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This work is concerned with the influence of uniform suction or injection on flow and heat transfer analysis of unsteady
incompressible magnetohydrodynamic (MHD) fluid with slip conditions. The resulting unsteady problem for velocity and heat
transfer is solved by means of Laplace transform.The characteristics of the transient velocity, overall transient velocity, steady state
velocity and heat transfer at the walls are analyzed and discussed. Graphical results reveal that themagnetic field, slip parameter, and
suction (injection) have significant influences on the velocity, and temperature distributions, which also changes the heat transfer
behaviors at the two plates. The results of Fang (2004) are also recovered by keeping magnetic field and slip parameter absent.

1. Introduction

Navier-Stokes equations are the basic equations of fluid
mechanics. Exact solutions of Navier-Stokes equations are
rare due to their inherent nonlinearity. Exact solutions
are important because they serve as accuracy checks for
numerical solutions. Complete integration of these equations
is done by computer techniques, but the accuracy of the
results can be established only by comparison with exact
solutions. In the literature, there are a large number of
Newtonian fluid flows for which exact solutions are possible
[1–6]. The effects of transverse magnetic field on the flow
of an electrically conducting viscous fluid have been studied
extensively in view of numerous applications to astrophysical,
geophysical, and engineering problems [7–15]. If the working
fluid contains concentrated suspensions, then the wall slip
can occur [16]. Khaled and Vafai [3] studied the effect of the
slip on Stokes and Couette flows due to an oscillating wall.
However, the literature lacks studies that take into account
the possibility of fluid slippage at the walls. Applications of
these problems appear in microchannels or nanochannels
and in applications where a thin film of light oil is attached
to the moving plates or when the surface is coated with
special coating such as a thick monolayer of hydrophobic

octadecyltrichlorosilane [17]. Yu and Ameel [18] imposed
nonlinear slip boundary conditions on flow in rectangular
microchannels. Erdogan [6] studied deeply the solution to the
Stokes problem under nonslip conditions at the wall. Ayub
and Zaman [19] studied the effects of suction and blowing
for orthogonal flow impinging on a wall. Khan et al. [20]
discussed the flow of Sisko fluid through a porous medium.
Ariel et al. [21] considered the flow of elasticoviscous fluid
with partial slip. Raptis et al. [22–25] studied steady and
unsteady free convection and mass transfer flow through a
porousmedium. Penton [26] presented the transient solution
for the flow due to the oscillating plate.

In this note, the flow of an incompressible, unsteady,
viscous, MHD fluid with slip conditions is considered.
Unsteady means time dependent flow, and we are looking
for the effects of different parameters on flow with the
variation of time. Unsteady and steady velocity profiles with
mass transfer will be presented and solved exactly. There
is mass injection from one plate and the same amount of
suction on the other plate. The steady state temperature is
also solved and discussed. When the fluid motion is set up
from rest, the velocity field contains transients, determined
by the initial conditions which gradually disappear in time.
The effect of magnetic field and time on the transient
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velocity and on overall transient velocity has been seen
graphically for both injection and suction. The effect of slip
parameter on steady state velocity for injection/suction is
shown graphically. Steady state temperature profiles and heat
transfer rate at the walls (Nusselt number at the walls) are
also discussed for injection/suction for different Prandtl and
Reynolds numbers. The results of Fang [1] are recovered by
takingmagnetic field parameter and slip parameter to be zero.

2. Theoretical Derivation

2.1. Transient Velocity Profiles. Consider an incompressible,
viscous, unsteady flowproblem, inwhich there is slip between
the bottom wall and fluid and also between top wall and
fluid. There are mass injection velocity V

𝑤
at the bottom

wall and mass suction velocity V
𝑤
at the top wall; V

𝑤
>

0 corresponds to injection and V
𝑤

< 0 corresponds to
suction. The governing equation for this problem can be
obtained as [2]

𝜕𝑢 (𝑦, 𝑡)

𝜕𝑡

+ V
𝑤

𝜕𝑢 (𝑦, 𝑡)

𝜕𝑦

= ]
𝜕
2

𝑢 (𝑦, 𝑡)

𝜕𝑦
2

− 𝑁𝑢 (𝑦, 𝑡) , (1)

where 𝑢(𝑦, 𝑡) is the velocity of the fluid in the 𝑦-direction
which is along the wall direction, 𝑦 is the distance alon 𝑦-
axis g, 𝑡 is the time, ] = 𝜇/𝜌, 𝑁 = 𝜎𝐵

2

0
/𝜌, 𝜇 is the dynamic

viscosity, ] is the kinematic viscosity, 𝜌 is the density of
the fluid, 𝜎 is the electric conductivity of the fluid, 𝐵

0
is

the applied magnetic field, and 𝑁 is the MHD factor or
parameter. For the boundary conditions we consider the
existence of slip between the velocity of the fluid at the walls
and speed of the walls:

𝑢 (0, 𝑡) − 𝜆

𝜕𝑢 (𝑦, 𝑡)

𝜕𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑦=0

= 0,

𝑢 (ℎ, 𝑡) + 𝜆

𝜕𝑢 (𝑦, 𝑡)

𝜕𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑦=ℎ

= 𝑈
0
.

(2)

Initial condition is

𝑢 (𝑦, 0) = 0, (3)

where 𝜆 is the slip parameter (𝜆 = 0 gives the usual no slip
condition at the wall) and 𝑈

0
is the velocity at the upper wall.

