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The mixed boundary problems for finite plates with one crack or two collinear cracks are studied. Complex stress functions that
satisfy the equilibrium equations and compatibility conditions in the cracked plate as well as the stress condition on crack surfaces
are presented. Four models, that is, a square plate with one crack or with two collinear cracks and an airfoil-shaped plate with one
crack or with two collinear cracks, are established. The unknown coefficients of the complex stress functions are determined by
using boundary collocation method (BCM). The effects of crack orientation, crack distance, and boundary condition on SIFs are
investigated by combining with BCM, and the corresponding photoelastic experiments are conducted. The test results generally
agree with the BCM calculation results.

1. Introduction

Finite plates with fixed and loaded combination boundary
are frequently encountered in engineering practice, such as
cantilever beams and aircraft airfoils. In both cases, part of the
structures is fixed and the upper face of the cantilever or the
windward side of the airfoil will be subjected to load. If such
structures contain a crack or multicracks, how to evaluate
their stability and strength is a significant subject because
the strength of cracked structures is immensely dependent
on the geometrical configuration, loading condition, and the
crack behavior. In order to precisely predict the stability of
the structures of cracked finite plates with mixed boundary
condition, it is imperative to implement theoretical and
experimental studies so as to obtain the dominative param-
eters that control the structure stability and, furthermore, to
predict engineering disasters.

Varied solutions to stress intensity factors for crack
problems are generally in three different ways, namely,
analytic, numerical, and experimental methods. For many
plane problems, the SIFs can be found in the handbook [1, 2].
Muskhelishvili [3] established the fundamental equations in
terms of complex functions to solve many plane problems.
Jing [4] reviewed the numerical methods in literature and

listed many available numerical methods, outstanding issues
and potential future developments in this field. Marakami
[5] used the finite element method to determine the stress
intensity factors for a plate with single crack. Zhu et al. [6–11]
investigated the effect of crack orientations on SIFs for cracks
subjected to uniform load and proposed a brief formula
of SIF based on BCM calculation results. Yavuz et al. [12]
analyzed the interaction ofmultiple crack configuration using
integral equations derived from crack opening displacement
and calculated the SIFs of branched crack and kinked
crack. Chen et al. [13] solved a number of multiple crack
problems in integral equation approach. Zhu [14] formulated
the analytic solution for infinite plate with two collinear
cracks and proposed a new fracture criterion for collinear
cracks under compression. Wang et al. [15] used BCM to
investigate the SIFs of finite rectangle plate in bending, and
the results agreed very well with existing literature. Jin et al.
[16] studied the effect of confining stress, friction coefficient,
crack orientation, and crack distance on SIFs in a finite plate
with collinear cracks. Although the crack problem has been
widely studied by the above researchers, the issue of finite
cracked plate withmixed boundary conditions, which is often
encountered in engineering practice, has received limited
attention.
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Figure 1: A square plate with (a) a single crack and (b) two collinear cracks under mixed boundary condition.

The objective of this paper is to present the SIF solutions
to two kinds of finite cracked plates, a square plate and an
airfoil-shaped plate, with mixed boundary conditions and
to investigate the effect of crack orientation, the distance
between two collinear cracks and boundary condition on
SIFs. A set of equations is formulated in terms of complex
functions to describe the stress distribution. These stress
functions automatically satisfy the equilibrium and compat-
ibility requirements, single-valued displacement condition
as well as the stress condition on crack surfaces. Only the
boundary conditions on the outer boundary need to be
satisfied, and this is achieved by using boundary collocation
method (BCM), which is a simple and accurate numerical
method and has been well established by many researchers
[6–9, 15, 17].

