

we obtain that (for 𝑛 ∈ Z) 𝑧𝑛𝑓(𝑇
𝑞
)𝐸
11
+ 𝑧
𝑛
𝑔(𝑇
𝑞
)𝐸
22
∈

(SS
𝑞,𝑘
)
𝑛
if and only if 𝑧𝑛𝑓(𝑇

𝑞
)𝐸
11
, 𝑧𝑛𝑔(𝑇

𝑞
)𝐸
22
∈ (SS

𝑞,𝑘
)
𝑛
.

Now, let 𝑧𝑛ℎ(𝑇
𝑞
)𝐸
11
∈ (SS

𝑞,𝑘
)
𝑛
be with ℎ(𝑤) = ∑ℎ

𝑗
𝑤
𝑗; then,

− 𝑧
𝑛
ℎ (𝑇
𝑞
) 𝐸
11
= 𝜎
𝑞,𝑘
(𝑧
𝑛
ℎ (𝑇
𝑞
) 𝐸
11
)

= (−1)
𝑛
𝑞
𝑛
2
𝑘
𝑧
𝑛
ℎ (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
2𝑛𝑘

𝑞
𝐸
11

(60)

if and only if 𝑞−(𝑛/2)𝑗ℎ
𝑗
= −(−1)

𝑛
𝑞
(−𝑛/2)(2𝑛𝑘−𝑗)

ℎ
2𝑛𝑘−𝑗

, for all 𝑗 ∈
Z, which is equivalent to𝑓(𝑤) = ℎ(𝑞−𝑛/2𝑤) ∈ C[𝑤−1, 𝑤](𝑛,2𝑛𝑘)
(see Remark 8). Therefore,

𝑧
𝑛
ℎ (𝑇
𝑞
) 𝐸
11
= 𝑧
𝑛
𝑓 (𝑞
𝑛/2
𝑇
𝑞
) 𝐸
11
,

with 𝑓 (𝑤) ∈ C[𝑤−1, 𝑤]
(𝑛,2𝑛𝑘)

.

(61)

Similarly, we prove that 𝑧𝑛ℎ(𝑇
𝑞
)𝐸
22
∈ (SS

𝑞,𝑘
)
𝑛
if and only if

𝑧
𝑛
ℎ (𝑇
𝑞
) 𝐸
22
= 𝑧
𝑛
𝑔 (𝑞
(𝑛−1)/2

𝑇
𝑞
) 𝐸
22
,

where 𝑔 (𝑤) ∈ C[𝑤−1, 𝑤]
(𝑛,2𝑛𝑘)

.

(62)
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Now, we suppose that 𝑧𝑛𝑓(𝑇
𝑞
)𝐸
12
+ 𝑧
𝑛+1
𝑔(𝑇
𝑞
)𝐸
21

∈

(SS
𝑞,𝑘
)
𝑛+1/2

; then,

− 𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
12
− 𝑧
𝑛+1
𝑔 (𝑇
𝑞
) 𝐸
21

= 𝜎
𝑞,𝑘
(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
12
+ 𝑧
𝑛+1
𝑔 (𝑇
𝑞
) 𝐸
21
)

= (−1)
𝑛
𝑞
𝑛
2
𝑘
(𝑧
𝑛
𝑔 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
(2𝑛+1)𝑘

𝑞
𝐸
12

+ 𝑞
𝑛𝑘
𝑧
𝑛+1
𝑓 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
(2𝑛+1)𝑘

𝑞
𝐸
21
) ,

(63)

if and only if 𝑔(𝑇
𝑞
) = −(−1)

𝑛
𝑞
(𝑛+1)𝑛𝑘

𝑓(𝑞
−𝑛
𝑇
−1

𝑞
)𝑇
(2𝑛+1)𝑘

𝑞
, fin-

ishing the proof.

TheCase 𝜎
𝑎,𝑏,𝑐,𝑘,𝑙

. Let 𝑎, 𝑏, 𝑐 ∈ C×, 𝑘, 𝑙 ∈ Z, be such that 𝑎2𝑏𝑘 =
𝑞
𝑘−𝑙 and 𝑏𝑙𝑐2 = 1. We denote bySS𝑎,𝑏,𝑐

𝑞,𝑘,𝑙
the Lie subalgebra of

SS
𝑞
consisting of −𝜎

𝑎,𝑏,𝑐,𝑘,𝑙
-fixed; then, it inherits a (1/2)Z-

gradation from SS
𝑞
; thus SS𝑎,𝑏,𝑐

𝑞,𝑘,𝑙
= ⨁

𝑗∈(1/2)Z(SS
𝑎,𝑏,𝑐

𝑞,𝑘,𝑙
)
𝑗

,
where

(SS
𝑎,𝑏,𝑐

𝑞,𝑘,𝑙
)
𝑗
= {𝑀 ∈ (SS

𝑞
)
𝑗
: 𝜎
𝑎,𝑏,𝑐,𝑘,𝑙

(𝑀) = −𝑀} . (64)

Moreover, we denote SS+±
𝑞,𝑘,𝑙

:= SS𝑎,1,±1
𝑞,𝑘,𝑙

, 𝜎+±
𝑞,𝑘,𝑙

:= 𝜎
𝑎,1,±1,𝑘,𝑙

andSS−,±
𝑞,𝑘,𝑙
:= SS−𝑎,1,±1

𝑞,𝑘,𝑙
, 𝜎−,±
𝑞,𝑘,𝑙
:= 𝜎
−𝑎,1,±1,𝑘,𝑙

, with 𝑎 = 𝑞(𝑘−𝑙)/2.
The following lemma gives a description of SS𝑎,𝑏,𝑐

𝑞,𝑘,𝑙
. We will

need the following notation:

𝛿
𝑛
:=

{{{{{{{

{{{{{{{

{

0, in (SS+,+
𝑞,𝑘,𝑙
)
𝑛+1/2

;

1, in (SS+,−
𝑞,𝑘,𝑙
)
𝑛+1/2

;

𝑛, in (SS−,+
𝑞,𝑘,𝑙
)
𝑛+1/2

;

𝑛 + 1, in (SS−,−
𝑞,𝑘,𝑙
)
𝑛+1/2

.

(65)

Lemma 10. Let 𝑎, 𝑏, 𝑐, 𝑘, 𝑙 be as aforementioned; then,
SS𝑎,𝑏,𝑐
𝑞,𝑘,𝑙

is isomorphic to some of the following algebras:SS+,+
𝑞,𝑘,𝑙

,
SS+,−
𝑞,𝑘,𝑙

, SS−,+
𝑞,𝑘,𝑙

, or SS−,−
𝑞,𝑘,𝑙

. And

(SS
+±

𝑞,𝑘,𝑙
)
𝑛
= {𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
− (±1)

𝑛
𝑞
𝑛(𝑛𝑘−𝑙)/2

× 𝑧
𝑛
𝑓 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘

𝑞
𝐸
22
: 𝑓 ∈ C [𝑤

−1
, 𝑤]} ,

(SS
+±

𝑞,𝑘,𝑙
)
𝑛+1/2

= {𝑧
𝑛
𝑓 (𝑞
𝑛/2
𝑇
𝑞
) 𝐸
12
+ 𝑧
𝑛+1
𝑔 (𝑞
(𝑛+1)/2

𝑇
𝑞
)

× 𝐸
21
: 𝑓 ∈ C[𝑤

−1
, 𝑤]
(𝛿𝑛,𝑛𝑘+𝑙)

,

𝑔 ∈ C[𝑤
−1
, 𝑤]
(𝛿𝑛+1,(𝑛+1)𝑘−𝑙)

} ,

(SS
−±

𝑞,𝑘,𝑙
)
𝑛
= {𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
− (±1)

𝑛
𝑞
𝑛(𝑛𝑘−𝑙)/2

× 𝑧
𝑛
𝑓 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘

𝑞
𝐸
22
: 𝑓 ∈ C [𝑤

−1
, 𝑤]} ,

(SS
−±

𝑞,𝑘,𝑙
)
𝑛+1/2

= {𝑧
𝑛
𝑓 (𝑞
𝑛/2
𝑇
𝑞
) 𝐸
12
+ 𝑧
𝑛+1
𝑔 (𝑞
(𝑛+1)/2

𝑇
𝑞
)

× 𝐸
21
: 𝑓 ∈ C[𝑤

−1
, 𝑤]
(𝛿𝑛,𝑛𝑘+𝑙)

,

∈ C[𝑤
−1
, 𝑤]
(𝛿𝑛,(𝑛+1)𝑘−𝑙)

} ,

(66)

for all 𝑛 ∈ Z.

