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Improved (𝐺
󸀠

/𝐺)-expansion and first integral methods are used to construct exact solutions of the (2 + 1)-dimensional Eckhaus-
type extension of the dispersive long wave equation.The (𝐺

󸀠

/𝐺)-expansion method is based on the assumptions that the travelling
wave solutions can be expressed by a polynomial in (𝐺

󸀠

/𝐺) and the first integral method is based on the theory of commutative
algebra in which Division Theorem is of concern. It is worth mentioning that these methods are used for different systems and
those two different systems can both be reduced to a system that will be mentioned in this paper. To recapitulate, this investigation
has resulted in the exact solutions of the given systems.

1. Introduction

The investigation of exact solutions to nonlinear evolution
has become an interesting subject in nonlinear science field,
since the time when the soliton concept was first introduced
by Zabusky and Kruskal in 1965 [1]. It was not until the mid-
1960s when applied scientists began to use modern digital
computers to study nonlinear wave propagation that the
soundness of Russell’s early ideas began to be appreciated. He
viewed the solitary wave as a self-sufficient dynamic entity;
a “thing” displaying many properties of a particle. From the
modern perspective it is used as a constructive element to for-
mulate the complex dynamical behavior of wave systems
throughout science: fromhydrodynamics to nonlinear optics,
from plasmas to shock waves, and from the elementary par-
ticles of matter to the elementary particles of thought. For a
more detailed and technical account of the solitary wave, see
[2].

In recent years, othermethods have been developed, such
as the Backlund transformation method [3], Darboux trans-
formation [4], tanh method [5–7], extended tanh function
method [8], the generalized hyperbolic function [9], and
variable separation method [10].

The celebrated (1 + 1)-dimensional dispersive long wave
equation [11, 12]

𝑢
𝑡
+ V
𝑥
+
1

2
(𝑢
2
)
𝑥
= 0,

V
𝑡
+ (𝑢V + 𝑢 + 𝑢

𝑥𝑥
)
𝑥
= 0

(1)

plays an important role in nonlinear physics; many properties
of (1) have been reported [12, 13]. It is interesting to study the
extensions of (1) in higher-dimensional spaces. To date, there
exist two prototypical of (1) to cover the situation of wide
channel or open seas. In 1987, Boiti et al. [14] presented the
following (2 + 1)-dimensional extension related to (1):

𝑢
𝑡𝑦
+ V
𝑥𝑥
+
1

2
(𝑢
2
)
𝑥𝑦
= 0,

V
𝑡
+ (𝑢V + 𝑢 + 𝑢

𝑥𝑦
)
𝑥
= 0.

(2)

For (2), the Backlund transformation, soliton solutions are
given [14, 15]. In 1985, Eckhaus [16] presented another differ-
ent two-dimensional extension of (1):

𝑢
𝑡
+ V
𝑥
+
1

2
(𝑢
2
)
𝑥
= 0,

V
𝑡𝑥
+ (𝑢V + 𝑢 + 𝑢

𝑥𝑥
)
𝑥𝑥
+ 𝑢
𝑦𝑦
= 0

(3)
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which was obtained in the appropriate approximation from
the basic equations of hydrodynamics. It is easy to see that if
onemakes the transformation𝑢 = 𝑢(𝑥+𝑦, 𝑡), V = V(𝑥+𝑦, 𝑡)−1
then (3) can also be reduced to (1) so in the same way, (2)
can also be reduced to (1). But as Boiti et al. [14] pointed out,
system (2) is different from system (3). Therefore, the aim of
this paper is to find exact solutions of the (2+1)-dimensional
Eckhaus-type (2) and (3) by various methods.

2. Methodology

Consider a general nonlinear partial differential equation in
the form

𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑦
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑡
, 𝑢
𝑥𝑦
, . . .) = 0, (4)

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) is the solution of nonlinear PDE Equa-
tion (4). Furthermore, the transformationswhich are used are
as follows:

𝑢 (𝑡, 𝑥) = 𝑈 (𝜉) , 𝜉 = 𝛼 (𝑥 + 𝛽𝑦 − 𝛾𝑡) , (5)

where 𝛼, 𝛽, and 𝛾 are constants. Using the chain rule, it can
be found that

𝜕

𝜕𝑡
(⋅) = −𝛼𝛾

𝜕

𝜕𝜉
(⋅) ,

𝜕

𝜕𝑥
(⋅) = 𝛼

𝜕

𝜕𝜉
(⋅) ,

𝜕
2

𝜕𝑥2
(⋅) = 𝛼

2 𝜕
2

𝜕𝜉2
(⋅) , . . . .