The problem exactly reduces to the problem of Fang [1] if we
take 𝑁 = 0, 𝜆 = 0. Equations (1), (2), and (3) can be made
dimensionless by defining

𝑈 =

𝑢

𝑈
0

, 𝑌 =

𝑦

ℎ

, 𝑇 =

𝑡

𝜏
𝑐

=

𝑡]
ℎ
2
. (4)

Then (1), (2), and (3) become

𝜕𝑈

𝜕𝑇

+ 𝑅
𝑒

𝜕𝑈

𝜕𝑌

=

𝜕
2

𝑈

𝜕𝑌
2
− 𝑁𝑈, (5)

𝑈 (0, 𝑇) − 𝜆

𝜕𝑈 (𝑌, 𝑇)

𝜕𝑌

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑌=0

= 0, (6)

𝑈 (1, 𝑇) + 𝜆

𝜕𝑈 (𝑌, 𝑇)

𝜕𝑌

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑌=1

= 1, (7)

𝑈 (𝑌, 0) = 0, (8)

where 𝑁 = 𝑁(ℎ
2

/]), 𝜆 = 𝜆/ℎ, and 𝑅
𝑒
= V
𝑤
(ℎ/]) (Reynolds

number). Decomposing 𝑈(𝑌, 𝑇) into two parts, say, transient
part and a steady state part,

𝑈 (𝑌, 𝑇) = 𝑈
𝑡
(𝑌, 𝑇) + 𝑈

𝑠
(𝑌, 𝑇) . (9)

Then we have two separate problems and the steady state part
will be

𝑅
𝑒

𝑑𝑈
𝑠

𝑑𝑌

=

𝑑
2

𝑈
𝑠

𝑑𝑌
2
− 𝑁𝑈

𝑠
, (10)

𝑈
𝑠
(0, 𝑇) − 𝜆

𝜕𝑈
𝑠
(𝑌, 𝑇)

𝜕𝑌

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑌=0

= 0, (11)

𝑈
𝑠
(1, 𝑇) + 𝜆

𝜕𝑈
𝑠
(𝑌, 𝑇)

𝜕𝑌

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑌=1

= 1. (12)

The solution of (10) with BCs (11) and (12) can be obtained as

𝑈
𝑠
(𝑌) =

𝑒
𝑎𝑌

[(1 − 𝜆𝑎) sinh (𝑏
1
𝑌) + 𝜆𝑏

1
cosh (𝑏

1
𝑌)]

𝑒
𝑎
[(1 − 𝜆

2

(𝑎
2
− 𝑏
2

1
)) sinh (𝑏

1
) + 2𝜆𝑏

1
cosh (𝑏

1
)]

,

(13)

where 𝑎 = 𝑅
𝑒
/2 and 𝑏

1
= √𝑅

2

𝑒
/4 + 𝑁. When 𝜆 = 0 (no slip)

and𝑁 = 0 (no magnetic field), then (13) becomes

𝑈
𝑠
(𝑌) =

𝑒
(𝑅
𝑒
/2)𝑌 sinh (𝑅

𝑒
/2) 𝑌

𝑒
𝑅
𝑒
/2 sinh (𝑅

𝑒
/2)

=

1 − 𝑒
𝑅
𝑒
𝑌

1 − 𝑒
𝑅
𝑒

. (14)

Equation (14) the result number (7) of Fang [1]. If there is no
mass transfer at the walls, then 𝑅

𝑒
= 0, so 𝑎 = 0 and 𝑏

1
=

√𝑁, and (13) becomes

𝑈
𝑠
(𝑌) =

sinh (√𝑁𝑌) + 𝜆√𝑁 cosh (√𝑁𝑌)

(1 + 𝜆

2

𝑁) sinh (√𝑁) + 2𝜆√𝑁 cosh (√𝑁)

.

(15)

If there is no mass transfer at the walls and magnetic field is
absent, then 𝑅

𝑒
= 0, 𝑁 = 0, and slip parameter 𝜆 = 0 then

(10), (11), and (12) will collapse into

𝑑
2

𝑈
𝑠
(𝑌)

𝑑𝑌
2

= 0, 𝑈
𝑠
(0) = 0, 𝑈

𝑠
(1) = 1. (16)
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Its solution is 𝑈
𝑠
(𝑌) = 𝑌, which is conventional Couette flow.

When 𝑅
𝑒
→ −∞, 𝑁 = 0, and 𝜆 = 0, then (13) gives 𝑈

𝑠
(𝑌) =

1, except at the bottom wall (at the bottom wall 𝑌 =

0 and 𝑈
𝑠
(0) = 0). When 𝑅

𝑒
→ ∞, 𝑁 = 0, and 𝜆 = 0,

then (13) gives 𝑈
𝑠
(𝑌) = 0, except at the upper wall (at the

upper wall 𝑌 = 1 and 𝑈
𝑠
(1) = 1). The transient part problem

becomes

𝜕𝑈
𝑡

𝜕𝑇

+ 𝑅
𝑒

𝜕𝑈
𝑡

𝜕𝑌

=

𝜕
2

𝑈
𝑡

𝜕𝑌
2
− 𝑁𝑈

𝑡
, (17)

𝑈
𝑡
(0, 𝑇) − 𝜆

𝜕𝑈
𝑡
(𝑌, 𝑇)

