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We analyze the effect of velocity slip boundary condition on the flow and heat transfer of non-Newtonian nanofluid over a stretching
sheet with a heat source/sink, under the action of a uniformmagnetic field, orientated normally to the plate.The Brownian motion
and thermophoresis effects are also considered. The boundary layer equations governed by the partial differential equations are
transformed into a set of ordinary differential equations with the help of local similarity transformations.The differential equations
are solved by the variational finite element method (FEM). We have examined the effects of different controlling parameters,
namely, the Brownian motion parameter, the thermophoresis parameter, uniform magnetic field, viscoelastic parameter, Prandtl
number, heat source/sink parameter, Lewis number, and the slip parameter on the flow field and heat transfer characteristics.
Graphical display of the numerical examination is performed to illustrate the influence of various flow parameters on the velocity,
temperature, concentration, and Nusselt and Sherwood numbers distributions.The present study has many applications in coating
and suspensions, cooling of metallic plate, paper production, heat exchangers technology, and materials processing exploiting.

1. Introduction

Due to enormous industrial, transportation, electronics,
biomedical applications, such as in advanced nuclear sys-
tems, cylindrical heat pipes, automobiles, fuel cells, drug
delivery, biological sensors, and hybrid-powered engines, the
convective heat transfer in nanofluids has become a topic
of great interest. Nanofluids are engineered by suspending
nanoparticles with average sizes of 1–100 nm. Choi et al. [1]
and Masuda et al. [2] have shown that a very small amount
of nanoparticles (usually less than 5%), when dispersed uni-
formly and suspended stably in base fluids, can provide dra-
matic improvements in the thermal conductivity and in the
heat transfer coefficient of the base fluid.The term nanofluids
(nanoparticle fluid suspensions) was coined by Choi [3] in
1995 to describe this new class of nanotechnology-based
heat transfer fluids that exhibit thermal properties superior
to those of their base fluids or conventional particle fluid
suspensions. The nanoparticles are typically made of oxides

such as alumina, silica, titania and copper oxide, carbides,
and metals such as copper and gold. Carbon nanotubes and
diamond nanoparticles have also been used in nanofluids.
The base fluid is usually a conventional heat transfer fluid,
such as oil, water, and ethylene glycol. Other base fluids are
biofluids, polymer solutions, and some lubricants.

A comprehensive survey of convective transport in
nanofluids was made by Buongiorno [4]. He developed a
nonhomogeneous equilibrium model for convective trans-
port to explain the enhanced heat transfer characteristics
of nanofluids, and this abnormal increase in the thermal
conductivity occurs due to the presence of twomain velocity-
slip effects, namely, the Brownian diffusion and the ther-
mophoretic diffusion of the nanoparticles. In a recent paper,
Khan and Pop [5] have used the model of Kuznetsov and
Nield [6] to study the fundamental work on the boundary
layer flow of nanofluid over a stretching sheet. Makinde
and Aziz [7] extended the work of Khan and Pop [5] for
convective boundary conditions.
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It is now a well-accepted fact that many fluids of indus-
trial and geophysical importance are non-Newtonian. Due
to much attention in many industrial applications, such
as the extrusion of plastic sheets, fabrication of adhesive
tapes, glass-fiber production, metal spinning, and drawing of
paper films, the research on boundary layer behaviour of a
viscoelastic fluid over a continuously stretching surface keeps
going where the velocity of a stretching surface is assumed to
be linearly proportional to the distance from a fixed origin.
McCormack and Crane [8] have provided comprehensive
discussion on boundary layer flow caused by stretching of
an elastic flat sheet moving in its own plane with a velocity
varying linearly with distance. Several researchers, namely,
P. S. Gupta and A. S. Gupta [9], Dutta et al. [10], and Chen
and Char [11] extended the work of McCormack and Crane
[8] by including the effects of heat and mass transfer under
different situations. Later on, Rajagopal et al. [12] and Chang
[13] presented an analysis on flow of viscoelastic fluid over
a stretching sheet. The above sources all utilize the no-slip
condition. On the other hand, in certain circumstances, the
partial slip between the fluid and the moving surface may
occur in situations when the fluid is particulate such as
emulsions, suspensions, foam andpolymer solutions. In these
cases, the proper boundary condition is replaced by Navier’s
condition, where the amount of relative slip is proportional to
local shear stress. Wang [14] discussed the partial slip effects
on the planar stretching flow. Of late, Noghrehabadi et al.
[15] investigated the development of the slip effects on the
boundary layer flow and heat transfer over a stretching sheet.