(6)

At present, (6) is employed to change the nonlinear PDE
Equation (4) to nonlinear ordinary differential equation

𝐺(𝑈 (𝜉) , 𝑈
𝜉
(𝜉) , 𝑈

𝜉𝜉
(𝜉) , . . .) = 0. (7)

2.1. The Improved (𝐺󸀠/𝐺)-Expansion Method. We initially
predict the structure of the solution 𝑈 = 𝑈(𝜉) to (7) in the
finite series form

𝑈 (𝜉) =

𝑚

∑
𝑖=0

𝑎
𝑖
(
𝐺󸀠

𝐺
)

𝑖

+

𝑚

∑
𝑗=1

𝑏
𝑗
(
𝐺󸀠

𝐺
)

−𝑖

, (8)

where 𝐺 = 𝐺(𝜉) satisfies the second order LODE in the form

𝐺
󸀠󸀠
+ 𝜆𝐺 + 𝜇𝐺 = 0. (9)

𝑎
𝑖
, 𝑏
𝑗
, (𝑖, 𝑗 = 0, 1, 2, . . ., 𝑗 ̸= 0), 𝜆, and 𝜇 are constants to be

determined later, and 𝑎
𝑚

̸= 0 or 𝑏
𝑚

̸= 0; the unwritten part in
(8) is also a polynomial in (𝐺󸀠/𝐺), but for the degree which
is generally equal to or less than𝑚− 1, the positive integer𝑚
can be determined by considering the homogeneous balance
between the highest order derivatives and nonlinear terms
appearing inODE (7). Substituting (8) into (2) yields a system
of nonlinear algebraic equations for 𝑎

𝑖
, 𝑏
𝑗
, (𝑖, 𝑗 = 0, 1, 2, . . .,

𝑗 ̸= 0), 𝜆, 𝜇, 𝛼, 𝛽, and 𝛾. Finally, substitution of the systems
solutions into (8) gives traveling wave solutions to (1).

The general solutions of the second order LODE (9) have
been well known for

(i) if 𝜆2 − 4𝜇 > 0,

𝐺
󸀠

𝐺
= −

𝜆

2

+
1

2
√𝜆2 − 4𝜇

× [ (𝑐
1
sinh(1

2
√𝜆2 − 4𝜇𝜉)

+ 𝑐
2
cosh (1

2
√𝜆2 − 4𝜇𝜉))

× (𝑐
1
cosh (1

2
√𝜆2 − 4𝜇𝜉)

+ 𝑐
2
sinh(1

2
√𝜆2 − 4𝜇𝜉))

−1

] ,

(10)

(ii) if 𝜆2 − 4𝜇 = 0,

𝐺󸀠

𝐺
= −

𝜆

2
+

𝑐
2

𝑐
1
+ 𝑐
2
𝜉
, (11)

(iii) if 𝜆2 − 4𝜇 < 0,

𝐺󸀠

𝐺
= −

𝜆

2

+
1

2
√4𝜇 − 𝜆2

× [(−𝑐
1
sin(1

2
√4𝜇 − 𝜆2𝜉)

+𝑐
2
cos(1

2
√4𝜇 − 𝜆2𝜉))

× (𝑐
1
cos(1

2
√4𝜇 − 𝜆2𝜉)

+𝑐
2
sin(1

2
√4𝜇 − 𝜆2𝜉))

−1

] ,

(12)

where 𝑐
1
and 𝑐
2
are arbitrary constants.

2.2. The First Integral Method. By focusing on (4), a new
independent variable is introduced as

𝑋(𝜉) = 𝑢 (𝜉) , 𝑌 =
𝜕𝑢 (𝜉)

𝜕𝜉
. (13)

This yields a system of nonlinear ODEs

𝑋
𝜉
(𝜉) = 𝑌 (𝜉) , 𝑌

𝜉
(𝜉) = 𝐹

1
(𝑋 (𝜉) , (𝜉)) . (14)

If it is revealed that the integrals to (14) are under the same
conditions of the qualitative theory of ordinary differential
equation [17], then general solutions to (14) can be solved
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directly. However, it is generally so difficult for us to realize
this even for one first integral. That is why for a given plane
autonomous system there is no systematic theory that can
tell us how to find its first integrals, nor is there a logical
way for telling us what these first integrals are.Thus, Division
Theorem is used to obtain one first integral of (14). Now, let
us recall the DivisionTheorem.

Division Theorem. Suppose that 𝑃(𝑤, 𝑧) and 𝑞(𝑤, 𝑧) are
polynomials in𝐶[𝑤, 𝑧] and𝑃(𝑤, 𝑧) is irreducible to𝐶[𝑤, 𝑧]. If
𝑞(𝑤, 𝑧) vanishes through all zero points of 𝑃(𝑤, 𝑧), then there
exists a polynomial 𝐺(𝑤, 𝑧) in 𝐶(𝑤, 𝑧) such that 𝑞(𝑤, 𝑧) =

𝑃(𝑤, 𝑧)𝐺(𝑤, 𝑧). See [18].

3. Application

In this paper, improved (𝐺󸀠/𝐺)-expansion method is
employed to study the solutions of the nonlinear partial dif-
ferential system (2); afterwards, the first integral method
is employed to study the solutions of the nonlinear partial
differential system (3).