𝜕𝑌

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑌=0

= 0, (18)

𝑈
𝑡
(1, 𝑇) + 𝜆

𝜕𝑈
𝑡
(𝑌, 𝑇)

𝜕𝑌

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑌=1

= 1, (19)

𝑈
𝑡
(𝑌, 0) = −𝑈

𝑠
(𝑌) . (20)

The solution can be derived by using Laplace transformation
techniques [27]. The Laplace transform pair is defined by

𝑈 (𝑌, 𝑠) = 𝐿 [𝑈 (𝑌, 𝑇)] = ∫

∞

0

𝑈 (𝑌, 𝑇) 𝑒
−𝑠𝑇

𝑑𝑇,

𝑈 (𝑌, 𝑇) = 𝐿
−1

[𝑈 (𝑌, 𝑠)] =

1

2𝜋𝜄

∫

𝜆
1
+𝜄∞

𝜆
1
−𝜄∞

𝑈 (𝑌, 𝑠) 𝑒
𝑠𝑇

𝑑𝑠,

(21)

over that range of values of 𝑠 for which the integrals exist.
Here, 𝑠 is a parameter, real or complex, 𝐿 is the operator
that transforms 𝑈(𝑌, 𝑇) into 𝑈(𝑌, 𝑠), called Laplace trans-
form operator, and 𝐿

−1 is the inverse Laplace transform
operator. The solution can be shown as

𝑈
𝑡
(𝑌, 𝑇) = 𝐿

−1

[ (𝑒
𝑎𝑌

((1 − 𝜆𝑎) sinh (𝑏𝑌) + 𝜆𝑏 cosh (𝑏𝑌)))

× (𝑒
𝑎

𝑠 ((1 − 𝜆

2

(𝑎
2

− 𝑏
2

)) sinh (𝑏)

+2𝜆𝑏 cosh (𝑏) ))

−1

] − 𝑈
𝑠
,

(22)

where 𝑎 = 𝑅
𝑒
/2 and 𝑏 = √𝑅

2

𝑒
/4 + 𝑠 + 𝑁. In inverse

Laplace transform of the above equation we have simple
pole at 𝑠 = 0 and infinite number of poles (located on the
negative real axis) at 𝑠

𝑛
= −(𝑙

2

𝑛
+ 𝑎
2

+ 𝑁), (𝑛 = 1, 2, 3, . . .),
where 𝑙

𝑛
=𝑖𝑏
𝑛
, (𝑏
𝑛
= √𝑅

2

𝑒
/4 + 𝑠

𝑛
+ 𝑁) and are given by

tan (𝑙
𝑛
) =

−2𝜆𝑙
𝑛

1 − 𝜆

2

(𝑎
2
+ 𝑙
2

𝑛
)

. (23)

The transient part velocity will be

𝑈
𝑡
(𝑌, 𝑇) =

∞

∑

𝑛=1

Re 𝑠[𝑈
𝑡
(𝑌, 𝑠) 𝑒

𝑠𝑇

]
𝑠=𝑠
𝑛

+ Re 𝑠[𝑈
𝑡
(𝑌, 𝑠) 𝑒

𝑠𝑇

]
𝑠=0

− 𝑈
𝑠
,

(24)

where Re 𝑠 stands for residue and 𝑈
𝑡
(𝑌, 𝑠) is given by

𝑈
𝑡
(𝑌, 𝑠) =

𝑒
𝑎𝑌

((1 − 𝜆𝑎) sinh (𝑏𝑌) + 𝜆𝑏 cosh (𝑏𝑌))

𝑒
𝑎
𝑠 ((1 − 𝜆

2

(𝑎
2
− 𝑏
2
)) sinh (𝑏) + 2𝜆𝑏 cosh (𝑏))

.

(25)

We have
∞

∑

𝑛=1

Re 𝑠[𝑈
𝑡
(𝑌, 𝑠)𝑒

𝑠𝑇

]
𝑠=𝑠
𝑛

=

∞

∑

𝑛=1

𝐺
1
(𝑙
𝑛
, 𝑌)

𝐺
2
(𝑙
𝑛
)

𝑒
𝑠
𝑛
𝑇

, (26)

where

𝐺
1
(𝑙
𝑛
, 𝑌) = 𝑒

𝑎𝑌

((1 − 𝜆𝑎) sin (𝑙
𝑛
𝑌)

+ 𝜆𝑙
𝑛
cos (𝑙
𝑛
𝑌)) ,

𝐺
2
(𝑙
𝑛
) = 𝑒
𝑎

𝑠
𝑛
(𝜆 (𝜆 + 1) sin (𝑙

𝑛
)

− (1 + 2𝜆 − 𝜆

2

(𝑎
2

+ 𝑙
2

𝑛
))

cos (𝑙
𝑛
)

2𝑙
𝑛

) .

(27)

The residue at 𝑠 = 0 gives steady velocity

Re 𝑠[𝑈
𝑡
(𝑌, 𝑠) 𝑒

𝑠𝑇

]
𝑠=0

= lim
𝑠→0

[𝑠𝑈
𝑡
(𝑌, 𝑠) 𝑒

𝑠𝑇

]

= lim
𝑠→0

(𝑒
𝑎𝑌

((1 − 𝜆𝑎) sinh (𝑏𝑌)

+𝜆𝑏 cosh (𝑏𝑌)) 𝑒
𝑠𝑇

)

× (𝑒
𝑎

((1 − 𝜆

2

(𝑎
2

− 𝑏
2

)) sinh (𝑏)

+2𝜆𝑏 cosh (𝑏) ))

−1

,

lim
𝑠→0

𝑏 = lim
𝑠→0

√
𝑅
2

𝑒

4

+ 𝑠 + 𝑁 =
√

𝑅
2

𝑒

4

+ 𝑁 = 𝑏
1
.

