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Microbial biofilms on biomaterial implants or devices are hard to eliminate by antibiotics due to their protection by exopolymeric
substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune-cells. Application of metals in
their nanoparticulated form is currently considered to resolve bacterial infections. Gold and iron-oxide nanoparticles are widely
used in different medical applications, but their utilisation to eradicate biofilms on biomaterials implants is novel. Here, we studied
the effect of gold and iron oxide nanoparticles on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. We report that
biofilm growth was reduced at higher concentrations of gold and iron-oxide nanoparticles compared to absence of nanoparticles.
Thus nanoparticles with appropriate concentration could show significant reduction in biofilm formation.

1. Introduction

In modern medicine, biomaterial implants and devices to
support and restore functioning of body parts have become
common with high success rates in terms of improved
quality of life. A serious problem associated with the use
of biomaterials is the occurrence of microbial infections.
Biomaterial-associated infections (BAI), although of rela-
tively low incidence, represent serious complications related
to high mortality rates and high health care costs [1].
According to the studies conducted by European Centre for
Disease Prevention and Control, the average prevalence of
healthcare-associated infections in Europe was 7.1%; that is,
approximately 4,131,000 patients were affected [2]. Moreover,
costs related to healthcare-associated infection are greater
than C7 billion in Europe annually [2]. A major proportion
of the healthcare-associated infections and costs relate to
BAI. To give an example, it has been reported that for
approximately 800,000 artificial orthopaedic joints implanted
in Europe, at least 1.5% will suffer from periprosthetic

infections [2].Whereas the costs of a primary implantation of
an artificial hip or knee joint amount approximately C15.000,
the costs of revision surgery due to infection easily triple
[2]. With the average life-expectancy steadily increasing,
concurrent with a nonnegotiable demand for a high quality
of life, the use of biomaterials for the restoration of function
will increase, including the incidence of BAI. In India, an
estimation of 10% to 30% patients admitted to hospitals
acquire nosocomial infection, and up to 70% of organisms
causing infections are resistant to at least one antibiotic [3].
Staphylococcus epidermidis and Staphylococcus aureus are the
most frequently isolated pathogens from infections related to
biomaterials implant surfaces. In addition, isolated organisms
include Escherichia coli and Pseudomonas aeruginosa [4].

Several biomaterial surface modifications [5–7] have
been developed to reduce biofilm formation, but hitherto
microbial adhesion can only be reduced by one or two log
units and not fully eliminated. Thus long-term treatment of
biofilms causing BAI remains a challenge [6].
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Metals such as silver, copper, gold, titanium, and zinc have
been used as antibacterial agents for centuries already [8],
but their efficacy has been surpassed by modern antibiotics,
and their use has diminished. Application of metals in their
nanoparticulated form is currently considered to resolve
bacterial infections, but has attracted scientific attention only
over the past decade [8]. Nanoparticles are less than 100 nm
in diameter, and as a result properties such as surface area,
chemical reactivity, and biological activity alter dramatically.
The antibacterial efficacy of metal nanoparticles has been
suggested to be due to their high surface-to-volume ratio
rather than to the sole effect of metal-ion release [8]. A
high surface-to-volume ratio is generally accompanied by
increased production of reactive oxygen species, including
free radicals [9, 10]. These characteristics allow nanoparticles
to interact closely with microbial membranes, damage their
structure, and inactivate bacteria [8]. Metal oxide nanopar-
ticles are of particular interest as antibacterial agents, as
they can be prepared with extremely high surface areas and
unusual crystalline morphologies with a high number of
edges and corners, and other potentially reactive sites [11].
Therefore, the aim of this study was to evaluate the effect
of gold and iron-oxide nanoparticles on biofilm-forming
pathogens such as S. aureus and P. aeruginosa.

2. Materials and Methods

2.1. Synthesis

2.1.1. Gold Nanoparticles. 20mL of hydrogen tetrachloroau-
rate and 2mL of trisodium citrate dehydrate were added to a
flask on a stirring hot plate. With continuous boiling at 100∘C
and stirring, gold chloride reduction by citrate is indicated
by the change in colour from bluish purple to a deep red,
indicating the formation of gold nanoparticles.

2.1.2. Iron-Oxide Nanoparticles. 4mL of ferrous chloride and
1mL of ferric chloride were added to a flask. Sodium hy-
droxide was added drop by drop and stirred continuously.
Initially formed brown precipitate was changed into a black
precipitate, indicating the formation of iron-oxide nanopar-
ticles. The size of the synthesized particles was determined
using transmission electron microscopy. The optical mea-
surement of the nanoparticles was studied by UV-visible
spectrophotometer (Unico) over the spectral range of 200–
1000 nm.

2.2. Effect of Nanoparticles on Bacterial Biofilms. Staphylococ-
cus aureus and Pseudomonas aeruginosa were used for this
study.

Bacteria were first grown aerobically overnight at 37∘C on
blood agar from a frozen stock.

The plate was kept at 4∘C. For each experiment, one
colony was inoculated in 10mL of tryptone soy broth (TSB)
and cultured for 16 h. Bacteria were harvested by centrifuga-
tion.

The bacteria are suspended in TSB to a concentration of
106 bacteria/mL.

Tissue culture polystyrene wells (12 wells) were filled
with 1mL of bacterial suspension and allowed to adhere and
grow aerobically at 37∘C for 4 h. Then, gold or iron-oxide
nanoparticles were introduced in different concentrations
(0.01mg/mL, 0.05mg/mL, 0.10mg/mL, and 0.15mg/mL).
Thereafter, biofilms were allowed to grow for 24 h. Subse-
quently, wells were washed with sterile water to remove
unbound bacteria, and biofilm development was assessed
by measuring the optical density (absorbance at 590 nm)
using a spectrophotometer. Data are presented as percentage
change in biofilm growth in the presence of nanoparticles
with respect to absence of nanoparticles (control). Experi-
ments were performed in triplicate with separately cultured
bacteria.

