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This paper presents single-channel speech enhancement techniques in spectral domain. One of the most famous single channel
speech enhancement techniques is the spectral subtraction method proposed by S.E Boll in 1979. In this method, an estimated
speech spectrum is obtained by simply subtracting a preestimated noise spectrum from an observed one. Hence, the spectral
subtraction method is not concerned with speech spectral properties. It is well known that the spectral subtraction method
produces an annoying artificial noise in the extracted speech signal. On the other hand, recent successful speech enhancement
methods positively utilize the speech property and achieve an efficient speech enhancement capability. This paper presents a
historical review about some speech estimation techniques and explicitly states the difference between their theoretical back-
ground. Moreover, to evaluate their speech enhancement capabilities, we perform computer simulations. The results show that an
adaptive speech enhancement method based on MAP estimation gives the best noise reduction capability in comparison to other

speech enhancement methods presented in this paper.

1. Introduction

In recent years, speech enhancement is required in a wide
area of applications including mobile communication and
speech recognition systems, where the major example is a
cell-phone as shown in Figure 1. Many speech enhancement
methods have been established in decades [1-15]. These
speech enhancement techniques can be classified to time
domain methods and spectral domain methods. Recent
major speech enhancement techniques are of the spectral
domain method which is preferably used in a cell phone.
In this paper, we focus on the spectral domain speech
enhancement techniques that employ a single microphone.
The spectral subtraction method [3] is one of the
most popular methods among numerous noise reduction
techniques in spectral domain. This method achieves noise
reduction by simply subtracting a pre-estimated noise spec-
tral amplitude from an observed spectral amplitude, where
the spectral phase is not processed. The spectral subtraction
method is easy for implementation and effectively reduces
stationary noises. However, it incurs an artificial noise, called

musical noise, which is caused from speech estimation errors.
Because the spectral subtraction method is not concerned
with speech spectral information, it often gives estimation
errors. Ephraim and Malah have proposed the MMSE-STSA
(Minimum Mean Square Error-Short-Time Spectral Ampli-
tude) method [4] which utilizes a speech PDF (Probability
Density Function) and a noise PDE. In the literature in [4],
the speech and noise PDFs were modeled by Rayleigh and
Gauss density functions, respectively. This method gives an
optimal solution of the estimated speech signal in the sense
of MMSE-STSA (the solution may change to Wiener filter
[5] if we assume Gauss distributions for both of the speech
and noise PDFs). Although the MMSE-STSA method gives
an estimated speech signal with less musical noise, it requires
more complicated computations, for example, the solution
required to calculate the modified Bessel function. Moreover,
as pointed out by some researchers, real speech histograms
do not fit to Rayleigh function employed in [4].

A more efficient method that is based on a maximum a
posteriori (MAP) estimation has been established by Lotter
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FIGURE 1: Application of speech enhancement.

and Vary [11]. Lotter and Vary modeled the speech PDF
by a parametric super-Gaussian function, controlled by two
shape parameters. The parametric super-Gaussian function
has been developed from a histogram made from a large
amount of real speech data in a single narrow SNR (Signal
to Noise Ratio) interval. The noise suppression capability of
this method is superior to the Wiener filter. However, the
residual noise is still persistently perceived. Andrianakis and
White were aware that the speech PDF may change in some
SNR intervals [12]. They utilized three histograms made
from speech signals in three different narrow SNR intervals
and approximate them with Gamma density function. As
reported in [12], changing these three speech PDFs according
to the SNR can improve the noise reduction capability. While
Andrianakis discretely changes the speech PDE, Tsukamoto
et al. continuously change the speech PDF according to the
SNR [13]. They employed the parametric super-Gaussian
function proposed in [11] and adaptively changed its shape
parameters according to the SNR. Recently, Thanhikam et al.
[16] sophisticated this approach by making and evaluating
many real speech histograms made from various narrow
SNR intervals. As shown in [16], this method has a very
strong noise reduction capability in comparison to other
traditional speech enhancement methods, and hence it is
effective especially in low SNR environments.

In the following sections, we present a historical review of
useful speech enhancement methods mentioned above and
compare their speech enhancement capabilities by computer
simulations.

2. Speech Enhancement in Spectral Domain

This section presents several speech enhancement techniques
including both traditional methods and recent methods.
Particularly, we will carefully explain the difference between
them.

2.1. General Speech Enhancement System. Firstly, we explain
about a general single-channel speech enhancement system
in spectral domain.