3.1. Explicit and Exact Solution of the System (2). We intro-
duce the transformations,

𝑢 (𝑥, 𝑦, 𝑡) = 𝑈 (𝜉) , V (𝑥, 𝑦, 𝑡) = 𝑉 (𝜉) ,

𝜉 = 𝛼 (𝑥 + 𝛽𝑦 − 𝛾𝑡) .
(15)

Substituting (15) into (2), there will be a change as follows:

−𝛽𝛾𝑈
𝜉𝜉
(𝜉) + 𝑉

𝜉𝜉
(𝜉) +

1

2
𝛽(𝑈
2
(𝜉))
𝜉𝜉
= 0,

−𝛾𝑉
𝜉
(𝜉) + (𝑈 (𝜉) 𝑉 (𝜉) + 𝑈 + 𝛼

2
𝛽𝑈
𝜉𝜉
(𝜉))
𝜉
= 0,

(16)

where by twice integrating the first equation of (16), in respect
to 𝜉, it can be found that

𝑉 (𝜉) = 𝛽𝛾𝑈 (𝜉) −
1

2
𝛽𝑈
2
(𝜉) + 𝑟

1
. (17)

By integrating the second equation of (16), in respect to 𝜉,
then substituting (17) into this equation, it can be found that

𝛼
2
𝛽𝑈
𝜉𝜉
(𝜉) +

3

2
𝛽𝛾𝑈
2
(𝜉) −

1

2
𝛽𝑈
3
(𝜉)

+ (𝑟
1
− 𝛽𝛾
2
+ 1)𝑈 (𝜉) + (𝛾𝑟

1
+ 𝑟
2
) = 0,

(18)

where 𝑟
1
and 𝑟
2
are arbitrary integration constants that are to

be determined later.
Suppose that the solution of ODE (18) can be expressed

by a polynomial in (𝐺󸀠/𝐺) as follows:

𝑈 (𝜉) =

𝑚

∑
𝑖=0

𝑎
𝑖
(
𝐺󸀠

𝐺
)

𝑖

+

𝑚

∑
𝑖=1

𝑏
𝑖
(
𝐺󸀠

𝐺
)

−𝑖

, (19)

where 𝐺 = 𝐺(𝜉) satisfies the second order LODE (9). By
balancing the term𝑈

𝜉𝜉
with the term𝑈3(𝜉) in (18), we obtain

𝑚 = 1, so we can write (19) as

𝑈 (𝜉) = 𝑎
0
+ 𝑎
1
(
𝐺󸀠

𝐺
) + 𝑏
1
(
𝐺󸀠

𝐺
)

−1

. (20)

And therefore

𝑈
3
(𝜉) = 𝑎

3

0
+ 6𝑎
0
𝑎
1
𝑏
1
+ (3𝑎
2

0
𝑎
1
+ 3𝑎
2

1
𝑏
1
)(

𝐺󸀠

𝐺
)

+ 3𝑎
0
𝑎
2

1
(
𝐺󸀠

𝐺
)

2

+ 𝑎
3

1
(
𝐺󸀠

𝐺
)

3

+ (3𝑎
2

0
𝑏
1
+ 3𝑏
2

1
𝑎
1
)(

𝐺󸀠

𝐺
)

−1

+ 3𝑎
0
𝑏
2

1
(
𝐺󸀠

𝐺
)

−2

+ 𝑏
3

1
(
𝐺󸀠

𝐺
)

−3

,

𝑈
𝜉𝜉
(𝜉) = 𝑎

1
𝜆𝜇 + 𝑏

1
𝜆 + (𝑎

1
𝜆
2
+ 2𝑎
1
𝜇)(

𝐺󸀠

𝐺
)

+ 3𝑎
1
𝜆(

𝐺
󸀠

𝐺
)

2

+ 2𝑎
1
(
𝐺
󸀠

𝐺
)

3

+ (2𝑏
1
𝜇 + 𝑏
1
𝜆
2
)(

𝐺󸀠

𝐺
)

−1

+ 3𝑏
1
𝜆𝜇(

𝐺󸀠

𝐺
)

−2

+ 2𝑏
1
𝜇
2
(
𝐺󸀠

𝐺
)

−3

.

(21)

By substituting (20) and (21) into ODE (18) and collecting
all terms with the same power of (𝐺󸀠/𝐺) together, the left-
hand side of ODE (18) is converted into another polynomial
in (𝐺󸀠/𝐺). Equating each coefficient of this polynomial to zero
yields a set of simultaneous algebraic equations for 𝑎

0
, 𝑎
1
, 𝑏
1
,

𝑟
1
, 𝑟
2
, 𝜆, and 𝜇. Having solved the given equation with aid

Maple, the following solutions will be attained:

𝑎
0
= ±𝑎
0
, 𝑎

1
= 0,

𝑏
1
= ±2𝛼𝜇, 𝑟

1
=
1

2
𝑎
2

0
𝛽 − 𝛽𝛾𝑎

0
− 2𝛼
2
𝛽𝜇 − 1,

𝜆 = 𝜆, 𝜇 = 𝜇,

𝑟
2
= 2𝛽𝛾

2
𝑎
0
− 𝛽𝛾𝑎

2

0
+ 4𝛼
2
𝛽𝜇𝛾 + 𝛾,

(22)