(28)

Therefore,

Re 𝑠[𝑈
𝑡
(𝑌, 𝑠) 𝑒

𝑠𝑇

]
𝑠=0

= (𝑒
𝑎𝑌

[(1 − 𝜆𝑎) sinh (𝑏
1
𝑌) + 𝜆𝑏

1
cosh (𝑏

1
𝑌)])

× (𝑒
𝑎

[(1 − 𝜆

2

(𝑎
2

− 𝑏
2

1
))

× sinh (𝑏
1
) + 2𝜆𝑏

1
cosh (𝑏

1
) ])

−1

.

(29)

By using (13), we get

Re 𝑠[𝑈
𝑡
(𝑌, 𝑠)𝑒

𝑠𝑇

]
𝑠=0

= 𝑈
𝑠
. (30)



4 ISRNMathematical Physics

The transient part velocity from (24) becomes

𝑈
𝑡
(𝑌, 𝑇) =

∞

∑

𝑛=1

𝐺
1
(𝑙
𝑛
, 𝑌)

𝐺
2
(𝑙
𝑛
)

𝑒
𝑠
𝑛
𝑇

,

𝑈
𝑡
(𝑌, 𝑇)

=

∞

∑

𝑛=1

[ (𝑒
𝑎𝑌

((1 − 𝜆𝑎) sin (𝑙
𝑛
𝑌) + 𝜆𝑙

𝑛
cos (𝑙
𝑛
𝑌)))

× (𝑒
𝑎

𝑠
𝑛
(𝜆 (𝜆 + 1) sin (𝑙

𝑛
)

− (1 + 2𝜆 − 𝜆

2

(𝑎
2

+ 𝑙
2

𝑛
))

×

cos (𝑙
𝑛
)

2𝑙
𝑛

))

−1

𝑒
𝑠
𝑛
𝑇

] .

(31)

Therefore, the overall transient solution from (9) becomes

𝑈 (𝑌, 𝑇) =

∞

∑

𝑛=1

{(𝑒
𝑎𝑌

((1 − 𝜆𝑎) sin (𝑙
𝑛
𝑌) + 𝜆𝑙

𝑛
cos (𝑙
𝑛
𝑌))

× (𝑒
𝑎

𝑠
𝑛
(𝜆 (𝜆 + 1) sin (𝑙

𝑛
)

− (1 + 2𝜆 − 𝜆

2

(𝑎
2

+ 𝑙
2

𝑛
))

×

cos (𝑙
𝑛
)

2𝑙
𝑛

))

−1

)𝑒
𝑠
𝑛
𝑇

}

+ (𝑒
𝑎𝑌

[(1 − 𝜆𝑎) sinh (𝑏
1
𝑌) + 𝜆𝑏

1
cosh (𝑏

1
𝑌)])

× (𝑒
𝑎

[(1 − 𝜆

2

(𝑎
2

− 𝑏
2

1
)) sinh (𝑏

1
)

+2𝜆𝑏
1
cosh (𝑏

1
) ])

−1

.

(32)

To recover Fang [1] result number (13) we substitute 𝜆 =

0, 𝑁 = 0, 𝑎 = 𝑅
𝑒
/2, and 𝑏

1
= 𝑅
𝑒
/2 into (32), and we get

𝑈 (𝑌, 𝑇) =

∞

∑

𝑛=1

{

sin (𝑙
𝑛
𝑌) 𝑒
𝑠
𝑛
𝑇

𝑒
(𝑅
𝑒
/2)𝑌

−𝑒
𝑅
𝑒
/2
𝑠
𝑛
cos (𝑙
𝑛
) / (2𝑙
𝑛
)

}

+

sinh ((𝑅
𝑒
/2) 𝑌) 𝑒

(𝑅
𝑒
/2)𝑌

𝑒
𝑅
𝑒
/2 sinh (𝑅

𝑒
/2)

.

(33)

Since 𝜆 = 0, so (23) gives

tan (𝑙
𝑛
) = 0 󳨐⇒ sin (𝑙

𝑛
) = 0 󳨐⇒ 𝑙

𝑛
= arcsin (0) = 𝑛𝜋,

𝑛 = 1, 2, 3, . . . .

(34)

Therefore cos(𝑙
𝑛
) = cos(𝑛𝜋) = (−1)

𝑛; also we have 𝑙
𝑛
= 𝑖𝑏
𝑛
,

(𝑏
𝑛
= √𝑅

2

𝑒
/4 + 𝑠

𝑛
+ 𝑁), but 𝑁 = 0, so

𝑙
𝑛
= 𝑖

√
𝑅
2

𝑒

4

+ 𝑠
𝑛
󳨐⇒ 𝑛𝜋 = 𝑖

√
𝑅
2

𝑒

4

+ 𝑠
𝑛

󳨐⇒ 𝑛
2

𝜋
2

= −(

𝑅
2

𝑒

4

+ 𝑠
𝑛
)

󳨐⇒ 𝑠
𝑛
= −(𝑛

2

𝜋
2

+

𝑅
2

𝑒

4

) .