2. Complex Stress Functions

The general solutions to linear elasticity problems, expressed
in terms of complex stress potentials 𝜑(𝑧) and 𝜔(𝑧), were
first presented by Muskhelishvili [3], and the stresses and
displacements of plane problems can be formulated as

𝜎
𝑥
+ 𝜎
𝑦
= 2 [Φ (𝑧) + Φ (𝑧)] ,

𝜎
𝑦
− 𝑖𝜏
𝑥𝑦
= Φ (𝑧) + Ω (𝑧) + (𝑧 − 𝑧)Φ󸀠 (𝑧),

2𝐺 (𝑢 + 𝑖V) = 𝜅𝜑 (𝑧) − 𝜔 (𝑧) − (𝑧 − 𝑧)Φ (𝑧),

(1)

where 𝑧 = 𝑥 + 𝑖𝑦, 𝑧 = 𝑥 − 𝑖𝑦, Φ(𝑧) = 𝜑
󸀠

(𝑧), Ω(𝑧) = 𝜔
󸀠

(𝑧),
𝜅 = (3 − 𝜐)/(1 + 𝜐) for plane stress problem and 𝜅 = 1 − 4𝜐

for plane strain problem; 𝐺 = 𝐸/2(1 + 𝜐), where 𝜐 is Poisson’s
ratio and 𝐸 is Young’s modulus.

Automatically, the equilibrium equations and compat-
ibility conditions are satisfied by these functions. Specific
expressions for each stress and displacement component
can be obtained if the single-valued displacement condition
and boundary conditions (stress and displacement boundary
conditions) are satisfied. The single-valued displacement
condition can be written as

𝜅∮Φ (𝑧) − ∮Ω (𝑧) = 0. (2)

In this paper, a part of the boundary is fixed as shown
in Figure 1, so the displacement boundary condition can be
expressed as

𝜅𝜑 (𝑧) − 𝜔 (𝑧) − (𝑧 − 𝑧)Φ (𝑧) = 0. (3)

The resultant force boundary condition which is more
accurate than stress boundary condition can be written as

𝜑 (𝑧) + 𝜔 (𝑧) + (𝑧 − 𝑧)Φ (𝑧) = 𝑖 ∫

𝑧

𝑧0

(𝑋
𝑛
+ 𝑖𝑌
𝑛
) 𝑑𝑠, (4)

where 𝑧
0
is an randomly selected point on the outer bound-

ary.
The plates as shown in Figure 1 are subjected to both

stress anddisplacement boundary conditions (i.e., upper edge
loaded with uniform compression and right edge assigned
with zero displacements) with one centrally located crack and
two collinear cracks, respectively. The crack is designed to
coincide with the 𝑥-axis, which is at an angle 𝛼 with respect
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to the horizontal 𝑥-axis. According to Zhu [14], the complex
stress functions 𝜑(𝑧), 𝜔(𝑧), and Φ(𝑧) can be written as

𝜑 (𝑧) = √(𝑧2 − 𝑎2) (𝑧2 − 𝑏2)

×

𝑀

∑

𝑛=1

𝐸
𝑛
𝑧
𝑛−2

+

𝑀

∑

𝑛=1

𝐹
𝑛
𝑧
𝑛

−
1

2
𝜎𝑧 +

1

2
𝑖𝜏𝑧,

𝜔 (𝑧) = √(𝑧2 − 𝑎2) (𝑧2 − 𝑏2)

×

𝑀

∑

𝑛=1

𝐸
𝑛
𝑧
𝑛−2

−

𝑀

∑

𝑛=1

𝐹
𝑛
𝑧
𝑛

−
1

2
𝜎𝑧 +

1

2
𝑖𝜏𝑧,

Φ (𝑧) =
1

√(𝑧2 − 𝑎2) (𝑧2 − 𝑏2)

×

𝑀

∑

𝑛=1

𝐸
𝑛
[𝑛𝑧
𝑛+1

− (𝑛 − 1) (𝑎
2

+ 𝑏
2

) 𝑧
𝑛−1

+ (𝑛 − 2) 𝑎
2

𝑏
2

𝑧
𝑛−3

]

+

𝑀

∑

𝑛=1

𝐹
𝑛
𝑛𝑧
𝑛−1

−
1

2
𝜎 +

1

2
𝑖𝜏,

(5)

where 𝜎 and 𝜏 are normal and shear stresses acting on crack
surface, 𝐸

𝑛
and 𝐹

𝑛
are complex constants in general, and𝑀

is the number of summation term. The resultant force and
displacement boundary can be expressed as

𝑖 ∫

𝑧

𝑧0

(𝑋
𝑛
+ 𝑖𝑌
𝑛
) 𝑑𝑠 = 𝜑 (𝑧) + 𝜔 (𝑧) + (𝑧 − 𝑧)Φ (𝑧) = 𝑄 (𝑧) ,

(6)

2𝐺 (𝑢 + 𝑖V) = 𝜅𝜑 (𝑧) − 𝜔 (𝑧) − (𝑧 − 𝑧)Φ (𝑧)

= (𝜅 + 1) 𝜑 (𝑧) − 𝑄 (𝑧) = 𝑇 (𝑧) .