𝑎
0
= 𝑎
0
, 𝑎

1
= ±2𝛼,

𝑏
1
= 0, 𝑟

1
=
1

2
𝑎
2

0
𝛽 − 𝛽𝛾𝑎

0
− 2𝛼
2
𝛽𝜇 − 1,

𝜆 = ∓
𝛾 − 𝑎
0

𝛼
, 𝜇 = 𝜇,

𝑟
2
= 2𝛽𝛾

2
𝑎
0
− 𝛽𝛾𝑎

2

0
+ 4𝛼
2
𝛽𝜇𝛾 + 𝛾,

(23)

𝑎
0
= 𝑎
0
, 𝑎

1
= ±2𝛼,

𝑏
1
= 𝑏
1
, 𝑟

1
= −

1

2
𝑎
2

0
𝛽 − 𝛽𝛾𝑎

0
± 2𝛼𝛽𝑏

1
− 1,

𝜆 = ∓
𝛾 − 𝑎
0

𝛼
, 𝜇 = ±

𝑏
1

2𝛼
,

𝑟
2
= ∓6𝛽𝛾𝑏

1
+ 2𝛽𝛾

2
𝑎
0
− 𝛽𝛾𝑎

2

0
+ 2𝑎
0
𝛼𝛽𝑏
1
+ 𝛾,

(24)
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𝑎
0
= ±𝛼𝜆 + 𝛾, 𝑎

1
= ±2𝛼,

𝑏
1
= 0, 𝑟

1
=
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

𝜆 = 𝜆, 𝜇 = 𝜇,

𝑟
2
= 𝛽𝛾
3
+ 𝛾 − 𝛼

2
𝛽𝜆
2
𝛾 + 4𝛼

2
𝛽𝜇𝛾,

(25)

𝑎
0
= ±𝛼𝜆 + 𝛾, 𝑎

1
= 0,

𝑏
1
= ±2𝛼𝜇, 𝑟

1
=
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

𝜆 = 𝜆, 𝜇 = 𝜇,

𝑟
2
= 𝛽𝛾
3
+ 𝛾 − 𝛼

2
𝛽𝜆
2
𝛾 + 4𝛼

2
𝛽𝜇𝛾.

(26)

By using (22)–(26), expression (20) can be written as follows:

𝑈 (𝜉) = ±𝑎
0
± 2𝛼𝜇(

𝐺󸀠

𝐺
)

−1

, (27)

𝑈 (𝜉) = 𝑎
0
± 2𝛼(

𝐺󸀠

𝐺
) , (28)

𝑈 (𝜉) = 𝑎
0
± 2𝛼(

𝐺󸀠

𝐺
) + 𝑏
1
(
𝐺󸀠

𝐺
)

−1

, (29)

𝑈 (𝜉) = (±𝛼𝜆 + 𝛾) ± 2𝛼(
𝐺󸀠

𝐺
) , (30)

𝑈 (𝜉) = (±𝛼𝜆 + 𝛾) ± 2𝛼𝜇(
𝐺󸀠

𝐺
)

−1

. (31)

Equations (27)–(31) are the formula of solution of (18).
Substituting the general solutions of (9) into (27)–(31) we
have three types of travelling wave solutions of the (2 + 1)-
dimensional Eckhaus-type equation (2) (so 𝑢

𝑖
𝑗 is definien-

dum 𝑖th type solution from 𝑗th expression) as follows.

Case A. When 𝜆2 − 4𝜇 > 0,

𝑢
1
28 (𝑥, 𝑦, 𝑡)

= ±𝑎
0
± 4𝛼𝜇

× (√𝜆2 − 4𝜇

× ((𝑐
1
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cosh (1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))

× (𝑐
2
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cosh (1

2
√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆)
−1

,

V
1
28 (𝑥, 𝑦, 𝑡)

= 𝛽𝛾𝑢
1
28 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
1
28(𝑥, 𝑦, 𝑡))

2

+
1

2
𝑎
2

0
𝛽 − 𝛽𝛾𝑎

0
− 2𝛼
2
𝛽𝜇 − 1,

𝑢
1
29 (𝑥, 𝑦, 𝑡)

= 𝑎
0
± 𝛼

× (√𝜆2 − 4𝜇

× ((𝑐
1
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cosh (1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))

× (𝑐
2
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cosh (1

2
√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆) ,

V
1
29 (𝑥, 𝑦, 𝑡)

= 𝛽𝛾𝑢
1
29 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
1
29 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝑎
2

0
𝛽 − 𝛽𝛾𝑎

0
− 2𝛼
2
𝛽𝜇 − 1,
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𝑢
1
30 (𝑥, 𝑦, 𝑡)

= 𝑎
0
± 𝛼

× (√𝜆2 − 4𝜇

× ((𝑐
1
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cosh (1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))