(35)

Using 𝑙
𝑛
= 𝑛𝜋, cos(𝑙

𝑛
) = (−1)

𝑛, and 𝑠
𝑛
= −(𝑛

2

𝜋
2

+𝑅
2

𝑒
/4) into

(33) we obtain

𝑈 (𝑌, 𝑇) =

2𝜋𝑒
−(𝑅
2

𝑒
/4)𝑇

𝑒
(𝑅
𝑒
/2)𝑌

𝑒
𝑅
𝑒
/2

×

∞

∑

𝑛=1

{

𝑛(−1)
𝑛 sin (𝑛𝜋𝑌) 𝑒

−𝑛
2

𝜋
2

𝑇

(𝑛
2
𝜋
2
+ 𝑅
2

𝑒
/4)

}

+

sinh ((𝑅
𝑒
/2) 𝑌) 𝑒

(𝑅
𝑒
/2)𝑌

𝑒
𝑅
𝑒
/2 sinh (𝑅

𝑒
/2)

.

(36)

Consider

sinh ((𝑅
𝑒
/2) 𝑌) 𝑒

(𝑅
𝑒
/2)𝑌

𝑒
𝑅
𝑒
/2 sinh (𝑅

𝑒
/2)

=

𝑒
(𝑅
𝑒
/2)𝑌

(𝑒
(𝑅
𝑒
/2)𝑌

− 𝑒
−(𝑅
𝑒
/2)𝑌

)

𝑒
𝑅
𝑒
/2
(𝑒
𝑅
𝑒
/2

− 𝑒
−𝑅
𝑒
/2
)

=

(𝑒
𝑅
𝑒
𝑌

− 1)

(𝑒
𝑅
𝑒 − 1)

=

(1 − 𝑒
𝑅
𝑒
𝑌

)

(1 − 𝑒
𝑅
𝑒)

.

(37)

So (36) becomes

𝑈 (𝑌, 𝑇) =

2𝜋𝑒
−(𝑅
2

𝑒
/4)𝑇

𝑒
(𝑅
𝑒
/2)𝑌

𝑒
𝑅
𝑒
/2

×

∞

∑

𝑛=1

{

𝑛(−1)
𝑛 sin (𝑛𝜋𝑌) 𝑒

−𝑛
2

𝜋
2

𝑇

(𝑛
2
𝜋
2
+ 𝑅
2

𝑒
/4)

}

+

(1 − 𝑒
𝑅
𝑒
𝑌

)

(1 − 𝑒
𝑅
𝑒)

.

(38)

Result number (13) of Fang [1] is exactly followed in (38).

2.2. Steady State Temperature. It is too difficult to exactly
solve the transient energy equation with viscous dissipation
for this problem by using 𝑈(𝑌, 𝑇). We solve the steady state
energy equation, which in dimensionless form is given by [1]

𝑃
𝑟
𝑅
𝑒

𝑑𝜎

𝑑𝑌

=

𝑑
2

𝜎

𝑑𝑌
2
+ 𝐸
𝑐
𝑃
𝑟
(

𝑑𝑈
𝑠

𝑑𝑌

)

2

,

𝜎 (0) = 0, 𝜎 (1) = 1,

(39)
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where 𝑃
𝑟

= ]/𝛼 is the Prandtl number, 𝐸
𝑐

= 𝑈
2

0
/𝑐
𝑝
(𝜃
1
−

𝜃
2
) is the Eckert number, 𝜃

1
is temperature of the bottom

fixed plate, 𝜃
2
is temperature of the top moving plate, 𝜎 is

dimensionless temperature (𝜎 = (𝜃−𝜃
1
)/(𝜃
2
−𝜃
1
)), and𝑈

𝑠
is

the steady state velocity given by (13). The solution of (39)
with BCs (35) for 𝑃

𝑟
̸= 1, is

𝜎 (𝑌) =

(𝑒
𝑃
𝑟
𝑅
𝑒
𝑌

− 1)

(𝑒
𝑃
𝑟
𝑅
𝑒 − 1)

+ 𝐸
𝑐
𝑃
𝑟
𝑀[

(𝑒
𝑃
𝑟
𝑅
𝑒
𝑌

− 1)

(𝑒
𝑃
𝑟
𝑅
𝑒 − 1)

× {𝑁
1
(𝑒
2(𝑎+𝑏

1
)

− 1)

+𝑁
2
(𝑒
2(𝑎−𝑏

1
)

− 1) − 𝑁
3
(𝑒
2𝑎

− 1)}

+ {𝑁
1
(1 − 𝑒

2(𝑎+𝑏
1
)𝑌

)

+𝑁
2
(1 − 𝑒

2(𝑎−𝑏
1
)𝑌

) − 𝑁
3
(1 − 𝑒

2𝑎𝑌

)} ] ,

(40)

where

𝑁
1
=

𝑀
1

𝐿
1

, 𝑁
2
=

𝑀
2

𝐿
2

, 𝑁
3
=

𝑀
3

𝐿
3

,

𝐿
1
= 4(𝑎 + 𝑏

1
)
2

− 2𝑃
𝑟
𝑅
𝑒
(𝑎 + 𝑏

1
) ,

𝐿
2
= 4(𝑎 − 𝑏

1
)
2

− 2𝑃
𝑟
𝑅
𝑒
(𝑎 − 𝑏

1
) , 𝐿

3
= 𝑅
2

𝑒
(1 − 𝑃

𝑟
) ,

𝑀 =

1

[𝑒
𝑎
{(1 − 𝜆

2

(𝑎
2
− 𝑏
2

1
)) sinh (𝑏

1
) + 2𝜆𝑏

1
cosh (𝑏

1
)}]