We assume that an observed signal is a sum of a speech
signal and a noise signal given as

y(t) = x(t) +d(t), (1)
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FIGURE 2: General speech enhancement system.

where y(t) is the observed signal at time t. x(t) and d(t)
denote the speech signal and the noise signal, respectively.
We assume that x(t) is uncorrelated with d(t) through the
paper. Taking the DFT of (1), we have

nQ+N-1

Z y(nQ + t)h(t)e*jZnnk/N
o 2)

(k=0,1,...,N - 1),

Yi(n) =

where N, 1, and k denote the frame length, the frame index,
and the frequency bin index, respectively. The analysis frame
is shifted by Q samples, where Q = N/2 is used through
the paper. The function h(t) denotes an analysis window
function, where the Hanning window of size N is used as
h(t). The DFT spectrum Yi(n) can be rewritten as

Yi(n) = Xi(n) + Di(n), (3)

where Xi(n) and Dk (n) are the kth spectra of x(¢) and d(¢),
respectively. The enhanced speech spectrum Xy (n) is given as

Xi(n) = Gr(n)Yi(n), (4)

where Gi(n) is a spectral gain. The enhanced speech is
obtained as the observed signal Yi(n) multiplied by the
spectral gain Gi(n). Hence, speech enhancement capability
depends only on the spectral gain.

A general speech enhancement system can be illustrated
in Figure 2, where the value of the spectral gain Gi(n)
depends on an employed speech enhancement algorithm. We
see from (3) and (4) that the ideal spectral gain is given as

_ Di(n)
Yi(n)’

This spectral gain perfectly provides the original speech
signal as the enhanced speech. Since the ideal spectral gain
above cannot be directly obtained from Yj(n), we have to
approximate the ideal spectral gain by introducing additional
assumptions for the speech or the noise signals.

In the following sections, we give some typical spectral
gains which have been derived from respective assumptions
for the speech or the noise. For avoiding redundant expres-
sions, we omit the indices n and k if they do not play an
important role.

Gk,opt (n) =1

(5)
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2.2.  Spectral Subtraction. The most simple and famous
speech enhancement technique is the spectral subtraction
proposed by Boll in 1979 [3]. This method just subtracts
a pre-estimated noise spectral amplitude from an observed
one to obtain the estimated speech spectral amplitude. In
the spectral subtraction method, the spectral phase is not
modified; that is, the estimated speech spectral phase is
identical to the observed one. This is based on the fact
that the spectral phase is unimportant in comparison to
the spectral amplitude in human speech perception [17].
The spectral subtraction method is achieved by using the
following spectral gain.

Nl

, (6)
Y

GSSZI

where |D| is the pre-estimated noise spectral amplitude.
Usually, we choose Iﬁl = E[|D]]. We note that formula (6)
is an absolute version of (5).

The spectral subtraction is not concerned with speech
spectral property. As a result, the estimated speech signal
includes many estimation errors. The estimation error
produces an isolated spectrum in the estimated speech signal.
This noise is called “musical noise” and it is perceived as an
annoying sound for human. To obtain an estimated speech
signal with less musical noise, we should introduce a speech
property into speech enhancement scheme. In the following
sections, we present some speech enhancement methods
taking into account speech probabilistic properties.

2.3. Wiener Filter. In this section, we explain the Wiener filter
[5] which utilizes both of the speech and the noise spectral
probabilistic properties. It is well known that the Wiener
filter provides an estimated speech signal with less musical
noise in comparison to the spectral subtraction method.

To derive the Wiener filter, we assume that the speech
spectrum X is uncorrelated with the noise spectrum D and
E[X] = 0, E[IX|?)] = o2, E[D] = 0, E[ID|*)] = o3. The
Wiener filter is obtained by minimizing the following cost
function:

A2
J:E“X—X\ ]:E[|X—GY|2], (7)
where E[-] denotes the expected value. We can rewrite J as

J = E[|X|2] + |G|2E[|Y|2] — GE[XY*] - G*E[X*Y]

(8)
=ol+ IGIZ(Uf + oﬁ) — Go? — G*a}.
Differentiating J with respect to G* gives
)
8G]* = G(af+0§) - o2, 9)

Putting (9) to zero and solving it with respect to G, we have
the spectral gain of the Wiener filter given as

o §

o2+o2 1+&

GWiener =

(10)

where & = 02/07 is the a priori SNR. The Wiener filter
requires one parameter & or two variances o2 and o7.