× (𝑐
2
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cosh (1

2
√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆) + 2𝑏
1

× (√𝜆2 − 4𝜇

× ((𝑐
1
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cosh (1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))

× ((𝑐
2
sinh (1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cosh (1

2
√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆)
−1

,

V
1
30 (𝑥, 𝑦, 𝑡)

= 𝛽𝛾𝑢
1
30 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
1
30 (𝑥, 𝑦, 𝑡))

2

−
1

2
𝑎
2

0
𝛽 − 𝛽𝛾𝑎

0
± 2𝛼𝛽𝑏

1
− 1,

𝑢
1
31 (𝑥, 𝑦, 𝑡)

= (±𝛼𝜆 + 𝛾) ± 𝛼

× (√𝜆2 − 4𝜇

× ((𝑐
1
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cosh (1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))

× (𝑐
2
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cosh (1

2
√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆) ,

V
1
31 (𝑥, 𝑦, 𝑡)

= 𝛽𝛾𝑢
1
31 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
1
31 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

𝑢
1
32 (𝑥, 𝑦, 𝑡)

= (±𝛼𝜆 + 𝛾) ± 4𝛼𝜇

× (√𝜆2 − 4𝜇

× ((𝑐
1
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cosh (1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
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× (𝑐
2
sinh(1

2
𝛼√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cosh (1

2
√𝜆2 − 4𝜇

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆)
−1

,

V
1
32 (𝑥, 𝑦, 𝑡)

= 𝛽𝛾𝑢
1
32 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
1
32 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

(32)

where 𝑐
1
and 𝑐
2
are arbitrary constants.

Case B. When 𝜆2 − 4𝜇 < 0,

𝑢
2
28 (𝑥, 𝑦, 𝑡)

= ±𝑎
0
± 4𝛼𝜇

× (√4𝜇 − 𝜆2

× ((−𝑐
1
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cos(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))

× (𝑐
2
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cos(1

2
√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆)
−1

,

V
2
28 (𝑥, 𝑦, 𝑡)

= 𝛽𝛾𝑢
2
28 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
2
28 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

𝑢
2
29 (𝑥, 𝑦, 𝑡)

= 𝑎
0
± 𝛼

× (√4𝜇 − 𝜆2

× ((−𝑐
1
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cos(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))

× (𝑐
2
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cos(1

2
√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆) ,

V
2
29 (𝑥, 𝑦, 𝑡)

= 𝛽𝛾𝑢
2
29 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
2
29 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

𝑢
2
30 (𝑥, 𝑦, 𝑡)

= 𝑎
0
± 𝛼

× (√4𝜇 − 𝜆2

× ((−𝑐
1
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cos(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))

× (𝑐
2
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))
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+ 𝑐
1
cos(1

2
√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆) + 2𝑏
1

× (√4𝜇 − 𝜆2

× ((−𝑐
1
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cos(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))

× (𝑐
2
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cos(1

2
√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆)
−1

,

V
2
30 (𝑥, 𝑦, 𝑡)

= 𝛽𝛾𝑢
2
30 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
2
30 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

𝑢
2
31 (𝑥, 𝑦, 𝑡)

= (±𝛼𝜆 + 𝛾) ± 𝛼

× (√4𝜇 − 𝜆2

× ((−𝑐
1
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cos(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))

× (𝑐
2
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cos(1

2
√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆) ,

V
2
31 (𝑥, 𝑦, 𝑡)

= 𝛽𝛾𝑢
2
31 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
2
31 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

𝑢
2
32 (𝑥, 𝑦, 𝑡)

= (±𝛼𝜆 + 𝛾) ± 4𝛼𝜇

× (√4𝜇 − 𝜆2

× ((−𝑐
1
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
2
cos(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

× (𝑐
2
sin(1

2
𝛼√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡))

+ 𝑐
1
cos(1

2
√4𝜇 − 𝜆2

× (𝑥 + 𝛽𝑦 − 𝛾𝑡)))
−1

)

−𝜆)
−1

,

V
2
32 (𝑥, 𝑦, 𝑡)

= 𝛽𝛾𝑢
2
32 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
2
32(𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

(33)

where 𝑐
1
and 𝑐
2
are arbitrary constants.
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Case C. When 𝜆2 − 4𝜇 = 0,

𝑢
3
28 (𝑥, 𝑦, 𝑡) = ±𝑎

0
± 4𝛼𝜇(

2𝑐
2

𝑐
1
+ 𝑐
2
𝛼 (𝑥 + 𝛽𝑦 − 𝛾𝑡)

− 𝜆)

−1

,

V
3
28 (𝑥, 𝑦, 𝑡) = 𝛽𝛾𝑢

3
28 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
3
28 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

(34)

𝑢
3
29 (𝑥, 𝑦, 𝑡) = 𝑎

0
± 𝛼(

2𝑐
2

𝑐
1
+ 𝑐
2
𝛼 (𝑥 + 𝛽𝑦 − 𝛾𝑡)