Proof. It is easy to check that,

Θ
−𝑠
𝜎
𝑎,𝑏,𝑐,𝑘,𝑙

Θ
𝑠
= 𝜎
𝑎𝑞
−𝑠𝑘
,𝑏𝑞
2𝑠
,𝑐𝑞
−𝑠𝑙
,𝑘,𝑙
; (67)

then; if we take 𝑠 such that 𝑞2𝑠 = 𝑏
−1, we obtain the first

assertion using (67) and the relations between 𝑎, 𝑏, 𝑐, 𝑘, 𝑙.
On the other hand, we suppose that 𝑧𝑛𝑓(𝑇

𝑞
)𝐸
11
+

𝑧
𝑛
𝑔(𝑇
𝑞
)𝐸
22
∈ (SS+±

𝑞,𝑘,𝑙
)
𝑛
; then,

− 𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
− 𝑧
𝑛
𝑔 (𝑇
𝑞
) 𝐸
22

= 𝜎
+±

𝑞,𝑘,𝑙
(𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
11
+ 𝑧
𝑛
𝑔 (𝑇
𝑞
) 𝐸
22
)

= (±1)
𝑛
𝑞
𝑛(𝑛𝑘−𝑙)/2

𝑧
𝑛
𝑓 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘

𝑞
𝐸
22

+ (±1)
𝑛
𝑞
𝑛(𝑛𝑘+𝑙)/2

𝑧
𝑛
𝑔 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘

𝑞
𝐸
11

(68)

if and only if 𝑔(𝑇
𝑞
) = −(±1)

𝑛
𝑞
𝑛(𝑛𝑘−𝑙)/2

𝑓(𝑞
−𝑛
𝑇
−1

𝑞
)𝑇
𝑛𝑘

𝑞
. The

proof for (SS+±
𝑞,𝑘,𝑙
)
𝑛
is similar.

Now, by Theorem 1(b) and linearity of 𝜎++
𝑞,𝑘,𝑙

, we obtain
that 𝑧𝑛𝑓(𝑇

𝑞
)𝐸
12
+ 𝑧
𝑛+1
𝑔(𝑇
𝑞
)𝐸
21
∈ (SS++

𝑞,𝑘,𝑙
)
𝑛+1/2

if and only
if 𝑧𝑛𝑓(𝑇

𝑞
)𝐸
12
and 𝑧𝑛𝑔(𝑇

𝑞
)𝐸
21
are elements in (SS++

𝑞,𝑘,𝑙
)
𝑛+1/2

.
We suppose that 𝑧𝑛+1ℎ(𝑇

𝑞
)𝐸
21
∈ (SS++

𝑞,𝑘,𝑙
)
𝑛+1/2

, with ℎ(𝑤) =
∑ℎ
𝑗
𝑤
𝑗; then,

− 𝑧
𝑛+1
ℎ (𝑇
𝑞
) 𝐸
21

= 𝜎
++

𝑘,𝑙
(𝑧
𝑛+1
ℎ (𝑇
𝑞
) 𝐸
21
)

= −𝑞
(𝑛+1)((𝑛+1)𝑘−𝑙)/2

𝑧
𝑛+1
ℎ (𝑞
−(𝑛+1)

𝑇
−1

𝑞
) 𝑇
(𝑛+1)𝑘−𝑙

𝑞
𝐸
21

(69)

if and only if ℎ
𝑗
𝑞
−((𝑛+1)/2)𝑗

= 𝑞
−((𝑛+1)/2)((𝑛+1)𝑘−𝑙−𝑗)

ℎ
(𝑛+1)𝑘−𝑙−𝑗

,
for all 𝑗 ∈ Z, which is equivalent to 𝑔(𝑤) = ℎ(𝑞−((𝑛+1)/2)𝑤) ∈
C[𝑤−1, 𝑤]

(1,(𝑛+1)𝑘−𝑙) (see Remark 8). Therefore,

𝑧
𝑛+1
ℎ (𝑇
𝑞
) 𝐸
21
= 𝑧
𝑛+1
𝑔 (𝑞
(𝑛+1)/2

𝑇
𝑞
) 𝐸
21
,

with 𝑔 (𝑤) ∈ C[𝑤−1, 𝑤]
(1,(𝑛+1)𝑘−𝑙)

.

(70)

Similarly, we prove that 𝑧𝑛ℎ(𝑇
𝑞
)𝐸
12

∈ (SS++
𝑞,𝑘,𝑙
)
𝑛+1/2

if
and only if 𝑧𝑛ℎ(𝑇

𝑞
)𝐸
12

= 𝑧
𝑛
𝑓(𝑞
𝑛/2
𝑇
𝑞
)𝐸
12
, with 𝑓 ∈

C[𝑤−1, 𝑤]
(0,𝑛𝑘+𝑙).

The other proofs are similar.

Remark 11. From Lemma 9 (resp., Lemma 10), it is clear
that an element in (SS

𝑞,𝑘
)
𝑛+1/2

(resp., (SS±,±
𝑞,𝑘,𝑙
)
𝑛
) is totally
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determined by its value in the position 𝐸
12
(resp., 𝐸

11
), where

𝑛 ∈ Z.

Finally, we denote by ŜS
𝑞,𝑘

and ŜS
±±

𝑞,𝑘,𝑙
the central

extensions ofSS
𝑞,𝑘

andSS±±
𝑞,𝑘,𝑙

corresponding to the restric-
tions of the 2-cocycle 𝜓, respectively. It is clear that these
subalgebras admit a (1/2)Z-graduation compatible with their
Z
2
-graduation; that is,

ŜS
𝑞,𝑘
= (ŜS

𝑞,𝑘
)
0
⨁(ŜS

𝑞,𝑘
)
1
,

ŜS
±±

𝑞,𝑘,𝑙
= (ŜS

±±

𝑞,𝑘,𝑙
)
0

⨁(ŜS
±±

𝑞,𝑘,𝑙
)
1

,

(71)

where

(ŜS
𝑞,𝑘
)
0
=⨁

𝑛∈Z

(ŜS
𝑞,𝑘
)
𝑛
,

(ŜS
𝑞,𝑘
)
1
=⨁

𝑛∈Z

(ŜS
𝑞,𝑘
)
𝑛+1/2

,

(ŜS
±±

𝑞,𝑘,𝑙
)
0

=⨁

𝑛∈Z

(ŜS
±±

𝑞,𝑘,𝑙
)
𝑛

,

(ŜS
±±

𝑞,𝑘,𝑙
)
1

=⨁

𝑛∈Z

(ŜS
±±

𝑞,𝑘,𝑙
)
𝑛+1/2

,

(72)

with (ŜS
𝑞,𝑘
)
𝑛
= (SS

𝑞,𝑘
)
𝑛
+ 𝛿
𝑛,0
C𝐶 and (ŜS

±±

𝑞,𝑘,𝑙
)
𝑛
=

(SS±±
𝑞,𝑘,𝑙
)
𝑛
+ 𝛿
𝑛,0
C𝐶, for all 𝑛 ∈ (1/2)Z.

3. Quasifinite Highest Weight Modules over

ŜS
𝑞,𝑘

and ŜS
±±

𝑞,𝑘,𝑙

The goal of this section is to characterize the quasifinite
irreducible highest weight modules over ŜS

𝑞,𝑘
and ŜS

±±

𝑞,𝑘,𝑙
;

for this we will apply the general results on quasifinite rep-
resentations of (1/2)Z-graded Lie superalgebras developed
in Section 2 in [6]. Let us recall some general definition and
results from [6].