(7)

Inserting (5) into (6), one can have
𝑁

∑

𝑛=1

𝐸
𝑛
[√(𝑧2 − 𝑎2) (𝑧2 − 𝑏2)𝑧

𝑛−2

+√(𝑧
2

− 𝑎2) (𝑧
2

− 𝑏2)𝑧
𝑛−2

]

+

𝑁

∑

𝑛=1

𝐹
𝑛
(𝑧
𝑛

− 𝑧
𝑛

) + (𝑧 − 𝑧)

⋅ conjg
{{

{{

{

1

√(𝑧2 − 𝑎2) (𝑧2 − 𝑏2)

×

𝑁

∑

𝑛=1

𝐸
𝑛
[𝑛𝑧
𝑛+1

− (𝑛 − 1) (𝑎
2

+ 𝑏
2

) 𝑧
𝑛−1

+ (𝑛 − 2) 𝑎
2

𝑏
2

𝑧
𝑛−3

] +

𝑁

∑

𝑛=1

𝐹
𝑛
𝑛𝑧
𝑛−1

}}

}}

}

− 𝜎𝑧 + 𝑖𝜏𝑧 = 𝑖 ∫

𝑧

𝑧0

(𝑋
𝑛
+ 𝑖𝑌
𝑛
) 𝑑𝑠.

(8)

Let 𝑧 = 𝑟𝑒𝑖𝜃, 𝑧−𝑎 = 𝑟
1
𝑒
𝑖𝜃1, 𝑧+𝑎 = 𝑟

2
𝑒
𝑖𝜃2, 𝑧−𝑏 = 𝑟

3
𝑒
𝑖𝜃3, 𝑧+𝑏 =

𝑟
4
𝑒
𝑖𝜃4, then

√(𝑧2 − 𝑎2) (𝑧2 − 𝑏2) = √𝑟
1
𝑟
2
𝑟
3
𝑟
4
𝑒
𝑖(𝜃1+𝜃2+𝜃3+𝜃4)/2

= 𝜌𝑒
𝑖𝛼

,

(9)

where 𝑟 and 𝜃 are the modulus and angle of a complex.
Substituting (9) into (8), the real and imaginary parts of (8)
can be separately expressed as

Re [𝑄 (𝑧)] =
𝑀

∑

𝑘=1

[𝑆
1𝑘
+ 𝑆
6𝑘
]Re (𝐸

𝑘
)

+

𝑀

∑

𝑘=1

[𝑆
5𝑘
] Im (𝐸

𝑘
) +

𝑀

∑

𝑘=1

[𝑆
4𝑘
]Re (𝐹

𝑘
)

+

𝑀

∑

𝑘=1

[−𝑆
2𝑘
+ 𝑆
3𝑘
] Im (𝐹

𝑘
) − 𝜎𝑟 cos 𝜃 + 𝜏𝑟 sin 𝜃,

(10a)

Im [𝑄 (𝑧)] =

𝑀

∑

𝑘=1

[𝑆
5𝑘
]Re (𝐸

𝑘
)

+

𝑀

∑

𝑘=1

[𝑆
1𝑘
−𝑆
6𝑘
] Im (𝐸

𝑘
)+

𝑀

∑

𝑘=1

[𝑆
2𝑘
+ 𝑆
3𝑘
]Re (𝐹

𝑘
)

+

𝑀

∑

𝑘=1

[−𝑆
4𝑘
] Im (𝐹

𝑘
) − 𝜎𝑟 sin 𝜃 + 𝜏𝑟 cos 𝜃.