− 𝜆) ,

V
3
29 (𝑥, 𝑦, 𝑡) = 𝛽𝛾𝑢

3
29 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
3
29 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

(35)

𝑢
3
30 (𝑥, 𝑦, 𝑡) = 𝑎

0
± 𝛼(

2𝑐
2

𝑐
1
+ 𝑐
2
𝛼 (𝑥 + 𝛽𝑦 − 𝛾𝑡)

− 𝜆)

+ 2𝑏
1
(

2𝑐
2

𝑐
1
+ 𝑐
2
𝛼 (𝑥 + 𝛽𝑦 − 𝛾𝑡)

− 𝜆)

−1

,

V
3
30 (𝑥, 𝑦, 𝑡) = 𝛽𝛾𝑢

3
30 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
3
30(𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

(36)

𝑢
3
31 (𝑥, 𝑦, 𝑡) = (±𝛼𝜆 + 𝛾)

± 𝛼(
2𝑐
2

𝑐
1
+ 𝑐
2
𝛼 (𝑥 + 𝛽𝑦 − 𝛾𝑡)

− 𝜆) ,

V
3
31 (𝑥, 𝑦, 𝑡) = 𝛽𝛾𝑢

3
31 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
3
31 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

(37)

𝑢
3
32 (𝑥, 𝑦, 𝑡) = (±𝛼𝜆 + 𝛾)

± 4𝛼𝜇(
2𝑐
2

𝑐
1
+ 𝑐
2
𝛼 (𝑥 + 𝛽𝑦 − 𝛾𝑡)

− 𝜆)

−1

,

V
3
32 (𝑥, 𝑦, 𝑡) = 𝛽𝛾𝑢

3
32 (𝑥, 𝑦, 𝑡) −

1

2
𝛽(𝑢
3
32 (𝑥, 𝑦, 𝑡))

2

+
1

2
𝛼
2
𝛽𝜆
2
−
1

2
𝛽𝛾
2
− 2𝛼
2
𝛽𝜇 − 1,

(38)

where 𝑐
1
and 𝑐
2
are arbitrary constants. Using expression (28)

in 𝑢
1
29 , 𝑢
2
29 , and 𝑢

3
29 , it can be acquired that 𝜆 = ±(𝛾 − 𝑎

0
)/𝛼

andbymeans of expression (29) in𝑢
1
30 ,𝑢
2
30 , and 𝑢

3
30 one gets

𝜆 = ∓(𝛾 − 𝑎
0
)/𝛼 and 𝜇 = 𝑏

1
/2𝛼.

3.2. Explicit and Exact Solution of the System (3). Now, we
look for solutions to (3) by the first integral method. By using
(15) into (3) we can get

−𝛾𝑈
𝜉
(𝜉) + 𝑉

𝜉
(𝜉) +

1

2
(𝑈
2
(𝜉))
𝜉
= 0,

− 𝛾𝑉
𝜉𝜉
(𝜉) + (𝑈 (𝜉) 𝑉 (𝜉) + 𝑈 (𝜉) + 𝛼

2
𝑈
𝜉𝜉
(𝜉))
𝜉𝜉

+ 𝛽
2
𝑈
𝜉𝜉
(𝜉) = 0,

(39)

where by once integrating the first equation of (36), with
respect to 𝜉, it can be found that

𝑉 (𝜉) = 𝛾𝑈 (𝜉) −
1

2
𝑈
2
(𝜉) + 𝑟

1
. (40)

By twice integrating the second equation of (16), with respect
to 𝜉 and then substituting (37) into this equation, it can be
found that

𝛼
2
𝑈
𝜉𝜉
(𝜉) −

1

2
𝑈
3
(𝜉) +

3

2
𝛾𝑈
2
(𝜉)

+ (𝑟
1
+ 𝛽
2
− 𝛾
2
+ 1)𝑈 (𝜉) + (𝑟

2
− 𝛾𝑟
1
) = 0,

(41)

where 𝑟
1
and 𝑟
2
are arbitrary integration constants that are to

be determined later.
According to the first integral method, by using (13) and

(14), it will be determined that

𝑋̇ (𝜉) = 𝑌 (𝜉) ,

𝑌̇ (𝜉) =
1

2𝛼2
𝑈
3
(𝜉) −

3

2𝛼2
𝛾𝑈
2
(𝜉)

+ (𝛾
2
− 𝛽
2
− (𝑟
1
+ 1))𝑈 (𝜉) − (

𝑟
2
− 𝛾𝑟
1

𝛼2
) .