In this section, g denote a consistent (1/2)Z-graded Lie
superalgebra over C; namely,

g = ⨁

𝑗∈(1/2)Z

𝑔
𝑗
, where [g

𝑖
, g
𝑗
] ⊂ g
𝑖+𝑗

∀𝑖, 𝑗 ∈
1

2
Z, (73)

and also

g
0
=⨁

𝑗∈Z

g
𝑗
, g

1
=⨁

𝑗∈Z

g
𝑗+1/2

. (74)

We denote g
±
= ⨁
𝑗∈(1/2)Z+

g
±𝑗
. A subalgebra p of g is called

parabolic if

p = ⨁

𝑗∈(1/2)Z

p
𝑗
, where 𝑝

𝑗
= 𝑔
𝑗
∀𝑗 ⩾ 0,

p
−𝑗
̸= 0, for some 𝑗 ∈ N.

(75)

We assume the following properties on g:

(SP1) g
0
is commutative,

(SP2) if 𝑎 ∈ g
−𝑗

(𝑗 ∈ (1/2)N) and [𝑎, g
1/2
] = 0, then 𝑎 = 0.

Given that 𝑎 ∈ g
−1/2

is nonzero, we define p𝑎 = ⨁
𝑗∈(1/2)Zp

𝑎

𝑗
,

where
p
𝑎

𝑗
= g
𝑗
∀𝑗 ≥ 0,

p
𝑎

−1/2
= ∑[. . . [[𝑎, g

0
] , g
0
] , . . .] ,

p
𝑎

−𝑘−1/2
= [p
𝑎

−1/2
, p
𝑎

−𝑘
] .

(76)

It was proved in [6] that p𝑎 is the minimal parabolic subalge-
bra containing 𝑎 and also that [p𝑎, p𝑎] ∩ g

0
= [𝑎, g

1/2
].

Definition 12. (a) A parabolic subalgebra p is called nonde-
generate if p

−𝑗
has finite codimension in g

−𝑗
, for all 𝑗 ∈

(1/2)N.
(b) An element 𝑎 ∈ g

−1/2
is called nondegenerate if p𝑎 is

nondegenerate.

We will also require the following condition on g.

(SP3) If p is a nondegenerate parabolic subalgebra of g, then
there exists a nondegenerate element 𝑎 ∈ p

−1/2
.

A g-module 𝑉 = ⨁
𝑗∈(1/2)Z𝑉𝑗 is called quasifinite if

dim𝑉
𝑗
< ∞ for all 𝑗. Given 𝜆 ∈ g∗

0
, a highest weight module is

a (1/2)Z-graded g-module 𝑉(g, 𝜆) = ⨁
𝑗∈(1/2)Z+

𝑉
−𝑗
, defined

by the following properties:

(a) 𝑉
0
= CV
𝜆
, where V

𝜆
is a nonzero vector;

(b) ℎV
𝜆
= 𝜆(ℎ)V

𝜆
, for all ℎ ∈ g

0
;

(c) g
+
V
𝜆
= 0;

(d) U(g
−
)V
𝜆
= 𝑉(g, 𝜆).

A nonzero vector V ∈ 𝑉(g, 𝜆) is called singular if g
+
V = 0.

The Verma module over g is defined as usual:

𝑀(g, 𝜆) = U (g) ⨂

U(g0⨁ g+)

C
𝜆
, (77)

where C
𝜆
:= C𝑐

𝜆
is the one-dimensional (g

0
⨁g
+
)-module

given by ℎ𝑐
𝜆
= 𝜆(ℎ)𝑐

𝜆
if ℎ ∈ g

0
, and g

+
𝑐
𝜆
= 0 and the action

of g on𝑀(g, 𝜆) is induced by the left multiplication inU(g).
Any highest weight module 𝑉(g, 𝜆) is a quotient module of
𝑀(g, 𝜆). The irreducible module 𝐿(g, 𝜆) is the quotient of
𝑀(g, 𝜆) by the maximal proper graded submodule.

Now, let p = ⨁
𝑗∈(1/2)Zp𝑗 be a parabolic subalgebra of g

and let 𝜆 ∈ g∗
0
be such that 𝜆|

[p,p]∩g0
= 0. Then the (g

0
⨁g
+
)-

module C
𝜆
extends to a p-module by letting p

𝑗
𝑐
𝜆
= 0 for all

𝑗 < 0, and we may construct the highest weight module

𝑀(p, g, 𝜆) = U (g)⨂
U(p)

C
𝜆
, (78)

called the generalized Vermamodule. Clearly all these highest
weight modules are graded. The following result gives the
characterization of all irreducible quasifinite highest-weight
modules.
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Theorem 13. Let g = ⨁
𝑗∈(1/2)Zg𝑗 be a consistent (1/2)Z-

graded Lie superalgebra over C that satisfies conditions (SP1),
(SP2), and (SP3). The following conditions on 𝜆 ∈ g∗

0
are

equivalent.

(a) 𝑀(g, 𝜆) contains a singular vector 𝑎⋅V
𝜆
in𝑀(g, 𝜆)

−1/2
,

where 𝑎 is nondegenerate.
(b) There exists a nondegenerate element 𝑎 ∈ g

−1/2
, such

that 𝜆([g
1/2
, 𝑎]) = 0.

(c) 𝐿(g, 𝜆) is quasifinite.
(d) There exists a nondegenerate element 𝑎 ∈ g

−1/2
, such

that𝐿(g, 𝜆) is the irreducible quotient of the generalized
Verma module𝑀(g, p𝑎, 𝜆).

Proof. See [6].

Moreover, we will need the following result. Recall that
a quasipolynomial is a combination of functions of the form
𝑝(𝑥)𝑞

𝛼𝑥, where 𝑝(𝑥) is a polynomial and 𝛼 ∈ C. That is, it
satisfies a nontrivial linear differential equation with constant
coefficients.

Proposition 14. Given a quasipolynomial 𝑃 and a polynomial
𝐵(𝑥) = ∏

𝑖
(𝑥−𝐴

𝑖
), take 𝑏(𝑥) = ∏

𝑖
(𝑥−𝑎
𝑖
)where 𝑎

𝑖
= exp(𝐴

𝑖
);

then, 𝑏(𝑥)(∑
𝑛∈Z 𝑃(𝑛)𝑥

−𝑛
) = 0 if and only if 𝐵(𝑑/𝑑𝑥)𝑃(𝑥) = 0.

Below, we prove that ŜS
𝑞,𝑘

and ŜS
±±

𝑞,𝑘,𝑙
satisfy the

properties (SP1), (SP2), and (SP3), which is equivalent to
study of its parabolic subalgebras.ThenusingTheorem 13 and
Proposition 14, we obtain two equivalent characterizations
of the quasifinite highest weight modules of these algebras.
Before studying each particular case, we will consider the
following useful result.

Lemma 15. Let 𝐴 = 𝑧
𝑛
𝑓
1
(𝑇
𝑞
)𝐸
11
+ 𝑧
𝑛
𝑓
2
(𝑇
𝑞
)𝐸
22

and
𝑧
𝑚
𝑔(𝑇
𝑞
)𝐸
𝑖𝑗
be nonzero elements in ŜS

𝑞
, where 𝑛 ̸= 0, 𝑖, 𝑗 =

1, 2 and let ℎ ∈ C[𝑤−1, 𝑤] be nonconstant. Then one has the
following.

(a) [𝐴, 𝑧𝑚𝑔(𝑇
𝑞
)𝐸
𝑖𝑗
] ̸= 0 or [𝐴, 𝑧𝑚𝑔(𝑇

𝑞
)ℎ(𝑇
𝑞
)𝐸
𝑖𝑗
] ̸= 0, with

𝑖 ̸= 𝑗.
(b) If 𝑓

𝑖
̸= 0, then [𝐴, 𝑧

𝑚
𝑔(𝑇
𝑞
)𝐸
𝑖𝑖
] ̸= 0 or

[𝐴, 𝑧
𝑚
𝑔(𝑇
𝑞
)ℎ(𝑇
𝑞
)𝐸
𝑖𝑖
] ̸= 0.