2.4. MMSE-STSA Method. In this section, we explain a
historically important speech enhancement method, that is,
the MMSE-STSA method [4] proposed by Ephraim and
Malah in 1984. Ephraim and Malah have proposed not only
an efficient spectral gain, but also an efficient estimation
technique to get the a priori SNR.

The MMSE-STSA method is derived by minimizing a
conditional mean square value of the short time spectral
amplitude. The cost function to be minimized is given by

]MMSE:E“X*X\‘Z | Y]
_ fo XPp(X | Y)dx+\;?)2—)?f° X*p(X | Y)dx

—-X* r Xp(X | Y)dx,
(11)

where p(X | Y) denotes the conditional PDF of X. The
estimated speech spectrum which minimizes Jymsk is given
as

XMMSE = f Xp(X | Y)dx = E[X | Y]. (12)

As shown in [6], when we assume p(X) and p(D) as
Gauss functions, (12) produces the Wiener filter again.
On the other hand, Ephraim and Malah considered the
PDFs of the speech spectral amplitude and phase, that is,
p(1X]) and p(£X). They assumed that p(|X|) and p(£X)
as the Rayleigh distribution and the uniform distribution,
respectively [18]. They assumed p(D) as the Gauss function,
where the noise variance g7 is assumed to split equally into
real and imaginary parts. These PDFs are expressed as

2
px = 2% exp{—'ifz' } (1)
1
pLX) = ok, (14
_ 2
prin = Lepl-XEL )

where P(Y | X) is corresponding to p(D). Assuming p(X) =
pUIX1)p(£X), we can calculate (12) by using the relation
pX 1Y) =p(Y | X)p(X)/p(Y). After tedious and complex
computations, the spectral gain is given as [4]

G )" (1)
MMSE = 2y p 5

sz on()

where I;(-) is the modified Bessel function of order i and

_ & _ e
1+£y’ y oi

(16)

v (17)

Here, y is called as the a posteriori SNR. As shown in
[4], the optimal spectral phase in the sense of MMSE-STSA



is identical to the observed one. Hence, Gyse is also a
real value. The MMSE-STSA solution, Gmuse, is completely
characterized by o7, &, and y. When the noise variance 03
is known or can be estimated, y is simply obtained by the
observed spectrum. On the other hand, estimating the a
priori SNR & is difficult, although it needs to be required for
many other spectral speech enhancers. One of the valuable
contributions in [4] is to present a useful estimation method
of &, called the decision-directed method. We will show and
use it to estimate € in Section 3.

2.5. MAP Estimation Method. As confirmed in many lit-
eratures, the spectral gain Gumse derived in the previous
section is superior to the spectral subtraction method. But
Gmuise 1s not easy to implement due to a large amount of
computational complexity. Indeed, we can obtain a more
theoretically relevant and reasonable spectral gain from the
same cost function shown in (11). The MMSE-STSA method
has chosen X = E [X | Y] to minimize (11). Here, we can
note that E[X | Y] is the best choice when the PDF is an
even function like a Gauss function. Because the Rayleigh
distribution is asymmetric function, X =E [X | Y] is not
appropriate. The MAP estimation method [6] denotes that
the best choice for minimizing (11) is to employ the speech
spectrum maximizing p(X | Y).

To illustrate the difference between the MMSE-STSA
solution and the MAP solution, we show an example of
the specific PDE. Figures 3(a) and 3(b) show the Gauss and
Rayleigh distributions, respectively. Here, the horizontal axis
denotes the value of an argument x and the vertical axis is
a PDF p(x). The vertical dotted lines denote the argument
values giving the mean value and maximum value of p(x),
respectively. The former value is corresponding to the
MMSE-STSA solution and the latter value is corresponding
to the MAP solution. As shown in Figure 3(a), the MMSE-
STSA solution is identical to the MAP solution for the
Gauss distribution which is an even function. On the other
hand, the solutions of them are different for the asymmetric
Rayleigh distribution as shown in Figure 3(b). Obviously, we
should choose the solution of the MAP estimation rather
than the MMSE-STSA solution to minimize the cost function
(11).

To obtain the MAP solution, we have to maximize the
conditional PDF p(X | Y). Based on the Bayes’s rule, we have
(6]

p(Y | X)p(X)
p(Y) (18)

oc p(Y | X)p(X).