(42)

We suppose that 𝑋(𝜉) and 𝑌(𝜉) are nontrivial solutions of
(42) and 𝑞[𝑋, 𝑌] = ∑

𝑚

𝑖=0
𝑎
𝑖
(𝑋)𝑌𝑖 = 0 is an irreducible poly-

nomial in the complex domain 𝐶[𝑋, 𝑌] such that

𝑞 [𝑋 (𝜉) , 𝑌 (𝜉)] =

𝑚

∑
𝑖=0

𝑎
𝑖
(𝑋) 𝑌

𝑖
= 0, (43)

where 𝑎
𝑖
(𝑋) (𝑖 = 0, . . . , 𝑚) are polynomials of 𝑋 and

𝑎
𝑚
(𝑋) ̸= 0. Due to Division Theorem, there exists a polyno-

mial 𝑔(𝑋)+ℎ(𝑋)𝑌 in the complex domain𝐶[𝑋, 𝑌], such that

𝑑𝑞

𝑑𝜉
=
𝑑𝑞

𝑑𝑋
⋅
𝑑𝑋

𝑑𝜉
+
𝑑𝑞

𝑑𝑌
.
𝑑𝑌

𝑑𝜉

= (𝑔 (𝑋) + ℎ (𝑋)𝑌)

𝑚

∑
𝑖=0

𝑎
𝑖
(𝑋) 𝑌

𝑖
.

(44)



ISRNMathematical Physics 9

By assuming that 𝑚 = 3 in (43) and by equating the coeffi-
cients of 𝑌𝑖 (𝑖 = 4, 3, 2, 1, 0) on both sides of (44), there will
be

̇𝑎
3
(𝑋) = 𝑎

3
(𝑋) ℎ (𝑋) , (45)

̇𝑎
2
(𝑋) = 𝑎

3
(𝑋) 𝑔 (𝑋) + 𝑎

2
(𝑋) ℎ (𝑋) , (46)

̇𝑎
1
(𝑋) = 𝑎

2
(𝑋) 𝑔 (𝑋) 𝑎

1
(𝑋) ℎ (𝑋)

− 3𝑎
3
(𝑋) (

1

2𝛼2
𝑈
3
(𝜉) −

3

2𝛼2
𝛾𝑈
2
(𝜉)

+ (𝛾
2
− 𝛽
2
− (𝑟
1
+ 1))𝑈 (𝜉)

− (
𝑟
2
− 𝛾𝑟
1

𝛼2
)) ,

(47)

̇𝑎
0
(𝑋) = 𝑎

1
(𝑋) 𝑔 (𝑋) + 𝑎

0
(𝑋) ℎ (𝑋)

− 2𝑎
2
(𝑋) (

1

2𝛼2
𝑈
3
(𝜉) −

3

2𝛼2
𝛾𝑈
2
(𝜉)

+ (𝛾
2
− 𝛽
2
− (𝑟
1
+ 1))𝑈 (𝜉)

− (
𝑟
2
− 𝛾𝑟
1

𝛼2
)) ,

(48)

𝑎
1
(𝑋) (

1

2𝛼2
𝑈
3
(𝜉) −

3

2𝛼2
𝛾𝑈
2
(𝜉)

+ (𝛾
2
− 𝛽
2
− (𝑟
1
+ 1))𝑈 (𝜉)

− (
𝑟
2
− 𝛾𝑟
1

𝛼2
))

= 𝑎
0
(𝑋) 𝑔 (𝑋) .

(49)

Since 𝑎
3
(𝑋) is a polynomial of 𝑋, then, from (45), it may be

deduced that 𝑎
3
(𝑋) is a constant and ℎ(𝑋) = 0, and we take

𝑎
3
(𝑋) = 1. Balancing the degrees of 𝑔(𝑋), 𝑎

2
(𝑋), 𝑎

1
(𝑋), and

𝑎
0
(𝑋), it is concluded that deg 𝑔(𝑋) = 1, only.
Suppose that 𝑔(𝑋) = 𝐵

0
+ 2𝐴
1
𝑋 and (𝐴

1
̸= 0) and then

we will find that

𝑎
2
(𝑋) = 𝐴

1
𝑋
2
+ 𝐵
0
𝑋 + 𝐴

0
, (50)

where 𝐴
0
is an arbitrary integration constant. Substituting

𝑎
0
(𝑋), 𝑎

1
(𝑋), 𝑎

2
(𝑋), and 𝑔(𝑋) into (49) and setting all the

coefficients of powers𝑋 to be zero, then a system of nonlinear
algebraic equations will be resulted. Having solved the given
equation, the following solutions will be attained:

𝐴
1
= −

1

2𝛼
, 𝐴

0
= 𝐴
0
, 𝐵

0
=
𝛾

𝛼
,

𝑑
1
= 𝑑
1
, 𝑑

2
= 𝑑
1
𝐴
0
, 𝑟

1
= −𝛽
2
+ 𝛼𝐴
0
− 1,

𝑟
2
= −𝛽
2
𝛾 − 𝛾,

𝐴
1
=

1

2𝛼
, 𝐴

0
= 0,

𝐵
0
= −

𝛾

𝛼
, 𝑑

1
= 𝑑
2
= 0, 𝑟

1
= −𝛽
2
− 1,

𝑟
2
= −𝛽
2
𝛾 − 𝛾,

𝐴
1
=

3

2𝛼
, 𝐴

0
= 𝐴
0
,

𝐵
0
= −

3𝛾

𝛼
, 𝑑

1
=
𝐴2
0

3
, 𝑑

2
=
𝐴3
0

27
,

𝑟
1
= −𝛽
2
−
1

3
𝛼𝐴
0
− 1, 𝑟

2
= −𝛽
2
𝛾 − 𝛾,

𝐴
1
= −

3

2𝛼
, 𝐴

0
= 𝐴
0
, 𝐵

0
=
3𝛾

𝛼
,

𝑑
1
=
𝐴2
0

3
, 𝑑

2
=
𝐴3
0

27
, 𝑟

1
= −𝛽
2
+
1

3
𝛼𝐴
0
− 1,

𝑟
2
= −𝛽
2
𝛾 − 𝛾,

(51)