2
,

𝑀
1
= (

𝐵
1
+ 𝑏
1

2

)

2

, 𝑀
2
= (

𝐵
1
− 𝑏
1

2

)

2

,

𝑀
3
= (

𝐵
2

1
− 𝑏
2

1

2

) ,

𝐵
1
= (𝑎 − 𝜆 (𝑎

2

− 𝑏
2

1
)) .

(41)

When viscous dissipation term is negligible, then energy
equation (39) is

𝑑
2

𝜎

𝑑𝑌
2
− 𝑃
𝑟
𝑅
𝑒

𝑑𝜎

𝑑𝑌

= 0, 𝜎 (0) = 0, 𝜎 (1) = 1. (42)

Its solution is

𝜎 (𝑌) =

(𝑒
𝑃
𝑟
𝑅
𝑒
𝑌

− 1)

(𝑒
𝑃
𝑟
𝑅
𝑒 − 1)

. (43)

So the first term in (40) is the solution of energy equation
when viscous dissipation term is negligible and the second
term in (40) is the temperature profile from viscous dissipa-
tion and MHD. It is found from (40) that the temperature

profile is linearly dependent upon the Eckert number. The
Nusselt number at the walls will be 𝑁

𝑢
= |𝑑𝜎/𝑑𝑌|

𝑤
. The

Nusselt number for the bottom wall, 𝑌 = 0, is

𝑁
𝑢
1

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝜎

𝑑𝑌

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑌=0

,

𝑁
𝑢
1

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑃
𝑟
𝑅
𝑒

(𝑒
𝑃
𝑟
𝑅
𝑒 − 1)

[1 + 𝐸
𝑐
𝑃
𝑟
𝑀{𝑁

1
(𝑒
2(𝑎+𝑏

1
)

− 1)

+ 𝑁
2
(𝑒
2(𝑎−𝑏

1
)

− 1)

−𝑁
3
(𝑒
2𝑎

− 1)} ]

− 2𝐸
𝑐
𝑃
𝑟
𝑀{𝑁

1
(𝑎 + 𝑏

1
)

+𝑁
2
(𝑎 − 𝑏

1
) − 𝑁
3
𝑎}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(44)

The Nusselt number for the upper wall, 𝑌 = 1, is

𝑁
𝑢
2

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝜎

𝑑𝑌

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑌=1

,

𝑁
𝑢
2

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑃
𝑟
𝑅
𝑒
𝑒
𝑃
𝑟
𝑅
𝑒

(𝑒
𝑃
𝑟
𝑅
𝑒 − 1)

× [1 + 𝐸
𝑐
𝑃
𝑟
𝑀{𝑁

1
(𝑒
2(𝑎+𝑏

1
)

− 1)

+ 𝑁
2
(𝑒
2(𝑎−𝑏

1
)

− 1)

−𝑁
3
(𝑒
2𝑎

− 1)}]

− 2𝐸
𝑐
𝑃
𝑟
𝑀{𝑁

1
(𝑎 + 𝑏

1
) 𝑒
2(𝑎+𝑏

1
)

+ 𝑁
2
(𝑎 − 𝑏

1
) 𝑒
2(𝑎−𝑏

1
)

− 𝑁
3
𝑎𝑒
2𝑎

}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(45)

When 𝑃
𝑟
= 1, then the energy equation is

𝑑
2

𝜎

𝑑𝑌
2
− 𝑅
𝑒

𝑑𝜎

𝑑𝑌

= −𝐸
𝑐
𝑀{𝑀

1
𝑒
2(𝑎+𝑏

1
)𝑌

+𝑀
2
𝑒
2(𝑎−𝑏

1
)𝑌

−𝑀
3
𝑒
2𝑎𝑌

} ,

𝜎 (0) = 0, 𝜎 (1) = 1.

(46)

The solution of (46) is

𝜎 (𝑌) =

(𝑒
𝑅
𝑒
𝑌

− 1)

(𝑒
𝑅
𝑒 − 1)

[1 + 𝐸
𝑐
𝑀{𝑁

4
(𝑒
2(𝑎+𝑏

1
)

− 1)

+ 𝑁
5
(𝑒
2(𝑎−𝑏

1
)

− 1)

−

𝑀
3

𝑅
𝑒

𝑒
2𝑎

}]

+ 2𝐸
𝑐
𝑀{𝑁

4
(1 − 𝑒

2(𝑎+𝑏
1
)𝑌

)

+ 𝑁
5
(1 − 𝑒

2(𝑎−𝑏
1
)𝑌

) +

𝑀
3
𝑌

𝑅
𝑒

𝑒
2𝑎𝑌

} ,

(47)
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where

𝑁
4
=

𝑀
1

𝐿
4

, 𝑁
5
=

𝑀
2

𝐿
5

,

𝐿
4
= 4(𝑎 + 𝑏

1
)
2

− 2𝑅
𝑒
(𝑎 + 𝑏

1
) ,

𝐿
5
= 4(𝑎 − 𝑏

1
)
2

− 2𝑅
𝑒
(𝑎 − 𝑏

1
) .