(10b)

Following the same procedure, the real and imaginary parts
of (7) can be separately written as

Re [𝑇 (𝑧)] =
𝑀

∑

𝑘=1

[𝑈
1𝑘
− 𝑆
1𝑘
− 𝑆
6𝑘
]Re (𝐸

𝑘
)

+

𝑀

∑

𝑘=1

[−𝑈
2𝑘
− 𝑆
5𝑘
] Im (𝐸

𝑘
)

+

𝑀

∑

𝑘=1

[𝑈
3𝑘
− 𝑆
4𝑘
]Re (𝐹

𝑘
)

+

𝑀

∑

𝑘=1

[−𝑈
4𝑘
+ 𝑆
2𝑘
− 𝑆
3𝑘
] Im (𝐹

𝑘
)

+
1

2
𝜎𝑟 (1 − 𝜅) cos 𝜃 − 1

2
𝜏𝑟 (3 + 𝜅) sin 𝜃,

(11a)
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Im [𝑇 (𝑧)] =

𝑀

∑

𝑘=1

[𝑈
2𝑘
− 𝑆
5𝑘
]Re (𝐸

𝑘
)

+

𝑀

∑

𝑘=1

[𝑈
1𝑘
− 𝑆
1𝑘
+ 𝑆
6𝑘
] Im (𝐸

𝑘
)

+

𝑀

∑

𝑘=1

[𝑈
4𝑘
− 𝑆
2𝑘
− 𝑆
3𝑘
]Re (𝐹

𝑘
)

+

𝑀

∑

𝑘=1

[𝑈
3𝑘
+ 𝑆
4𝑘
] Im (𝐹

𝑘
)

+
1

2
𝜎𝑟 (1 − 𝜅) sin 𝜃 − 1

2
𝜏𝑟 (1 − 𝜅) cos 𝜃,

(11b)

where

𝑆
1𝑘
= 2𝜌𝑟

𝑘−2 cos [(𝑘 − 2) + 𝛼] ,

𝑆
2𝑘
= 2𝑟
𝑘 sin 𝑘𝜃,

𝑆
3𝑘
= 2𝑘𝑟

𝑘 sin 𝜃 cos (𝑘 − 1) 𝜃,

𝑆
4𝑘
= 2𝑘𝑟

𝑘 sin 𝜃 sin (𝑘 − 1) 𝜃,

𝑆
5𝑘
= 2𝑘𝑟

𝑘+2 sin 𝜃 cos [(𝑘 + 1) 𝜃 − 𝛼]
𝜌

−
2 (𝑘 − 1) (𝑎

2

+ 𝑏
2

) sin 𝜃 cos [(𝑘 − 1) 𝜃 − 𝛼]
𝜌

+
2 (𝑘 − 2) 𝑎

2

𝑏
2

𝑟
𝑘−2 sin 𝜃 cos [(𝑘 − 3) − 𝛼]

𝜌
,

𝑆
6𝑘
= 2𝑘𝑟

𝑘+2 sin 𝜃 sin [(𝑘 + 1) 𝜃 − 𝛼]
𝜌

−
2 (𝑘 − 1) (𝑎

2

+ 𝑏
2

) sin 𝜃 sin[(𝑘 − 1) 𝜃 − 𝛼]
𝜌

+
2 (𝑘 − 2) 𝑎

2

𝑏
2

𝑟
𝑘−2 sin 𝜃 sin [(𝑘 − 3) − 𝛼]

𝜌
,

𝑈
1𝑘
= (𝜅 + 1) 𝜌𝑟

𝑘−2 cos [(𝑘 − 2) + 𝛼] ,

𝑈
2𝑘
= (𝜅 + 1) 𝜌𝑟

𝑘−2 sin [(𝑘 − 2) + 𝛼] ,

𝑈
3𝑘
= (𝜅 + 1) 𝑟

𝑘 cos 𝑘𝜃,

𝑈
4𝑘
= (𝜅 + 1) 𝑟

𝑘 sin 𝑘𝜃.