where 𝑑
1
and 𝑑
2
are arbitrary integration constants. Using the

conditions (3.2) in (43), it can be searched out that

𝑌 (𝜉) = −
1

2
(
−𝑋2 + 2𝛾𝑋 + 2𝛼𝐴

0

𝛼
) ,

𝑌 (𝜉) = ±
1

2
(
𝑋 (2𝛾 − 𝑋)

𝛼
) ,

𝑌 (𝜉) =
1

6
(
−3𝑋2 + 6𝛾𝑋 − 2𝛼𝐴

0

𝛼
) ,

𝑌 (𝜉) = −
1

6
(
−3𝑋2 + 6𝛾𝑋 + 2𝛼𝐴

0

𝛼
) .

(52)

Expression (52) is the first integral of (42). Combining (52)
with (42), the exact solution to system (3) will be found as
follows:

𝑢
1
(𝑥, 𝑦, 𝑡)

= 𝛾 − (√2𝛼𝐴
0
+ 𝛾2

× tanh(1
2
√2𝛼𝐴

0
+ 𝛾2

× ((𝑥 + 𝛽𝑦 − 𝛾𝑡) + 𝜉
0
))) ,

V
1
(𝑥, 𝑦, 𝑡) = 𝛾𝑢

1
(𝑥, 𝑦, 𝑡)

−
1

2
𝑢
2

1
(𝑥, 𝑦, 𝑡) − 𝛽

2
+ 𝛼𝐴
0
− 1,

𝑢
2
(𝑥, 𝑦, 𝑡) = 𝛾 sech(

𝛾

2
((𝑥 + 𝛽𝑦 − 𝛾𝑡) + 𝜉

0
)) ,

V
2
(𝑥, 𝑦, 𝑡) = 𝛾𝑢

2
(𝑥, 𝑦, 𝑡) −

1

2
𝑢
2

2
(𝑥, 𝑦, 𝑡) − 𝛽

2
− 1,
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𝑢
3
(𝑥, 𝑦, 𝑡)

= 𝛾 − (
1

3
√6𝛼𝐴

0
− 9𝛾2

× tanh(1
2
√6𝛼𝐴

0
− 9𝛾2

× ((𝑥 + 𝛽𝑦 − 𝛾𝑡) + 𝜉
0
))) ,

V
3
(𝑥, 𝑦, 𝑡) = 𝛾𝑢

3
(𝑥, 𝑦, 𝑡)

−
1

2
𝑢
2

3
(𝑥, 𝑦, 𝑡) − 𝛽

2
−
1

3
𝛼𝐴
0
− 1,

𝑢
4
(𝑥, 𝑦, 𝑡)

= 𝛾 − (
1

3
√6𝛼𝐴

0
+ 9𝛾2

× tanh(1
2
√6𝛼𝐴

0
+ 9𝛾2

× ((𝑥 + 𝛽𝑦 − 𝛾𝑡) + 𝜉
0
))) ,

V
4
(𝑥, 𝑦, 𝑡) = 𝛾𝑢

4
(𝑥, 𝑦, 𝑡)

−
1

2
𝑢
2

4
(𝑥, 𝑦, 𝑡) − 𝛽

2
+
1

3
𝛼𝐴
0
− 1,

(53)

where 𝜉
0
is an arbitrary integration constant.

As it has already beenmentioned in the introduction, it is
also possible to apply the achieved solutions of system (2) and
(3) to system (1) based on defining the appropriate change of
the variable. Therefore, by choosing

𝑢 = 𝑢 (𝑥 + 𝑦, 𝑡) , V = V (𝑥 + 𝑦, 𝑡) − 1 (54)

the solutions of system (2) are the same solutions for system
(1). To enclose, it is worth mentioning that the achieved solu-
tions in Section 3.2 can be applied to system (1) in which the
similar variable change has properly been defined.

4. Conclusion

Two different methods in this study have been employed
to result in the exact solutions of the given systems. The
transformation of the obtained solutions has been defined
in order to gain the exact solutions in which some of them
are soliton. Accordingly, exact solutions were obtained to the
equations. In spite of the fact that these new solutions may
be important for physical problems, this study also suggests
that one may find different solutions by choosing different
methods. To recapitulate, this method can be utilized to
solve many systems of nonlinear partial differential equation

arising in the theory of soliton and other related areas of
research.
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