Proof. (a) We suppose that [𝐴, 𝑧𝑚𝑔(𝑇
𝑞
)𝐸
12
] = 0 and

[𝐴, 𝑧
𝑚
𝑔(𝑇
𝑞
)ℎ(𝑇
𝑞
)𝐸
12
] = 0; then,

𝑓
1
(𝑞
𝑚
𝑇
𝑞
) 𝑔 (𝑇

𝑞
) = 𝑓
2
(𝑇
𝑞
) 𝑔 (𝑞

𝑛
𝑇
𝑞
) , (79)

𝑓
1
(𝑞
𝑚
𝑇
𝑞
) 𝑔 (𝑇

𝑞
) ℎ (𝑇

𝑞
) = 𝑓
2
(𝑇
𝑞
) 𝑔 (𝑞

𝑛
𝑇
𝑞
) ℎ (𝑞
𝑛
𝑇
𝑞
) . (80)

Using (79) and the hypothesis, we have that 𝑓
1
and 𝑓

2
are

nonzero.Then, if we replace (79) with (80), we obtain ℎ(𝑇
𝑞
) =

ℎ(𝑞
𝑛
𝑇
𝑞
)which is a contradiction since ℎ is not constant, 𝑛 ̸= 0,

and 𝑞 is not unity root. The other case is similar.
The proof of (b) is similar to the proof of (a).

3.1. The Case g = ŜS
𝑞,𝑘
. It is clear that ŜS

𝑞,𝑘
satisfies (SP1).

Now, we suppose that 𝐴 = 𝑧
−𝑛
𝑓(𝑇
𝑞
)𝐸
11
+ 𝑧
−𝑛
𝑔(𝑇
𝑞
)𝐸
22
∈

(ŜS
𝑞,𝑘
)
−𝑛

(with 𝑛 ∈ N) satisfies [𝐴, (ŜS
𝑞,𝑘
)
1/2
] = 0; in

particular for all 𝑖 ∈ Z

[𝐴, 𝑇
𝑖

𝑞
𝐸
12
− 𝑧𝑇
𝑘−𝑖

𝑞
𝐸
21
] = 0. (81)

Then using (81), we obtain that 𝑓(𝑇
𝑞
) = 𝑞

−𝑛𝑖
𝑔(𝑇
𝑞
) for all

𝑖 ∈ Z. Hence, 𝑓 = 𝑔 = 0 (since 𝑛 ̸= 0 and 𝑞 is not
a root of unity); therefore, 𝐴 = 0. Now, we suppose that
𝐴 = 𝑧

−𝑛
𝑓(𝑇
𝑞
)𝐸
12
− (−1)

−𝑛
𝑞
(𝑛−1)𝑛𝑘

𝑧
−𝑛+1

𝑓(𝑞
𝑛
𝑇
−1

𝑞
)𝑇
(−2𝑛+1)𝑘

𝑞
𝐸
21

in (ŜS
𝑞,𝑘
)
−𝑛+1/2

; (with 𝑛 ∈ N) satisfies [𝐴, (SS
𝑞,𝑘
)
1/2
] = 0

then, for all 𝑖 ∈ Z we have that

[𝐴, 𝑇
𝑖

𝑞
𝐸
12
− 𝑧𝑇
𝑘−𝑖

𝑞
𝐸
21
] = 0, (82)

which is equivalent to 𝑓(𝑇
𝑞
) = 𝑞

𝑛𝑘−𝑖
𝑓(𝑞𝑇
𝑞
) for all 𝑖 ∈ Z.

Hence 𝑓 = 0; therefore, 𝐴 = 0. Thus, we prove that ŜS
𝑞,𝑘

satisfies the property (SP2).
Finally, using the following lemma, we will prove that

ŜS
𝑞,𝑘

satisfies the property (SP3).

Lemma 16. Let p = ⨁
𝑗∈(1/2)Zp𝑗 be a (1/2)Z-graded

subalgebra of ŜS
𝑞,𝑘
, where p

0
= (ŜS

𝑞,𝑘
)
0
. Then one has the

following.

(a) For each 𝑛 ∈ Z, p
𝑛+1/2

has finite codimension in
(ŜS
𝑞,𝑘
)
𝑛+1/2

if and only if p
𝑛+1/2

̸= 0.
(b) For each 𝑛 ∈ Z, p

𝑛
has finite codimension in

(ŜS
𝑞,𝑘
)
𝑛
if and only if there exists 𝑧𝑛𝑓(𝑞𝑛/2𝑇

𝑞
)𝐸
11
+

𝑧
𝑛
𝑔(𝑞
(𝑛−1)/2

𝑇
𝑞
)𝐸
22

∈ p
𝑛
, such that 𝑓 and 𝑔 are

nonzero.
(c) p
−𝑛

has finite codimension in (ŜS
𝑞,𝑘
)
−𝑛
, for all 𝑛 ∈

(1/2)N if and only if p
−1/2

̸= 0.

Proof. (a) We suppose that there exists

𝐴 = 𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝐸
12
− (−1)

𝑛
𝑞
(𝑛+1)𝑛𝑘

𝑧
𝑛+1

× 𝑓 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
(2𝑛+1)𝑘

𝑞
𝐸
21
∈ p
𝑛+1/2

,

(83)

with 𝑓 ̸= 0; then 𝑀𝑗
1
:= [𝐴, (𝑇

𝑗

𝑞
− 𝑇
−𝑗

𝑞
)𝐸
11
] and 𝑀𝑗

2
:=

[𝐴, (𝑞
−𝑗/2
𝑇
𝑗

𝑞
− 𝑞
𝑗/2
𝑇
−𝑗

𝑞
)𝐸
22
] belong to p

𝑛+1/2
, for all 𝑗 ∈ Z.

Moreover,𝐴𝑗 = (𝑞−(𝑛+1)𝑗 −𝑞𝑛𝑗)−1(𝑀𝑗
1
+𝑞
−(𝑛+1/2)𝑗

𝑀
𝑗

2
) ∈ p
𝑛+1/2

and

𝐴
𝑗
= 𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝑇
𝑗

𝑞
𝐸
12
− (−1)

𝑛
𝑞
(𝑛+1)𝑛𝑘−𝑛𝑗

𝑧
𝑛+1

× 𝑓 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
(2𝑛+1)𝑘−𝑗

𝑞
𝐸
21
,

(84)

for all 𝑗 ∈ Z×. Therefore, using (84), we have that

𝑧
𝑛
𝑔 (𝑇
𝑞
) 𝐸
12
− (−1)

𝑛
𝑞
(𝑛+1)𝑛𝑘

𝑧
𝑛+1

× 𝑔 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
(2𝑛+1)𝑘

𝑞
𝐸
21
∈ p
𝑛+1/2

,

(85)



10 ISRNMathematical Physics

for all 𝑔(𝑤) ∈ ⟨𝑓(𝑤)⟩, where ⟨𝑓(𝑤)⟩ is the ideal ofC[𝑤−1, 𝑤]
generated by 𝑓(𝑤). Using that ⟨𝑓(𝑤)⟩ has finite codimension
in C[𝑤−1, 𝑤], we obtain that p

𝑛+1/2
has finite codimension

in (ŜS
𝑞,𝑘
)
𝑛+1/2

(see Remark 11). The proof of the converse is
trivial.