(12)

The crack tip SIFs are [13]

𝐾I − 𝑖𝐾II = lim
𝑧→±𝑎

2√2𝜋𝑒
−𝑖𝛽

(𝑧 ∓ 𝑎)Φ (𝑧) , (13)

where 𝛽 is the crack angle with respect to the positive 𝑥-axis,
and for the right crack tip 𝛽 = 0, whereas for the left one,

𝛽 = 𝜋. The dimensionless SIFs 𝑌I and 𝑌II for the right crack
tips are

𝑌I − 𝑖𝑌II =
(𝐾I − 𝑖𝐾II)

𝐾
0

=
∑
𝑀

𝑘=1
𝐸
𝑘
2√(𝑎 + 𝑏)𝑎

𝑘−1.5

𝜎
1

, (14a)

and for the left crack tips they are

𝑌I − 𝑖𝑌II =
(𝐾I − 𝑖𝐾II)

𝐾
0

=
∑
𝑀

𝑘=1
𝐸
𝑘
2√(𝑎 + 𝑏)(−1)

𝑘−1

𝑎
𝑘−1.5

𝜎
1

,

(14b)

where 𝐾
0
= 𝜎
1
√𝜋(𝑎 − 𝑏) and the parameters 𝑎, 𝑏, and 𝜎

1
are

shown in Figure 1(b).

3. Boundary Collocation Procedure

From (14a) and (14b), one can find that dimensionless SIFs
can be obtained once the coefficients of 𝐸

𝑘
are determined.

In this study, boundary collocation method (BCM), which
is a simple and accurate numerical method, is employed to
obtain the coefficients of 𝐸

𝑘
. In the computational procedure,

boundary conditions on the outer boundary are enforced
at every collocation point. Both stress and displacement
boundary conditions, that is, (6) and (7), are employed
for the mixed boundary problem. BCM is applied to form
simultaneous equations based on (10a) and (10b) and (11a)
and (11b) according to the procedures as follows: first, 𝑁
collocation points are distributed on the whole boundary
with equal distance. Secondly, two coefficient equations will
be generated for each point using (10a) and (10b) or (11a)
and (11b) depending on the boundary condition. Thus, 2𝑁
equations can be obtained and expressed in matrix form as

[𝐴]
2𝑁×4𝑀

{𝑋}
4𝑀

= {𝐹}
2𝑁
, (15)

where each element of [𝐴]
2𝑁×4𝑀

is the summation of 𝑆
𝑖𝑘
(𝑖 =

1, 2, . . . 6) and 𝑈
𝑖𝑘
(𝑖 = 1, 2, 3, 4) that are determined by the

coordinates of the collocation points, {𝑋}
4𝑀

is the unknown
coefficient, that is, the real and imaginary parts of 𝐸

𝑘
and

𝐹
𝑘
and {𝐹}

2𝑁
is the matrix consisting of the accumulative

external forces and displacements at the collocation points.
Equation (15) can be efficiently solved by means of the least
square method, which is the result of Newman’s experience
[17].

4. Numerical Results for Cracks under Mixed
Boundary Conditions

Using BCM, the SIF values of the four aforementioned
models, that is, a square plate with one crack or with two
collinear cracks and an airfoil-shaped plate with one crack
or with two collinear cracks, are calculated. Based on the
calculation results, the effects of crack orientation, crack
distance, and boundary condition on SIF are investigated.

4.1. Effect of Crack Orientations on SIFs for Plates with
Single Crack. In order to validate the boundary collocation
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Figure 2: An airfoil-shaped plate with a single crack and two collinear cracks with mixed boundary condition.

method and the calculation procedure, the Mode ΙΙ stress
intensity factors for a square plate with a single crack and an
airfoil-shaped plate with single crack under mixed boundary
condition as shown in Figures 1(a) and 2(a) are calculated.
For each plate, the top boundary is subjected to uniform
compressive stress 𝜎

1
, while the right boundary is fixed

and the others remain stress-free. The collocation points are
distributed on the whole boundary of the plate, and some
parameters pertinent to the calculation are listed in Tables 1
and 2, respectively.