The MAP estimation is to find the arguments X which
maximize p(X|Y), that is,

pX1Y)=

A

X = argm)?x pX 1Y)

= argmax p(Y | X)p(X) (19)

argmax In{p(Y | X)p(X)}.
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We assume the same PDFs from (13) to (15), and p(X) =
pUXD)p(£X). After calculating In{p(Y | X)p(X)} and
differentiating it with respect to |X| (or £X), we put the
obtained derivative to zero and solve it with respect to |X]|
(or ZX). Then, we have [6]

E+ 824201+ 8)(Ey)
MAP = 20+ 0 ) (20)

Since the MAP solution of /X is identical to the observed
spectral phase, Gumap is also a real value. We see that Gumap
consists of & and y only; thus its computational complexity is
extremely low in comparison to (16).

2.6. Lotter’s Spectral Gain. In the previous section, we
obtained a MAP solution for speech enhancement under the
assumption that the PDF of the speech spectral amplitude
can be modeled as the Rayleigh distribution. However, some
researchers pointed out that there exists other appropriate
speech PDF [8-11]. In 2005, Lotter and Vary have proposed
an original speech spectral amplitude PDE This PDF was
derived from a real speech histogram made from a large
amount of real speech data. In the same manner as in the
previous section, the speech spectral amplitude and phase
were separately modeled in [11]. The PDF of the spectral
phase was also modeled as the uniform distribution defined
in (14). Lotter et al. modeled the PDF of the speech spectral
amplitude as a super-Gaussian function represented by

B HVH |X|V (_ m>
p(IX1) = T ot SPLH S, ) (21)

where I'(-) is a Gamma function and y and » are the shape
parameters which determine the shape of the above PDE
Using (21), (14) and (15), the same procedure in the previous
section gives the MAP solution expressed as

Grmap = u+ _[u?+ 2%}, (22)

1 u |1

u=s-3 Ve (23)
The MAP solution of the speech spectral phase is also
identical to the observed one, and thus Gy.yap is a real value.
Lotter and Vary reported that the most appropriate shape
parameters are y = 1.74 and v = 0.126 in [11]. The spectral
gain Gr.map also consists of & and y only, hence it is easy to
implement.

2.7. Adaptive Speech PDF Method. In [11], the shape param-
eters of the speech spectral amplitude PDEF, y and », had been
derived from a large amount of speech data in a single narrow
SNR interval. However, in a practical situation, a speech
signal includes both activity segments and pause segments.
Since the value of the speech spectral amplitude is always zero
in the pause segments, we expect that its PDF can be modeled
as a delta function. On the other hand, in the activity speech
segments, the PDF of the speech spectral amplitude obeys



ISRN Mechanical Engineering

Rayleigh distribution

p(x)

. Map solution

- MMSE-STSA
B solution

(b) Rayleigh distribution

FIGURE 3: Maximum and mean values for the specific PDFs.

0.6 . , . . , .
I i
0.5+ i
L | Gauss distribution
I
0.4 ,
L 1
1
— I
\2 0.3 ' MMSE-STSA
- ! solution
0.2 | A
! Map solution
L 1 B 4
I -
0.1 - i —
I
L i
0 ! . | R !
—4 -2 0 2
x
(a) Gauss distribution
T T T T T T T
3 Exponential distribution -
/ v=0
2 — —
= L ]
= yv=1
L Rayleigh distribution _
1 /
v=2
) I I .
0 0 1 3 4

X
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other functions. Tsukamoto et al. have noticed the fact and
investigated an adaptive method to change the PDF of the
speech spectral amplitude, according to the SNR [13]. They
have chosen Lotter’s PDF defined in (21) as the adaptive
PDFE, because its shape is easily controlled by v and y. Here,
we show examples of Lotter’s PDF with different shape
parameters in Figure 4. We see from this figure that the
PDF can fit the exponential distribution and the Rayleigh
distribution by adjusting the shape parameters. Utilizing
real speech histograms, Tsukamoto et al. derived adaptive
shape parameters and showed its effectiveness through the
computer simulations [13]. This basic idea is useful for
speech enhancement in a practical situation. Unfortunately,
a reliability of the derived adaptive shape parameter is
comparatively low, because it is derived from only two speech
histograms.