(b) We suppose that 𝐴 = 𝑧𝑛𝑓(𝑞𝑛/2𝑇
𝑞
)𝐸
11
+ 𝑧
𝑛
𝑔(𝑞
(𝑛−1)/2

𝑇
𝑞
)𝐸
22
∈ p
𝑛
, with nonzero 𝑓 and 𝑔 in C[𝑤−1, 𝑤]

(𝑛,2𝑛𝑘); then
similar to the aforementioned argument

(𝑞
−𝑛𝑗/2

− 𝑞
𝑛𝑗/2
)
−1

[𝐴, (𝑇
𝑗

𝑞
− 𝑇
−𝑗

𝑞
) 𝐸
11
]

= 𝑧
𝑛
𝑓 (𝑞
𝑛/2
𝑇
𝑞
) (𝑞
𝑛𝑗/2
𝑇
𝑗

𝑞
+ 𝑞
−𝑛𝑗/2

𝑇
−𝑗

𝑞
) 𝐸
11
∈ p
𝑛
,

𝑏 [𝐴, (𝑞
−𝑗/2
𝑇
𝑗

𝑞
− 𝑞
𝑗/2
𝑇
−𝑗

𝑞
) 𝐸
22
]

= 𝑧
𝑛
𝑔 (𝑞
(𝑛−1)/2

𝑇
𝑞
)

×(𝑞
(𝑛−1)𝑗/2

𝑇
𝑗

𝑞
+𝑞
−(𝑛−1)𝑗/2

𝑇
−𝑗

𝑞
) 𝐸
22
∈ p
𝑛
,

(86)

where 𝑏 = (𝑞(−𝑛/2)𝑗 − 𝑞(𝑛/2)𝑗)−1, and this is true for all 𝑗 ∈ Z×.
Therefore

𝑧
𝑛
ℎ
1
(𝑞
𝑛/2
𝑇
𝑞
) 𝐸
11
∈ p
𝑛
, ∀ℎ

1
∈ 𝑓 (𝑤)C[𝑤

−1
, 𝑤]
(1,0)

,

𝑧
𝑛
ℎ
2
(𝑞
(𝑛−1)/2

𝑇
𝑞
) 𝐸
22
∈ p
𝑛
, ∀ℎ

2
∈ 𝑔 (𝑤)C[𝑤

−1
, 𝑤]
(1,0)

.

(87)

Since 𝑓(𝑤)C[𝑤−1, 𝑤](1,0) and 𝑔(𝑤)C[𝑤−1, 𝑤](1,0) have finite
codimension in C[𝑤−1, 𝑤]

(𝑛,2𝑛𝑘), we obtain that p
𝑛
has finite

codimension in (ŜS
𝑞,𝑘
)
𝑛
. The proof of the converse is trivial.

(c) We suppose that p
−1/2

̸= 0; then, in order to prove that
p
−𝑛

has finite codimension in (ŜS
𝑞,𝑘
)
−𝑛
, for all 𝑛 ∈ (1/2)N,

we only need to see that this is true for all 𝑛 ∈ N, since by using
(SP2), we obtain that p

−𝑛+1/2
̸= 0 for all 𝑛 ∈ N; then, from (a)

we have that p
−𝑛+1/2

has finite codimension in (ŜS
𝑞,𝑘
)
−𝑛+1/2

for all 𝑛 ∈ N. By hypothesis, there exists 𝐴 = 𝑧−1𝑓(𝑇
𝑞
)𝐸
12
+

𝑓(𝑞𝑇
−1

𝑞
)𝑇
−𝑘

𝑞
𝐸
21
∈ p
−1/2

with 𝑓 ̸= 0; then, using (84), we have
that 𝐵 = 𝑧−1𝑓(𝑇

𝑞
)𝑇
𝑞
𝐸
12
+ 𝑞𝑓(𝑞𝑇

−1

𝑞
)𝑇
−𝑘−1

𝑞
𝐸
21
∈ p
−1/2

, and

[𝐴, 𝐵] := 𝑧
−1
𝑓
1
(𝑞
−1/2
𝑇
𝑞
) 𝐸
11
+ 𝑧
−1
𝑔
1
(𝑞
−1
𝑇
𝑞
) 𝐸
22
∈ p
−1
,

(88)

where 𝑓
1
and 𝑔

1
are nonzero. Hence, by (b), p

−1
has finite

codimension in (ŜS
𝑞,𝑘
)
−1
. Moreover, by (87) we obtain that

𝑧
−1
𝑓
1
(𝑞
−1/2
𝑇
𝑞
) ℎ (𝑞
−1/2
𝑇
𝑞
) 𝐸
11
∈ p
−1
, (89)

𝑧
−1
𝑔
1
(𝑞
−1
𝑇
𝑞
) ℎ (𝑞
−1
𝑇
𝑞
) 𝐸
22
∈ p
−1
, (90)

for all ℎ(𝑤) ∈ C[𝑤−1, 𝑤]
(1,0). Now, by induction we suppose

that p
−𝑛

has finite codimension in (ŜS
𝑞,𝑘
)
−𝑛
; then, there

exists 𝐴 = 𝑧
−𝑛
𝑓(𝑞
−𝑛/2
𝑇
𝑞
)𝐸
11
+ 𝑧
−𝑛
𝑔(𝑞
−(𝑛+1)/2

𝑇
𝑞
)𝐸
22
∈ p
−𝑛

where 𝑓 and 𝑔 are nonzero, and by (89) and Lemma 15(b),

[𝐴, 𝑧
−1
𝑓
1
(𝑞
−1/2
𝑇
𝑞
) 𝐸
11
] ̸= 0

or [𝐴, 𝑧−1𝑓
1
(𝑞
−1/2
𝑇
𝑞
) ℎ (𝑞
−1/2
𝑇
𝑞
) 𝐸
11
] ̸= 0,

(91)

for some no constant ℎ(𝑤) in C[𝑤−1, 𝑤]
(1,0); therefore, there

exists a nonzero element 𝑧−𝑛−1𝑓(𝑇
𝑞
)𝐸
11

in p
−𝑛−1

. Similarly,
using (90) and Lemma 15(b), we see that there exists a
nonzero element 𝑧−𝑛−1𝑔(𝑇

𝑞
)𝐸
22

in p
−𝑛−1

; then, using (b),
p
−𝑛−1

has finite codimension in (ŜS
𝑞,𝑘
)
−𝑛−1

, finishing the
induction. The proof of the converse is trivial.

Corollary 17. (a) Any parabolic subalgebra of ŜS
𝑞,𝑘

is non-
degenerate.

(b) Any nonzero element of (ŜS
𝑞,𝑘
)
−1/2

is nondegenerate.
(c) ŜS

𝑞,𝑘
satisfies (SP3).

Proof. Let p be a parabolic subalgebra of ŜS
𝑞,𝑘
; by definition

there exists 𝑗 ∈ (1/2)N such that p
−𝑗
̸= 0, and then by (SP2)

p
−1/2

̸= 0; the proof of (a) follows from Lemma 16(c). Finally,
(b) follows from (a), and (c) follows from (b).

A functional 𝜆 ∈ (ŜS
𝑞,𝑘
)
∗

0
is described by its labels

Δ
𝑛,1
= −𝜆((𝑇

𝑛

𝑞
−𝑇
−𝑛

𝑞
)𝐸
11
), Δ
𝑛,2
= −𝜆((𝑞

−𝑛
𝑇
𝑛

𝑞
− 𝑇
−𝑛

𝑞
)𝐸
22
) with

𝑛 ∈ Z, and the central charge 𝜆(𝐶) = 𝑐. We will consider the
generating series

Δ
𝜆,𝑖
(𝑥) = ∑

𝑛∈Z

Δ
𝑛,𝑖
𝑥
−𝑛
, with 𝑖 = 1, 2. (92)

Theorem 18. An irreducible highest weight ŜS
𝑞,𝑘
-module

𝐿(ŜS
𝑞,𝑘
, 𝜆) is quasifinite if and only if one of the following

equivalent conditions holds.

(a) There exists a Laurent polynomial 𝑏(𝑥) such that

𝑏 (𝑞𝑥) (Δ
𝜆,1
(𝑥) + Δ

𝜆,2
(𝑥) + 𝑐) = 0. (93)

(b) There exists a quasipolynomial 𝑃(𝑥) such that

𝑃 (𝑛) = Δ
𝑛,1
+ Δ
𝑛,2
+ 𝛿
𝑛,0
𝑐, (94)

for all 𝑛 ∈ Z.

Proof. By Theorem 13, 𝐿(ŜS
𝑞,𝑘
, 𝜆) is quasifinite if and only

if there exist a nondegenerate element 𝑎 in (ŜS
𝑞,𝑘
)
−1/2

, such
that 𝜆([(ŜS

𝑞,𝑘
)
1/2
, 𝑎]) = 0.