Because of two crack tips, the crack is designed to turn
from 0∘ to 180∘ in an anticlockwise sense. As crack tip A
turns from 0∘ to 180∘, tip B will turn from 180∘ to 360∘. The
corresponding Mode ΙΙ SIFs are calculated and are plotted in
Figures 3 and 4.

From Figure 3, it can be seen that as 𝛼 = 0
∘, SIF is

larger than 0. This is because the right edge is fixed and the
left edge is stress-free, and the normal compression from the
top edge creates an anticlockwise moment, which, similar
to the situation in a double cantilever beam subjected to
vertical load, forces the upper horizontal crack surface to slide
towards the right with respect to the lower crack surface,
resulting in a positive shearing SIF value. Both curves first
increase and then decrease, and finally they increase again.
The SIF curves reach their peak values both about at 𝛼 = 30∘
and then decrease to the minimum values about at 𝛼 = 118∘.
The crack orientation at the peak value is called the most
unfavourable orientation. Before the peak values, that is, as
𝛼 < 30

∘, the load-induced moment plays the predominant
role in the determination of crack SIF. As the angles increase
to a certain value, the vertical load compels the upper bulk,
to which the upper surface is attached, to slide downwards,
resulting in a negative SIF value.

The SIF curves for the crack of the airfoil-shaped plate,
shown in Figure 4, possess curvilinear trend analogous to
those in Figure 3.The SIF of tipA acquires itsmaximumvalue

Table 1: Calculation parameters for the square plate.

Crack length 𝑎 − 𝑏 = 0.25

Crack tip Distance 2𝑏 = 0.125

Number of summation term 𝑀 = 15

Total number of collocation point 𝑁 = 256

Table 2: Calculation parameters for the airfoil-shaped plate.

Crack length 𝑎 − 𝑏 = 0.25

Crack tip distance 2𝑏 = 0.125

Swept back angle 𝛼 = 20
∘

Number of summation term 𝑀 = 15

Total number of collocation point 𝑁 = 384

2.23 at angle 20.8∘ and minimum value −2.27 at angle 107.6∘.
The SIF of tip B reaches its maximum value 2.25 at angle 17.6∘
and minimum value −2.20 at angle 107.6∘.

Evident differences exist if a detailed examination is taken
between the two figures. The amplitude of curves for airfoil-
shaped plate is much larger than that for square plate. Since
the crack in the former plate covers shorter distance to the
loaded boundary, which greatly affects the stress field in the
vicinity of crack tip, the SIFs for airfoil-shaped plate exhibit
higher values. For instance, at angle 45∘, the SIF at tip A for
square plate is 0.28, whereas for the airfoil-shaped plate it is
1.25, which represents 3.46 times increase in SIF value. At
both crack tips, the SIF curves for the airfoil-shaped plate
reach their maximum andminimum values prior to those for
the square plate.

4.2. Influence of Crack Orientations on SIF for Plates with Two
Collinear Cracks. Materials usually contain a large number
of cracks or microcracks, and sometimes the cracks are lined
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Figure 5: Comparison of the 𝑌
ΙΙ
of crack tip C with those of tip D for the square plate.

up, which is called collinear cracks. Figure 1(b) shows a plate
with two collinear cracks under mixed boundary conditions.
Except for the number of cracks, all other parameters are
the same as those shown in Figure 1(a). The corresponding
calculation results of the dimensionless SIF 𝑌

ΙΙ
at crack tip C

and D are plotted in Figure 5. It can be seen that the curve
amplitude of tip D is larger than that of tip C. This is to be
expected, as crack tip D closes to crack tip E, crack tip D is
greatly affected by its adjacent crack.

For the airfoil-shaped plate with two collinear cracks
as shown in Figure 2(b), the calculation result is shown in
Figure 6. Because of the differences in plate shapes and crack
locations, the SIF values for airfoil-shaped plate generally are
much larger than those of the square plate.

The calculation results show that the difference of SIF
values between the two inner crack tips D and E is very small,
and it can be easily understood that the nuance of the SIF
values at the inner crack tips arises from the asymmetry of
stress and displacement boundary conditions.