To sophisticate Tsukamoto’s adaptive shape parameter,
Thanhikam et al. have made and evaluated many real speech
histograms in various narrow SNR intervals [16]. They tried
to fit the speech histograms with (21) and revealed an

FI1GURE 5: Shape parameter fitting result for the SNR.

interesting curve of the shape parameters for narrow SNR
intervals. The obtained shape parameters as the fitting results
and the derived curve are shown in Figures 5(a) and 5(b),
where the narrow SNR was calculated as P = 10log,,¢
[dB]. The lines in the figures denote the curves obtained
by the least mean square method. Thes curves denote the
relation between the shape parameters and P. Table 1 shows
the formulations of the derived shape parameter function for
P, where we denote the derived shape parameters by R} (n)
and R}(n), and

F[ ] = ’ 4 (24)
x| =
0, otherwise.

Thanhikam et al. used an averaged value of R’,:(n) and
R{(n) to determine the present PDF shape of the speech



TaBLE 1: Instantaneous shape parameter functions RZ(n) and Ry (n).

SNR range [dB] Ry(n) = FlagPi(n) + bo] Ri(n) = FlcoPx(n) + do]

ap bo Co dg
Pi(n) <20 —0.087 3.50 0.060 -1.04
20 < Pi(n) <33 0.045 0.84 0.060 -1.04
33 < Pr(n) <49 -0.079 4.90 —-0.035 2.11
49 < Pr(n) <65 —0.011 1.60 0.039 -1.56
65 < Pi(n) -0.074 5.60 0 1.00
Wi(n)
1
0 0 5/\1-1 > i)

FIGURE 6: Weighting function.

spectral amplitude. Their “adaptive” MAP solution is as
follows:

Geln) = () + ud () + zvy"k((”]j), (25)

uk(n) = 1o L"Z (26)
4y (n)&x(n)

ur(n) = apr(n = 1) + (1 — ®)R{(n), (27)

ve(n) = &avg(n —1) + (1 — a)R}(n), (28)

where « is the forgetting factor and ux(n) and vk(n) are
the adaptive shape parameters. In [16], they put & = 0.98,
uk(0) = 20, ¢(0) = 0. This paper also use these settings.

In the next section, we compare the speech enhancement
capabilities of the spectral gains presented in this paper.

3. Speech Enhancement Simulation

To compare the speech enhancement capabilities of some
spectral gains derived in this paper, we firstly explain about
common conditions for speech enhancement simulation.
After that, we show the simulation results and discuss them.

3.1. Common Conditions. The speech enhancement methods
explained in this paper commonly require the noise variance
aj’k(n), a priori SNR & (n), and a posteriori SNR yi(n). To
obtain these parameters, the following estimation methods
were used.

Firstly, the noise variance was calculated by using the
weighted noise estimator proposed in [19]. This method
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can update the estimated noise variance even if a speech
signal exists. The weighted noise estimator calculates an
instantaneous noise power by using the weight Wi(n) as
shown in Figure 6. Here, 6 and yy are constant values. The
literature in [19] recommends that § = 7 and y = 10. As
shown in Figure 6, W (n) is a function of J(n) given as

- Y(n)|?
y(n) = 1010%10%~ (29)

The noise variance oik(n) is updated as

03(n) = Pod(n—1)+ (1= p)Wi(n)|Yi(m)>,  (30)

where f3 is a forgetting factor and § = 0.92 was used.
Next, the a posteriori SNR was directly calculated as

|Yi(n)|®

Ué,k(”) . (31)

yr(n) =

Lastly, the a priori SNR was calculated by using the
decision-directed method proposed in [4]. The decision-
directed method is given by

‘fk(ﬂ—l)‘z

fk(n) = Qsnr Ud,k(n — 1)

+ (1 - asnr)F[yk(n) - 1]) (32)
where ag,, is a forgetting factor and agy = 0.98 was used
according to [4].

The common speech enhancement system is shown in
Figure 7, where the numbers denote the order of the esti-
mation procedures. Of course, the spectral gain estimation
is depending on the employed speech enhancement method.
In simulations, the observed signal y(t) was a female speech
signal x(¢) corrupted with a practical tunnel noise d(t) with
SNR = 0dB, where the noise was recorded in a tunnel in an
expressway in Japan. All the signals used in the simulations
were sampled at 8 kHz, and the DFT size was 256 (the FFT
was used instead of the DFT). For objective evaluations, we
utilized the SNR defined as

Zszo |x(t)|2
St () -z

where L denotes the number of the samples in time domain.
It was also utilized the other evaluation function given as [17]

L) —1), (34)

SNR = 10log,, (33)

Ve UG Xl
LR=->=>11
];,N 2 (°g 1Xc(n)]

k=0 ’X/\k(”)‘

where ] is the number of frames. The LR (Likelihood Ratio)
denotes a spectral distance between the original speech and
the estimated one, hence the perfect speech estimate gives
LR=0.