2.3. Statistical Analysis. Experiments were performed in
triplicate. Data are represented as a mean with standard
deviation. For statistical analysis ANOVA was performed
followed by a Tukey’s HSD post hoc test, and a 𝑃 value < 0.05
was considered to be significant.

3. Results and Discussion

The TEM images of synthesized gold and iron-oxide
nanoparticles are shown in Figure 1. The nanoparticles were
measured less than 10 nm.

The UV-visible spectrum of citrate-stabilized gold
nanoparticles was shown in Figure 2(a). The plasmon
band observed for the wine-red colloidal gold at 518 nm
is the characteristics of gold nanoparticles. The UV-
visible spectrum of iron-oxide nanoparticles was shown in
Figure 2(b) where the absorbance of nanoparticles steadily
decreases with time which confirms the formation of oleic
acid-coated iron-oxide nanoparticles. Bacterial biofilm
growth after 24 h in the presence of gold and iron-oxide
nanoparticles was shown in Figure 3.

In vitro experimental results showed significant effect
in bacterial biofilm growth in the presence of gold and
iron-oxide nanoparticles. Differences were observed with
respect to the type of bacteria, nanoparticle, and nanopar-
ticle concentrations. At a concentration of 0.01mg/mL,
gold nanoparticles showed reduction (−13%) in S. aureus
biofilm growth, whereas iron-oxide nanoparticles showed
increased (19%) S. aureus biofilm growth compared to
control (OD = 1.05). Interestingly, P. aeruginosa biofilm
growth was increased in the presence of gold and iron-oxide
nanoparticles (0.01mg/mL) compared to control (OD = 1.31).
However, at higher concentrations (0.05mg/mL, 0.10mg/mL,
and 0.15mg/mL) a significant reduction in biofilm growth (S.
aureus and P. aeruginosa) was observed in the presence of
gold (Figure 4) and iron-oxide (Figure 5) nanoparticles com-
pared to low concentration (0.01mg/mL). Similarly, Taylor
and Webster [12] showed that iron-oxide nanoparticles in a
concentration range of 0.01 to 2mg/mL were able to kill up
to 25% of S. epidermidis in a 48 h old biofilm. And, similar
results were observed in our previous study with iron-oxide
nanoparticles on S. aureus biofilms [13]. In contrast, Haney
et al. [14] showed an increase in P. aeruginosa biofilm biomass
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Figure 1: Transmission electron micrographs of (a) gold and (b) iron-oxide nanoparticles. Inset images show the synthesized nanoparticles.
(b)(B) shows the magnetic property of iron-oxide nanoparticles. Bar denotes 5 nm.
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Figure 2: UV-visible spectrum of (a) gold and (b) iron-oxide nanoparticles.
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Figure 3: Biofilm formation of S. aureus and P. aeruginosa after
24 h of growth in the presence of gold and iron-oxide nanoparticles
(0.01mg/mL).

in the presence of 0.2mg/mL of superparamagnetic iron-
oxide nanoparticles. In the presence of gold nanoparticles,
Zhang et al. [15] showed a reduction of 64% in viable
bacteria. Similarly, another study demonstrated that gold
nanoparticles showed excellent antibacterial potential against
gram-negative bacteria Escherichia coli and gram-positive
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Figure 4: Percentage change in biofilm growth in the presence
of gold nanoparticles (0.01mg/mL, 0.05mg/mL, 0.10mg/mL, and
0.15mg/mL) with respect to biofilm growth in the absence of
nanoparticles (control). Error bar represents the standard deviations
over three replicates, with separately cultured bacteria. #, ∗ denote
significance at differences at 𝑃 < 0.01 compared with 0.01mg/mL.
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Figure 5: Percentage change in biofilm growth in the presence
of iron-oxide nanoparticles (0.01mg/mL, 0.05mg/mL, 0.10mg/mL,
and 0.15mg/mL) with respect to biofilm growth in the absence of
nanoparticles (control). Error bar represents the standard deviations
over three replicates, with separately cultured bacteria. #, ∗ denote
significance at differences at 𝑃 < 0.01 compared with 0.01mg/mL.

bacteria Bacillus Calmette-Guerin. This study also proposed
that the antibacterial activity could be due to uptake of single
gold nanoparticles by bacteria and rearrangement of them
inside cytoplasm [16].

The antibacterial activity of iron-oxide nanoparticles
could be due to several mechanisms. The main mechanism
suggested is related to oxidative stress generated by ROS
[17]. ROS includes superoxide radicals, hydroxyl radicals,
hydrogen peroxide, and singlet oxygen that may cause chem-
ical damage to proteins and DNA in bacteria [18]. Secondly,
electrostatic interactions between nanoparticles and bacterial
cell membranes or cell membrane proteins can result in
physical damage, which ultimately leads to bacterial cell
death [17]. Other studies demonstrated that the small size of
nanoparticles could contribute to their antibacterial effects
[19, 20]. Lee et al. [18] reported that inactivation of E. coli
could be due to the penetration of nanoparticles with sizes
ranging from 10 to 80 nm into E. colimembranes.

4. Conclusion

Recent developments in the field of nanoparticles [8, 12,
18] and promising results from in vitro studies provide for
a new and urgently needed strategy for the treatment of
biomaterial-implant-associated infections using nanoparti-
cles.
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