4.3. Comparison of SIF between One-Crack Model and Two-
Crack Model. Brittle materials usually contain a number
of cracks, and they affect each other. In this section, the
comparison of the SIFs between one-crack model and two-
crack model is implemented. For the two-crack model, the
distance between two crack tips is 0.125, which is half of the
crack length.The corresponding 𝑌

ΙΙ
− 𝛼 curves are compared

in Figure 7, and it can be found that the𝑌
ΙΙ
−𝛼 curve amplitude

for the two-crack model is much larger than that of the
one-crack model, which means the more cracks a material
possesses, the more unstable the material is.

4.4. Effect of Crack Distances on SIFs and Experimental Verifi-
cation. In order to investigate the influence of crack distance
on SIFs, the square platewith two collinear cracks is employed
and the crack orientation is fixed at 30∘ which is the most
unfavourable orientation shown in Figure 5. The distance 2𝑏,
between the two crack tips, increases from 0.05(𝑎 − 𝑏) to
3.0(𝑎 − 𝑏), at an interval of 0.05(𝑎 − 𝑏), where (𝑎 − 𝑏) is
half crack length. The corresponding dimensionless SIFs of
crack tips C and D are calculated, and the result is shown
in Figure 8. When the ratio 2𝑏/(𝑎 − 𝑏) decreases from 3.0
to 0.5, the absolute values of SIFs at both tips increase in a
slow manner, and as the ratio continues to decrease, the SIF
of inner tip D starts to increase rapidly. This means that the
effect between two cracks increases as the distance between
two cracks reduces.

Photoelastic experiment was carried out to show the
characteristics of fringe patterns for varied crack distance and
to validate the numerical method introduced in this paper.
Four polycarbonate plates with two collinear penetrated
cracks were used with the dimension 13 cm × 13 cm ×

0.6 cm. The crack length is 1.0 cm, and the ratio of crack tip
distance versus crack length was set to be 0.0, 1.0, 2.0, and
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Figure 9: Photoelastic test result of fringe patterns for the mixed boundary square model with different ratios of crack tip distance to crack
length.

3.0, respectively, and the crack orientation was fixed at 45∘.
Comparing with the numerical results shown in Figure 8,
one can find that the photoelastic results shown in Figure 9
generally agree with the numerical result.

4.5. Effect of Boundary Condition. In order to investigate the
effect of boundary condition, the corresponding uniaxial
compressionmodel of a square plate with two collinear cracks
is employed. Except for the boundary, the other parameters
are the same as those shown in Figure 1(b).The corresponding
calculation results for themodelswith twodifferent boundary
conditions are compared in Figure 10. In order to qualitatively
confirm the numerical results, the photoelastic experiment

result for the square model under uniaxial compression is
presented in Figure 11.

Comparing the fringe patterns shown in Figure 11 with
those shown in Figure 9 and combining with the calculation
results shown in Figure 10, one can find that the SIFs for
the square model under uniaxial compression are about two
times larger than those for the square model with mixed
boundary conditions, which means that mixed boundaries
can affect SIFs largely.

5. Conclusions

Thestress intensity factors (SIFs) for cracked finite plates with
mixed boundary condition are studied in this paper, and a
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Figure 11: Photoelastic test result of fringe patterns for the squaremodel under uniaxial compression with different ratios of crack tip distance
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set of complex stress functions is presented. The unknown
coefficients of the stress functions are determined by using
boundary collocation method (BCM). Four cases, a square
plate containing one-crack or two-cracks and an airfoil-
shaped plate containing one-crack or two-cracks with mixed
boundary condition are investigated, and the corresponding
SIFs are calculated. The effects of crack orientation, crack
distance, and boundary condition on SIFs are investigated
and in order to confirm the calculated results, photoelastic
experiments are conducted. From this study, the following
conclusions can be obtained.

(1) SIF increases as the distance between two cracks
decreases, whichmeans that the effect between cracks
increases as the interval distance reduces; in partic-
ular as the distance between two crack tips is less
than half crack length, the effect between two cracks
is intensified largely.

(2) Boundary condition affects SIF significantly. From
Figure 10, one can find that for a square plate with
two collinear cracks under uniaxial compression, the
SIFs are about twice the amount as comparedwith the
mixed boundary as shown in Figure 1(b).
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(3) Comparing with finite element method, BCM has
shown its prominent advantages in simplicity of
programming, efficiency in saving computer time,
and adequate accuracy.