(48)

The Nusselt number in this case is

𝑁
𝑢
1

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑅
𝑒

(𝑒
𝑅
𝑒 − 1)

× [1 + 𝐸
𝑐
𝑀{𝑁

4
(𝑒
2(𝑎+𝑏

1
)

− 1)

+ 𝑁
5
(𝑒
2(𝑎−𝑏

1
)

− 1)

−

𝑀
3

𝑅
𝑒

𝑒
2𝑎

}]

− 2𝐸
𝑐
𝑀{𝑁

4
(𝑎 + 𝑏

1
)

+𝑁
5
(𝑎 − 𝑏

1
) −

𝑀
3

𝑅
𝑒

}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝑁
𝑢
2

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑅
𝑒
𝑒
𝑅
𝑒

(𝑒
𝑅
𝑒 − 1)

× [1 + 𝐸
𝑐
𝑀{𝑁

4
(𝑒
2(𝑎+𝑏

1
)

− 1)

+ 𝑁
5
(𝑒
2(𝑎−𝑏

1
)

− 1)

−

𝑀
3

𝑅
𝑒

𝑒
2𝑎

}]

− 2𝐸
𝑐
𝑀{𝑁

4
(𝑎 + 𝑏

1
) 𝑒
2(𝑎+𝑏

1
)

+ 𝑁
5
(𝑎 − 𝑏

1
) 𝑒
2(𝑎−𝑏

1
)

−

𝑀
3

𝑅
𝑒

𝑎𝑒
2𝑎

}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(49)

It is worth recalling in the vicinity of (40) that when 𝜆 =

0, 𝑁 = 0, then result number (18) of Fang [1] can be derived.

3. Graphs and Discussion

In this part we discuss the variation of the transient part
velocity 𝑈

𝑡
, overall transient velocity 𝑈, and steady state

velocity 𝑈
𝑠
with distance from the wall 𝑌 for different values

of Reynolds number 𝑅
𝑒
, magnetic field parameter 𝑁, slip

parameter 𝜆, and time 𝑇.
Figures 1 and 2 show the variation of transient part

velocity 𝑈
𝑡
with distance from the wall 𝑌 for several val-

ues of magnetic parameter 𝑁, by keeping 𝜆 and 𝑇 fixed.
Figure 1 shows that when there is mass suction 𝑅

𝑒
< 0 at the

Y

U
t

0

−0.2

−0.4

−0.6

−0.8

−1

0 0.2 0.4 0.6 0.8 1

N = 0

N = 0.5

N = 1

N = 2

N = 1.5

Figure 1: Variation of 𝑈
𝑡
with 𝑌 for several values of 𝑁 with 𝑅

𝑒
=

−5, 𝜆 = 0.1, and 𝑇 = 0.05.

0 0.2 0.4 0.6 0.8 1
Y

0
U
t
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−0.02

−0.03

−0.04
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N = 1.5

Figure 2: Variation of 𝑈
𝑡
with 𝑌 for several values of 𝑁 with 𝑅

𝑒
=

5, 𝜆 = 0.1, and 𝑇 = 0.05.

0 0.2 0.4 0.6 0.8 1
Y

0

T = 0.01

T = 0.02

T = 0.05

T = 0.1

T = 0.2

U
t

−1.75

−1.5

−1.25
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−0.75

−0.5

−0.25

Figure 3: Variation of 𝑈
𝑡
with 𝑌 for several values of 𝑇 with 𝑅

𝑒
=

−5, 𝜆 = 0.1, and 𝑁 = 0.5.
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U
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Figure 4: Variation of 𝑈
𝑡
with 𝑌 for several values of 𝑇 with 𝑅

𝑒
=

5, 𝜆 = 0.1, and 𝑁 = 0.5.

0 0.1 0.2 0.3 0.4

0

U

N = 0

N = 0.5

N = 1

N = 2

N = 1.5

Y
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Figure 5: Variation of 𝑈 with 𝑌 for several values of 𝑁 with 𝑅
𝑒
=

−5, 𝜆 = 0.1, and 𝑇 = 0.05.

top wall, with increase in magnetic field, transient part veloc-
ity decreases in magnitude. Figure 2 shows that when there
is mass injection 𝑅

𝑒
> 0 at the bottom wall, with increase in

magnetic field, transient part velocity 𝑈
𝑡
decreases and will

become weaker as compared to the case of suction. From
Figure 3 it is observed that for suction at top wall and for
fixed values of 𝜆, 𝑁 transient part velocity 𝑈

𝑡
decreases in

magnitude with increase in time. Figure 4 shows that for
injection at bottomwall and for fixed values of 𝜆, 𝑁 transient
part velocity 𝑈

𝑡
decreases in magnitude with increase in

time. From Figures 3 and 4 it is seen that the transient
part velocity will decay with time, which is consistent with
what we expected. From Figures 3 and 4 it is clear that,
after a certain time, the transient part velocity will die
away and velocity will become developed. Figures 5 and 6
indicate variation of overall transient velocity 𝑈 with 𝑌 for
fixed values of 𝜆 and 𝑇. Figure 5 shows that, for 𝑅

𝑒
= −5 < 0,

0

0

0.1 0.2 0.3
Y

U

N = 0

N = 0.5

N = 1

N = 2

N = 1.5

−0.004

−0.003

−0.002

−0.001

Figure 6: Variation of 𝑈 with 𝑌 for several values of 𝑁 with 𝑅
𝑒
=

5, 𝜆 = 0.1, and 𝑇 = 0.05.