Now, let 𝑎 = 𝑧−1𝑏(𝑇
𝑞
)𝐸
12
+ 𝑏(𝑞𝑇

−1

𝑞
)𝑇
−𝑘

𝑞
𝐸
21
be a nonzero

element of (ŜS
𝑞,𝑘
)
−1/2

(with 𝑏(𝑤) = ∑
𝑗
𝑏
𝑗
𝑤
𝑗); then,

by Corollary 17(b), 𝑎 is a nondegenerate element. Then, 𝜆
([(ŜS

𝑞,𝑘
)
1/2
, 𝑎]) = 0 if and only if, for all 𝑖 ∈ Z,

0 = 𝜆 ([(𝑇
𝑖

𝑞
𝐸
12
− 𝑧𝑇
𝑘−𝑖

𝑞
𝐸
21
, 𝑎)])

= ∑

𝑗

𝑞
𝑗
𝑏
𝑗
(Δ
𝑘−𝑖+𝑗,1

+ Δ
𝑘−𝑖+𝑗,2

) + 𝑞
−𝑘+𝑖
𝑏
−𝑘+𝑖
𝑐.

(95)
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Multiplying (95) by 𝑥−𝑘+𝑖 and adding over 𝑖 ∈ Z, we obtain
that

0 = ∑

𝑗,𝑖

𝑞
𝑗
𝑏
𝑗
(Δ
𝑘−𝑖+𝑗,1

+ Δ
𝑘−𝑖+𝑗,2

) 𝑥
−𝑘+𝑖

+∑

𝑖

𝑞
−𝑘+𝑖
𝑏
−𝑘+𝑖
𝑥
−𝑘+𝑖
𝑐

= 𝑏 (𝑞𝑥) (Δ
𝜆,1
(𝑥) + Δ

𝜆,2
(𝑥) + 𝑐) .

(96)

The equivalence between (a) and (b) follows from
Proposition 14.

3.2. The Case g = ŜS
±±

𝑞,𝑘,𝑙
. It is clear that ŜS

±±

𝑞,𝑘,𝑙
satisfies

(SP1). Now, we prove that ŜS
±±

𝑞,𝑘,𝑙
satisfies (SP2). We suppose

that 𝐴 = 𝑧
−𝑛
𝑓(𝑞
−𝑛/2
𝑇
𝑞
)𝐸
12
+ 𝑧
−𝑛+1

𝑔(𝑞
(−𝑛+1)/2

𝑇
𝑞
)𝐸
21

in
(ŜS
±±

𝑞,𝑘,𝑙
)
−𝑛+1/2

(with 𝑛 ∈ N) satisfies [𝐴, (ŜS
±±

𝑞,𝑘,𝑙
)
1/2
] = 0;

in particular if we take nonzero elements ℎ
12
(𝑇
𝑞
)𝐸
12

and
𝑧ℎ
21
(𝑞
1/2
𝑇
𝑞
)𝐸
21
in (ŜS

±±

𝑞,𝑘,𝑙
)
1/2

, we have that

[𝐴, ℎ
12
(𝑇
𝑞
) 𝐸
12
] = 0; (97)

that is, 𝑔(𝑞(−𝑛+1)/2𝑇
𝑞
)ℎ
12
(𝑇
𝑞
) = 0; therefore, 𝑔(𝑤) = 0.

Similarly,

[𝐴, 𝑧ℎ
21
(𝑞
1/2
𝑇
𝑞
) 𝐸
21
] = 0, (98)

which is equivalent to𝑓(𝑞−𝑛/2+1𝑇
𝑞
)ℎ
21
(𝑞
1/2
𝑇
𝑞
) = 0; therefore,

𝑓(𝑤) = 0, and then 𝐴 = 0.

Remark 19. Given 𝐵 = 𝑧
𝑛
𝑓(𝑞
𝑛/2
𝑇
𝑞
)𝐸
12
+ 𝑧
𝑛+1
𝑔(𝑞
(𝑛+1)/2

𝑇
𝑞
)

𝐸
21
∈ (ŜS

±±

𝑞,𝑘,𝑙
)
𝑛+1/2

and 𝐴 = ℎ(𝑇
𝑞
)𝐸
11
− ℎ(𝑇

−1

𝑞
)𝐸
22
∈

(ŜS
±±

𝑞,𝑘,𝑙
)
0
with ℎ ∈ C[𝑤−1, 𝑤], then 𝑀 := [𝐴, 𝐵] ∈

(ŜS
±±

𝑞,𝑘,𝑙
)
𝑛+1/2

, where𝑀
𝑖𝑖
= 0 (𝑖 = 1, 2) and

𝑀
12
= −𝑧
𝑛
𝑓 (𝑞
𝑛/2
𝑇
𝑞
) (ℎ (𝑞

𝑛
𝑇
𝑞
) + ℎ (𝑇

−1

𝑞
)) , (99)

𝑀
21
= 𝑧
𝑛+1
𝑔 (𝑞
(𝑛+1)/2

𝑇
𝑞
) (ℎ (𝑇

𝑞
) + ℎ (𝑞

−𝑛−1
𝑇
−1

𝑞
)) . (100)

Now, let 𝐴 = 𝑧−𝑛𝑓
1
(𝑇
𝑞
)𝐸
11
+ 𝑧
−𝑛
𝑓
2
(𝑇
𝑞
)𝐸
22
∈ (ŜS

±±

𝑞,𝑘,𝑙
)
−𝑛

(with 𝑛 ∈ N) be such that 𝐴 is nonzero; then, if we
take nonzero 𝐵 = 𝑓(𝑇

𝑞
)𝐸
12

in (ŜS
±±

𝑞,𝑘,𝑙
)
1/2

by Remark 19,
there exists 𝑓(𝑇

𝑞
)ℎ(𝑇
𝑞
)𝐸
12
∈ (ŜS

±±

𝑞,𝑘,𝑙
)
1/2

such that ℎ is not
constant; then by Lemma 15(a), we have that

[𝐴, 𝑓 (𝑇
𝑞
) 𝐸
12
] ̸= 0 or [𝐴, 𝑓 (𝑇

𝑞
) ℎ (𝑇

𝑞
) 𝐸
12
] ̸= 0. (101)

Therefore ŜS
±±

𝑞,𝑘,𝑙
satisfies (SP2).

In order to prove that ŜS
±±

𝑞,𝑘,𝑙
satisfies (SP3), we will need

the following result. We denote

𝛿
󸀠

𝑛
:=

{{

{{

{

𝛿
𝑛
+ 1, in (SS+,±

𝑞,𝑘,𝑙
)
𝑛+1/2

,

𝛿
𝑛
, in (SS−,±

𝑞,𝑘,𝑙
)
𝑛+1/2

.

(102)

Lemma 20. Let p = ⨁
𝑗∈(1/2)Zp𝑗 be a (1/2)Z-graded

subalgebra of ŜS
±±

𝑞,𝑘,𝑙
, with p

0
= (ŜS

±±

𝑞,𝑘,𝑙
)
0
. Then one has the

following:

(a) for each 𝑛 ∈ Z, p
𝑛
has finite codimension in (ŜS

±±

𝑞,𝑘,𝑙
)
𝑛

if and only if p
𝑛
̸= 0;

(b) for each 𝑛 ∈ Z, p
𝑛+1/2

has finite codimension in
(ŜS
±±

𝑞,𝑘,𝑙
)
𝑛+1/2

if and only if there exists 𝑧𝑛𝑓(𝑞𝑛𝑇
𝑞
)𝐸
12
+

𝑧
𝑛+1
𝑔(𝑞
(𝑛+1)/2

𝑇
𝑞
)𝐸
21
∈ p
𝑛+1/2

, such that 𝑓 and 𝑔 are
nonzero;

(c) p
−𝑛

has finite codimension in (ŜS
±±

𝑞,𝑘,𝑙
)
−𝑛

for all 𝑛 ∈
(1/2)N, if and only if p

−1/2
has finite codimension in

(ŜS
±±

𝑞,𝑘,𝑙
)
−1/2

.