Acknowledgments

This work was financially supported by the Open Fund of
State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation (PLN1202), the National Natural Science
Foundation of China (51074109), and by theMajor State Basic
Research Project (2010CB732005).

References

[1] G. C. Sih,Handbook of Stress Intensity Factors, Leheigh Univer-
sity, Bethlehem, Pa, USA, 1973.

[2] H. Tada, P. C. Paris, andG. R. Irwin,TheStress Analysis of Cracks
Handbook, Del Research Corp, Hellertown, Penn, USA, 1973.

[3] N. I. Muskhelishvili, Some Basic Problems of Mathematical The-
ory of Elasticity, Noordhoff Press, Amsterdam,The Netherland,
1953.

[4] L. Jing, “A review of techniques, advances and outstanding
issues in numerical modelling for rock mechanics and rock
engineering,” International Journal of Rock Mechanics and
Mining Sciences, vol. 40, no. 3, pp. 283–353, 2003.

[5] Y. Murakami, “A simple procedure for the accurate determi-
nation of stress intensity factors by finite element method,”
Engineering Fracture Mechanics, vol. 8, no. 4, pp. 643–655, 1976.

[6] Z. M. Zhu, S. C. Ji, and H. P. Xie, “An improved method
of collocation for the problem of crack surface subjected to
uniform load,” Engineering Fracture Mechanics, vol. 54, no. 5,
pp. 731–741, 1996.

[7] Z. Zhu, H. Xie, and S. C. Ji, “The mixed boundary problems
for a mixed mode crack in a finite plate,” Engineering Fracture
Mechanics, vol. 56, no. 5, pp. 647–655, 1997.

[8] Z. Zhu, L. Wang, B. Mohanty, and C. Huang, “Stress intensity
factor for a cracked specimen under compression,” Engineering
Fracture Mechanics, vol. 73, no. 4, pp. 482–489, 2006.

[9] Z. Zhu, “New biaxial failure criterion for brittle materials in
compression,” Journal of Engineering Mechanics, vol. 125, no. 11,
pp. 1251–1258, 1999.

[10] Z. M. Zhu, “Evaluation of the range of horizontal stresses in the
earth’s upper crust by using a collinear crack model,” Journal of
Applied Geophysics, vol. 88, pp. 114–121, 2013.

[11] Z. Zhu, Y. Wang, Z. Zhou, B. Li, and H. Xie, “New fracture
criterion for brittle materials under compression,” Journal of
Sichuan University, vol. 40, no. 5, pp. 13–21, 2008.

[12] A. K. Yavuz, S. L. Phoenix, and S. C. TerMaath, “An accu-
rate and fast analysis for strongly interacting multiple crack
configurations including kinked (V) and branched (Y) cracks,”
International Journal of Solids and Structures, vol. 43, no. 22-23,
pp. 6727–6750, 2006.

[13] Y. Z. Chen, N. Hasebe, and K. Y. Lee, Multiple Crack Problems
in Elasticity, Witpress, Southampton, NY, USA, 2003.

[14] Z. Zhu, “An alternative form of propagation criterion for
two collinear cracks under compression,” Mathematics and
Mechanics of Solids, vol. 14, no. 8, pp. 727–746, 2009.

[15] Y. H. Wang, L. G. Tham, P. K. K. Lee, and Y. Tsui, “A
boundary collocation method for cracked plates,” Computers
and Structures, vol. 81, no. 28-29, pp. 2621–2630, 2003.

[16] W. C. Jin, Z. M. Zhu, and M. Z. Gao, “A general method
to determine the stress intensity factor of multiple collinear
cracks,”Mathematics and Mechanics of Solids, vol. 18, no. 4, pp.
397–408, 2012.

[17] J. C. Newman, “An improved method of collocation for the
stress analysis of cracked plate with various shaped boundaries,”
NASA TN-D-6376, National Aeronautics and Space Adminis-
tration, Washington, DC, USA, 1971.



Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical 
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