3.2. Simulation Results. Speech enhancement simulations
were carried out to compare the presented speech enhance-
ment methods. The chosen methods were the spectral
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Yi(n) (2) A posteriori SNR
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FIGURE 7: Speech enhancement system.

TaBLE 2: Objective evaluation results for noisy signal with SNR =
0dB.

S w L A
SNR [dB] 6.8 14.5 12.7 14.8
LR 141.8 29.0 27.9 7.0

S: spectral subtraction in (6), W: Wiener filter in (10), L: Lotter’s spectral
gain in (22), A: adaptive PDF in (25).

subtraction method [3] and Wiener filter [5] as traditional
methods, Lotter’s spectral gain [11] as a MAP method using a
fixed speech PDF, and the adaptive speech PDF method [16]
as the recent method.

Table 2 shows the results of the objective evaluation
for each methods, where both of the best SNR and LR
results were obtained from the adaptive speech PDF method
proposed by Thanhikam et al. [16]. We see from this
table that the Wiener filter and Lotter’s method also gave
comparatively good SNR and LR results in comparison to the
spectral subtraction method. The waveforms of the simula-
tion results are shown in Figures 8(a)—8(e), and the respective
spectrograms are shown in Figures 9(a)-9(e). From Figures
8(b) and 9(b), we see that the spectral subtraction method
provided many residual noises. The main reason of it may be
that the spectral subtraction method does not use any speech
spectral information. The residual noises are perceived as an
annoying musical noise. From Figures 8 and 9(c), we see
that the Wiener filter is superior to the spectral subtraction
method for speech enhancement. The Wiener filter gave
the estimated speech with less musical noise, although the
amount of the residual noise was comparatively large. From
the waveform shown in Figure 8(d), we can confirm that
the Lotter’s spectral gain method can effectively reduce the
noise in some segments. But its spectrogram shown in
Figure 9(d) showed that the Lotter’s spectral gain method
emphasized isolated spectra, that is, musical noises. As a
result, it also causes a perception problem. In Figures 8 and
9(e), such estimation errors cannot be confirmed. It implies
that the adaptive PDF method proposed by Thanhikam is
appropriate to reduce the noise in speech pause segments.

0 20000 40000 60000
Time (x1/8000[s])

(a) Observed signal

Amplitude

0 20000 40000 60000
Time (x1/8000[s])

(b) Spectral subtraction shown in (6)

£ 20000 ‘ ‘ ‘ '
2
3, 0
= ) i
£ —20000
0 20000 40000 60000 80000

Time (x1/8000[s])

(c) Wiener filter shown in (10)

5 20000
2
2
£
< 1 1 1 1

0 20000 40000 60000 80000

Time (x1/8000[s])
(d) MAP estimation using Lotter’s PDF shown in (22)

5 20000 [ ' ' ' '
2
2, 0
= L
£ 20000

0 20000 40000 60000 80000

Time (x1/8000[s])
(e) MAP estimation using adaptive PDF shown in (25)

FIGURE 8: Waveforms of speech enhancement results.

However, in the speech activity segments, we can confirm
that the speech spectral components were also vanished. The
output speech quality of the adaptive speech PDF method
may be improved by adjusting the forgetting factor in the
adaptive shape parameters of the speech PDFE.

4. Conclusion

Single channel speech enhancement methods have been
extensively studied in decades. This paper have presented
some spectral gain methods among numerous studies. Of
course, there exists various noisy situations, and hence
we cannot choose the best speech enhancement system
among them. We just tried to explicitly denote theoretical
backgrounds of the chosen speech enhancement methods.
The noise reduction capability of the speech enhancement
methods was roughly compared for an arbitrary noisy
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FIGURE 9: Waveforms of speech enhancement results.

speech, although the simulation results may slightly change
when different noise and speech signals are used. From
the obtained simulation results, we confirmed that the
MAP estimation methods gave a good noise reduction
performance. Particularly, the recently proposed adaptive
speech PDF method reduced the noise signal strongly and
hence did not produce a musical noise in speech pause
segments. In the speech activity segments, we however
perceived a small-level musical noise and a degradation of
the speech. Such degradation tends to become large as noise
increases. Future works in speech enhancement include a
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development of an effective noise reduction method which
can give a good performance for a noisy speech signal with
SNR less than 0 dB.
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