0 0.2 0.4 0.6 0.8 1 1.2
Y
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0.4
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0.8
U
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Figure 7: Variation of 𝑈 with 𝑌 for several values of 𝑇 with 𝑅
𝑒
=

5, 𝜆 = 0.1, and 𝑁 = 0.5.

with increase in magnetic parameter 𝑁, overall transient
velocity 𝑈 decreases. Figure 6 shows that, for 𝑅

𝑒
= 5 >

0, with increase in magnetic parameter 𝑁, overall transient
velocity 𝑈 decreases but weaker. The overall transient veloc-
ities for 𝑅

𝑒
= 5 at different times are depicted in Figure 7.

Figure 7 shows that for mass injection at the bottom wall,
overall transient velocity 𝑈 increases with time.

Figures 8 and 9 illustrate the variation of steady state
velocity 𝑈

𝑠
with 𝑌 for several values of slip parameter 𝜆 and

for fixed value of 𝑁. Figure 8 shows that, for suction at
the top wall with increase in slip parameter 𝜆, steady state
velocity 𝑈

𝑠
increases. Figure 9 shows that, for injection at the

bottom wall with increase in slip parameter 𝜆, steady state
velocity 𝑈

𝑠
decreases.

Now we discuss the variation of the steady state tem-
perature distribution 𝜎 with distance from the surface 𝑌 for
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Figure 9: Variation of 𝑈
𝑠
with 𝑌 for several values of 𝜆 with 𝑅

𝑒
=

5, 𝑁 = 0.5.

different values of five dimensionless parameters: Reynolds
number 𝑅

𝑒
, Prandtl number 𝑃

𝑟
, Eckert number 𝐸

𝑐
, slip

parameter 𝜆, and magnetic parameter 𝑁. Variation of the
Nusselt number at walls for different Prandtl numbers is also
discussed. Figures 10 and 11 elucidate the variation of steady
state temperature distribution 𝜎 with 𝑌 for several values
of 𝑃
𝑟
and for fixed values of 𝐸

𝑐
, 𝜆, and 𝑁. Figure 10 shows

that for 𝑅
𝑒

= 5 > 0, (injection) temperature 𝜎 at a point
decreases with increase in 𝑃

𝑟
. Figure 11 shows that, for 𝑅

𝑒
=

−5 < 0, (suction) temperature 𝜎 with increase in 𝑃
𝑟
increases

at a point. Comparison of Figures 10 and 11 shows that, for
mass suction at the bottom wall, the maximum temperature
will exist in the fluid because of viscous dissipation.

Figures 12 and 13 illustrate the variation of Nusselt
numbers at the bottomwall with 𝑅

𝑒
, for fixed values of 𝐸

𝑐
, 𝜆,

and 𝑁 and for several values of 𝑃
𝑟
. Figure 12 shows that
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Figure 10: Variation of 𝜎 with 𝑌 for several values of 𝑃
𝑟
with 𝑅

𝑒
=

5,𝐸
𝑐
= 2, 𝑁 = 0.5, and 𝜆 = 0.1.
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Figure 11: Variation of 𝜎 with 𝑌 for several values of 𝑃
𝑟
with 𝑅

𝑒
=

−5,𝐸
𝑐
= 2, 𝑁 = 0.5, and 𝜆 = 0.1.

when there is mass suction at the bottom wall, heat transfer
rate 𝑁

𝑢
1

increases with increase in 𝑃
𝑟
. Figure 13 shows that

when there is mass injection at the bottom wall, heat transfer
rate 𝑁

𝑢
1

decreases with increase in 𝑃
𝑟
. Figures 14 and 15

depict the variation of Nusselt numbers at the top wall
with 𝑅

𝑒
, for fixed values of 𝐸

𝑐
, 𝜆, and 𝑁 and for several

values of 𝑃
𝑟
. Figure 14 shows that when there is mass suction

at the top wall, heat transfer rate 𝑁
𝑢
2

increases in magnitude
with increase in 𝑃

𝑟
. Figure 15 shows that when there is mass

injection at the top wall, heat transfer rate 𝑁
𝑢
2

increases with
increase in 𝑃

𝑟
.

4. Final Remarks

In this study exact solutions for the velocity field and
temperature field in the presence of magnetic field, porosity,
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and slip parameter are constructed. A uniform magnetic
field is applied transversely to the flow. The expressions of
the velocity field and temperature field for flow subjected
to the slip conditions between the two parallel plates and
fluid are obtained by means of Laplace transform. The
so-obtained solutions, depending on the initial and the
boundary conditions, are presented as sum of the steady
state transient solutions. The results of Fang [1] are also
recovered by taking 𝜆 = 0, 𝑁 = 0. Graphical results for mass
transfer reveal that it has significant influence on the velocity
distribution, temperature distribution, and heat transfer rate
at the walls.The current analysis will be useful in dealing with
real engineering problems.
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𝑢
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with 𝑅
𝑒

: −5.5 → 2.2 for several
values of 𝑃

𝑟
with 𝐸

𝑐
= 2, 𝑁 = 0.5, and 𝜆 = 0.1.
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