Proof. (a) Let 𝐴 = 𝑧
𝑛
𝑓(𝑇
𝑞
)𝐸
11

−

(±1)
𝑛
𝑞
𝑛(𝑛𝑘−𝑙)/2

𝑧
𝑛
𝑓(𝑞
−𝑛
𝑇
−1

𝑞
)𝑇
𝑛𝑘

𝑞
𝐸
22
∈ p
𝑛
, with 𝑓 ̸= 0; then,

𝐵
𝑗
:= (1 − 𝑞

𝑛𝑗
)
−1
[𝐴, 𝑇
𝑗

𝑞
𝐸
11
− 𝑇
−𝑗

𝑞
𝐸
22
] ∈ p
𝑛
and

𝐵
𝑗
= 𝑧
𝑛
𝑓 (𝑇
𝑞
) 𝑇
𝑗

𝑞
𝐸
11
− (±1)

𝑛
𝑞
(𝑛(𝑛𝑘−𝑙)/2)−𝑛𝑗

× 𝑧
𝑛
𝑓 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘−𝑗

𝑞
𝐸
22
,

(103)

for all 𝑗 ∈ Z×; therefore, by (103) we have that

𝑧
𝑛
𝑔 (𝑇
𝑞
) 𝐸
11
− (±1)

𝑛
𝑞
𝑛(𝑛k−𝑙)/2

𝑧
𝑛
𝑔 (𝑞
−𝑛
𝑇
−1

𝑞
) 𝑇
𝑛𝑘

𝑞
𝐸
22
∈ p
𝑛
,

(104)

for all 𝑔(𝑤) ∈ ⟨𝑓(𝑤)⟩, and since ⟨𝑓(𝑤)⟩ has finite codimen-
sion in C[𝑤−1, 𝑤], we have that p

𝑛
has finite codimension in

(ŜS
±±

𝑞,𝑘,𝑙
)
𝑛
(see Remark 11).Theproof of the converse is trivial.

(b) We suppose that there exist nonzero elements

𝑧
𝑛
𝑓
1
(𝑇
𝑞
) 𝐸
12
, 𝑧

𝑛+1
𝑓
2
(𝑇
𝑞
) 𝐸
21

in p
𝑛+1/2

; (105)

then, using Remark 19, we obtain that 𝑧𝑛𝑔
1
(𝑇
𝑞
)𝐸
12
∈ p
𝑛+1/2

for all 𝑔
1
(𝑞
−𝑛/2
𝑤) ∈ 𝑓

1
(𝑤)C[𝑤−1, 𝑤]

(1,0) (see (99)) and 𝑧𝑛+1𝑔
2

(𝑇
𝑞
)𝐸
21
∈ p
𝑛+1/2

for all 𝑔
2
(𝑞
(−𝑛+1)/2

𝑤) ∈ 𝑓
2
(𝑤)C[𝑤−1, 𝑤]

(1,0)

(see (100)). Then using that 𝑓
1
(𝑤)C[𝑤−1, 𝑤]

(1,0) has finite
codimension inC[𝑤−1, 𝑤](𝛿𝑛,𝑛𝑘+𝑙) and𝑓

2
(𝑤)C[𝑤−1, 𝑤]

(1,0) has
finite codimension in C[𝑤−1, 𝑤]

(𝛿
󸀠

𝑛
,(𝑛+1)𝑘−𝑙), we obtain that

p
𝑛+1/2

has finite codimension in (ŜS
±±

𝑞,𝑘,𝑙
)
𝑛+1/2

. Therefore
in order to prove that p

𝑛+1/2
has finite codimension in

(ŜS
±±

𝑞,𝑘,𝑙
)
𝑛+1/2

, we only need to see that there exist nonzero
elements as aforementioned in p

𝑛+1/2
. Let 𝐵 = 𝑧

𝑛
𝑓(𝑞
𝑛/2

𝑇
𝑞
)𝐸
12
+ 𝑧
𝑛+1
𝑔(𝑞
(𝑛+1)/2

𝑇
𝑞
)𝐸
21
∈ p
𝑛+1/2

with nonzero 𝑓 and
𝑔, and let 𝐴 and𝑀 be as in Remark 19. Then, taking ℎ(𝑤) =
𝑤 − 𝑞
𝑛
𝑤
−1 (observe that ℎ(𝑇−1

𝑞
) = −ℎ(𝑞

𝑛
𝑇
𝑞
)), we obtain that

𝑀 = 𝑧
𝑛+1
𝑔 (𝑞
(𝑛+1)/2

𝑇
𝑞
)

× (ℎ (𝑇
𝑞
) + ℎ (𝑞

−(𝑛+1)
𝑇
−1

𝑞
))

× 𝐸
21
∈ p
𝑛+1/2

, with 𝑀 ̸= 0.

(106)
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Similarly, taking ℎ(𝑤) = 𝑤 − 𝑞−𝑛−1𝑤−1 (observe that ℎ(𝑇
𝑞
) =

−ℎ(𝑞
−𝑛−1

𝑇
−1

𝑞
)), we obtain

𝑀 = − 𝑧
𝑛
𝑓 (𝑞
𝑛/2
𝑇
𝑞
)

× (ℎ (𝑞
𝑛
𝑇
𝑞
) + ℎ (𝑇

−1

𝑞
)) 𝐸
12
∈ p
𝑛+1/2

, with 𝑀 ̸= 0,

(107)

proving the existence of nonzero elements of those forms.The
proof of the converse is trivial.

(c) We suppose that p
−1/2

has finite codimension in
(ŜS
±±

𝑞,𝑘,𝑙
)
−1/2

; then, in order to prove that p
−𝑛

has finite
codimension in (ŜS

±±

𝑞,𝑘,𝑙
)
−𝑛

for all 𝑛 ∈ (1/2)N, we only need
to see that this is true for all −𝑛+1/2with 𝑛 ∈ N, since in this
case by using (SP2), we obtain that p

−𝑛
̸= 0 for all 𝑛 ∈ N; then,

by (a), we have that p
−𝑛

has finite codimension in (ŜS
±±

𝑞,𝑘,𝑙
)
−𝑛
,

for all 𝑛 ∈ N.
By hypothesis, there exist nonzero elements 𝐴 = 𝑧

−1
𝑓

(𝑞
−1
𝑇
𝑞
)𝐸
12
and 𝐵 = 𝑔(𝑇

𝑞
)𝐸
21
in p
−1/2

; therefore, [𝐴, 𝐵] ∈ p
−1

is nonzero. By induction, we suppose that p
−𝑛+1/2

has finite
codimension in (ŜS

±±

𝑞,𝑘,𝑙
)
−𝑛+1/2

; then, there exist nonzero
elements 𝑧−𝑛𝑓

12
(𝑞
𝑛
𝑇
𝑞
)𝐸
12

and 𝑧−𝑛+1𝑓
21
(𝑞
(−𝑛+1)/2

𝑇
𝑞
)𝐸
21

in
(ŜS
±±

𝑞,𝑘,𝑙
)
−𝑛+1/2

, and by Remark 19, we also have 𝑧−𝑛𝑓
12
(𝑞
𝑛
𝑇
𝑞
)

𝑔
12
(𝑇
𝑞
)𝐸
12
, 𝑧−𝑛+1𝑓

21
(𝑞
(−𝑛+1)/2

𝑇
𝑞
)𝑔
21
(𝑇
𝑞
)𝐸
21
in (ŜS

±±

𝑞,𝑘,𝑙
)
−𝑛+1/2

with no constant 𝑔
𝑖𝑗
for all 𝑖 ̸= 𝑗. Then by Lemma 15(a), we

have that

[𝑧
−𝑛
𝑓
12
(𝑞
𝑛
𝑇
𝑞
) 𝐸
12
, [𝐴, 𝐵]] ̸= 0

or [𝑧−𝑛𝑓
12
(𝑞
𝑛
𝑇
𝑞
) 𝑔
12
(𝑇
𝑞
) 𝐸
12
, [𝐴, 𝐵]] ̸= 0.

(108)

Therefore from (108), there exists a nonzero element
𝑧
−𝑛−1

𝑓
12
(𝑇
𝑞
)𝐸
12

in (ŜS
±±

𝑞,𝑘,𝑙
)
−𝑛−1/2

. Similarly, we prove that
there exists nonzero 𝑧−𝑛𝑓

21
(𝑇
𝑞
)𝐸
21

in (ŜS
±±

𝑞,𝑘,𝑙
)
−𝑛−1/2

; finally
the proof follows from (b). The proof of the converse is
trivial.

Corollary 21. (a) 𝑎 = 𝑧
−1
𝑓(𝑞
−1/2
𝑇
𝑞
)𝐸
12
+ 𝑔(𝑇

𝑞
)𝐸
21

∈

(ŜS
±±

𝑞,𝑘,𝑙
)
−1/2

is nondegenerate if and only if 𝑓 and 𝑔 are
nonzero.

(b) ŜS
±±

𝑞,𝑘,𝑙
satisfies (SP3).

Proof. (a) Let 𝑎 = 𝑧
−1
𝑓(𝑞
−1/2
𝑇
𝑞
)𝐸
12
+ 𝑔(𝑇

𝑞
)𝐸
21

∈

(ŜS
±±

𝑞,𝑘,𝑙
)
−1/2

. Then, if 𝑓 and 𝑔 are nonzero by Lemma 20(b)
and p𝑎

−1/2
has finite codimension in (ŜS

±±

𝑞,𝑘,𝑙
)
−1/2

, then by
Lemma 20(c), 𝑎 is a nondegenerate element. Reciprocally, if
𝑓 = 0 or 𝑔 = 0, then by definition p𝑎

−1
= 0.

(b) Let p be a nondegenerate parabolic subalgebra of
ŜS
±±

𝑞,𝑘,𝑙
; then there exists 𝑎 = 𝑧−1𝑓(𝑞−1𝑇

𝑞
)𝐸
12
+ 𝑔(𝑇

𝑞
)𝐸
21
∈

p
−1/2

where𝑓 and 𝑔 are nonzero.Then the proof follows from
(a).

A functional𝜆 ∈ (ŜS
±±

𝑞,𝑘,𝑙
)
∗

0
is described by its labels,Δ

𝑛
=

𝜆(𝑇
𝑛

𝑞
𝐸
11
−𝑇
−𝑛

𝑞
𝐸
22
)with 𝑛 ∈ Z and the central charge𝜆(𝐶) = 𝑐.

Moreover, we define Δ0
𝑛
= (Δ
𝑛
− Δ
−𝑛
) = 𝜆((𝑇

𝑛

𝑞
− 𝑇
−𝑛

𝑞
)𝐸
11
+

(𝑇
𝑛

𝑞
− 𝑇
−𝑛

𝑞
)𝐸
22
). We consider the generating series

Δ
𝜆
(𝑥) = ∑

𝑛∈Z

Δ
𝑛
𝑥
−𝑛
,

Δ
0

𝜆
(𝑥) = Δ

𝜆
(𝑥) − Δ

𝜆
(𝑥
−1
) = ∑

𝑛∈Z

Δ
0

𝑛
𝑥
−𝑛
.

(109)

Theorem 22. An irreducible highest weight ŜS
±±

𝑞,𝑘,𝑙
-module

𝐿(ŜS
±±

𝑞,𝑘,𝑙
, 𝜆) is quasifinite if and only if one of the following

equivalent conditions holds.

(a) There exist Laurent polynomials 𝑓(𝑤) and 𝑔(𝑤) such
that

𝑔 (𝑥) Δ
0

𝜆
(𝑥) = 0,

𝑓 (𝑥) Δ
0

𝜆
(𝑞
−1/2
𝑥) = 0.

(110)

(b) There exist quasipolynomials 𝑃
12
(𝑥) and 𝑃

21
(𝑥) such

that

𝑃
12
(𝑛) = 𝑞

−𝑛/2
Δ
0

𝑛
,

𝑃
21
(𝑛) = Δ

0

𝑛
,

(111)

for all 𝑛 ∈ Z.

Proof. ByTheorem 13,𝐿(ŜS
±±

𝑞,𝑘,𝑙
, 𝜆) is quasifinite if and only if

there exists a nondegenerate element 𝑎 in (ŜS
±±

𝑞,𝑘,𝑙
)
−1/2

, such
that 𝜆([(ŜS

±±

𝑞,𝑘,𝑙
)
1/2
, 𝑎]) = 0.

Now, let 𝑎 = 𝑧−1𝑓(𝑞−1/2𝑇
𝑞
)𝐸
12
+𝑔(𝑇
𝑞
)𝐸
21
∈ (ŜS

±±

𝑞,𝑘,𝑙
)
−1/2

,
with 𝑓(𝑤) = ∑

𝑗
𝑓
𝑗
𝑤
𝑗
∈ C[𝑤−1, 𝑤]

(𝛿−1,𝑙−𝑘) and 𝑔(𝑤) =
∑
𝑗
𝑔
𝑗
𝑤
𝑗
∈ C[𝑤−1, 𝑤]

(𝛿
󸀠

−1
,−𝑙) such that 𝑓 and 𝑔 are nonzero.

Then by Corollary 21(a), 𝑎 is a nondegenerate element. Then,
𝜆([(ŜS

𝑞,𝑘
)
1/2
, 𝑎]) = 0 if and only if, for all 𝑖 ∈ Z,

𝜆 ([(𝑇
𝑖

𝑞
− (−1)

𝛿0𝑇
𝑙−𝑖

𝑞
) 𝐸
12
, 𝑎]) = 0, (112)

𝜆 ([𝑧 (𝑞
𝑖/2
𝑇
𝑖

𝑞
− (−1)

𝛿
󸀠

0𝑞
(𝑘−𝑙−𝑖)/2

𝑇
𝑘−𝑙−𝑖

𝑞
)𝐸
21
, 𝑎]) = 0. (113)

From (112), we obtain that

0 = 𝜆 (𝑔 (𝑇
𝑞
) (𝑇
𝑖

𝑞
− (−1)

𝛿0𝑇
𝑙−𝑖

𝑞
) 𝐼𝑑)

= ∑

𝑗

𝑔
𝑗
Δ
0

𝑖+𝑗
.

(114)

Multiplying (114) by 𝑥−𝑖 and adding over 𝑖 ∈ Z, we obtain that

0 = ∑

𝑖,𝑗

𝑔
𝑗
Δ
0

𝑖+𝑗
𝑥
−𝑖

= 𝑔 (𝑥) Δ
0

𝜆
(𝑥) .

(115)
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Then, by (113) and using Remark 8, we obtain that

0 = 𝜆((∑

𝑗

𝑓
𝑗
𝑞
(𝑖+𝑗)/2

𝑇
𝑖+𝑗

𝑞
−∑

𝑗

𝑓
𝑗
𝑞
−(𝑖+𝑗)/2

𝑇
−𝑖−𝑗

𝑞
)𝐸
11

+(∑

𝑗

𝑓
𝑗
𝑞
−(𝑖+𝑗)/2

𝑇
𝑖+𝑗

𝑞
−∑

𝑗

𝑓
𝑗
𝑞
(𝑖+𝑗)/2

𝑇
−𝑖−𝑗

q )𝐸
22
)

+ (∑

𝑗

𝑓
𝑗
𝑞
−(𝑖+𝑗)/2

𝑇
𝑖+𝑗

𝑞
−∑

𝑗

𝑓
𝑗
𝑞
(𝑖+𝑗)/2

𝑇
−𝑖−𝑗

𝑞
)

0

𝑐

= ∑

𝑗

𝑓
𝑗
𝑞
(𝑖+𝑗)/2

Δ
𝑖+𝑗
−∑

𝑗

𝑓
𝑗
𝑞
−(𝑖+𝑗)/2

Δ
−𝑖−𝑗
.

(116)

Multiplying (116) by 𝑥−𝑖 and adding over 𝑖 ∈ Z, we obtain that

0 = ∑

𝑖,𝑗

𝑓
𝑗
𝑞
(𝑖+𝑗)/2

Δ
𝑖+j𝑥
−𝑖−𝑗
𝑥
𝑗
−∑

𝑖,𝑗

𝑓
𝑗
𝑞
−(𝑖+𝑗)/2

Δ
−𝑖−𝑗
𝑥
−𝑖−𝑗
𝑥
𝑗

= ∑

𝑗

𝑓
𝑗
Δ
𝜆
(𝑞
−1/2
𝑥) 𝑥
𝑗
−∑

𝑗

𝑓
𝑗
Δ
𝜆
(𝑞
1/2
𝑥
−1
) 𝑥
𝑗

= 𝑓 (𝑥) Δ
0

𝜆
(𝑞
−1/2
𝑥) .

(117)

The equivalence between (a) and (b) follows from
Proposition 14.
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