In some practical problems such as the magnetohydro-
dynamic (MHD) generators, pumps, enhanced oil recov-
ery, thermal insulators, electronic packages, and cooling of
nuclear reactor, the flow of electrically conducting fluid
occurs in the presence of a transverse magnetic field. Ece [16]
analyzed the natural convection boundary layer flow in the
presence of a transverse magnetic field with mixed thermal
boundary conditions over a vertical down-pointing cone.The
MHD boundary layer flow of an incompressible and elec-
trically conducting viscoelastic fluid past a linear stretching
sheet was studied by Subhas Abel et al. [17]. Kumari and
Nath [18] have studied the unsteady magnetohydrodynamic
flow and heat transfer of a Newtonian fluid caused by an
impulsively stretched plane surface in two lateral directions.
The momentum and heat transfer characteristics of the
boundary layers of an incompressible electrically conducting
fluid flow of a viscoelastic fluid over a stretching sheet are
investigated by Prasad et al. [19]. Recently, Hamad et al. [20]
reported a similarity solution for MHD free convection heat
generation flow over a vertical semi-infinite flat plate in the
case of nanofluids.

A study of utilizing heat source or sink in moving fluids
assumes a greater significance in all situations which deal
with exothermic or endothermic chemical reaction and those
concerned with dissociating fluids. For physical situations,
the average behaviour of heat generation or absorption can be
expressed by some simple mathematical models because its
exact modelling is quite difficult. Heat generation or absorp-
tion has been assumed to be constant, space dependent, or
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Figure 1: Physical model and coordinate system.

temperature-dependent. Sparrow and Cess [23] investigated
the steady stagnation point flow and heat transfer in the
presence of temperature dependent heat absorption. Later,
Azim et al. [24] discussed the effect of viscous Joule heating
on MHD-conjugate heat transfer for a vertical flat plate in
the presence of heat generation. One of the latest works is
the study of the heat transfer characteristic in the mixed
convection flow of a nanofluid along a vertical plate with heat
source/sink studied by Rana and Bhargava [25].

In real situations in nanofluids, the base fluid does not
satisfy the properties of Newtonian fluids; hence, it is more
justified to consider them as viscoelastic fluids; for example,
ethylene glycol-Al

2
O
3
, ethylene glycol-CuO, and ethylene

glycol-ZnO are some examples of viscoelastic nanofluids. In
the present paper, the base fluid is taken as second-grade
fluid. To the best of our knowledge, no studies have far
been investigated to analyze the partial slip effect on the
MHD boundary layer flow of viscoelastic nanofluid over a
stretching sheet in the presence of heat source/sink. The
objective of the present paper is therefore to extend the
work of Noghrehabadi et al. [15] by taking base fluid as
second-grade fluid. The finite element method (FEM) is
used in obtaining the numerical solution of the obtained
equations, which is describing the problem, after similarity
transformation. A similarity solution is presented and used to
predict the heat and mass transfer characteristics of the flow.
The effects of the embedded flow controlling parameters on
the fluid velocity, temperature, nanoparticle concentration,
heat transfer rate, and the nanoparticle volume fraction
rate have been demonstrated graphically and discussed. A
comparative study is also presented.

2. Formulation

Consider two-dimensional, steady, incompressible, and lam-
inar flow of non-Newtonian nanofluid past a stretching sheet
in a quiescent fluid.The velocity of the stretching sheet is𝑢

𝑤
=

𝑈 = 𝑐𝑥, where 𝑐 > 0 is the constant acceleration parameter.
In order to get the effect of temperature difference between
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the surface and the ambient fluid, we consider temperature-
dependent heat source/sink in the flow. The x-axis is taken
along the plate in the vertically upward direction and the y-
axis is taken normally to the plate. A transverse magnetic
field of strength 𝐵

𝑜
is applied parallel to the y-axis as shown

in Figure 1. The surface of plate is maintained at uniform
temperature 𝑇

𝑤
and concentration 𝐶

𝑤
, and these values are

assumed to be greater than the ambient temperature 𝑇
∞

and
concentration𝐶

∞
. Moreover, it is assumed that both the fluid

phase and nanoparticles are in thermal equilibrium state.The
thermophysical properties of the nanofluid are assumed to
be constant. The pressure gradient and external forces are
neglected. Consider
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(1)

where 𝑢 and V are the velocity components along the 𝑥 and
𝑦 directions, respectively, 𝑝 is the pressure, 𝜌

𝑓
is the density

of base fluid, 𝜌
𝑝
is the nanoparticle density, 𝜇 is the absolute

viscosity of the base fluid, 𝜐 is the kinematic viscosity of
the base fluid, 𝜎 is the electrical conductivity of the base
fluid, 𝛼

1
is the material fluid parameter, 𝐵

𝑜
is the strength of

magnetic field, 𝑇 is the fluid temperature, 𝛼
𝑚
is the thermal

diffusivity, 𝜏(= (𝜌𝐶)
𝑝
/(𝜌𝐶)

𝑓
) is the ratio of effective heat

capacity of the nanoparticle material to heat capacity of the
fluid, 𝐶 is the nanoparticle volume fraction, 𝐷

𝐵
and 𝐷

𝑇
are

the Brownian diffusion coefficient and the thermophoresis
diffusion coefficient, 𝑇

∞
is the free stream temperature, 𝐶

𝑝

is the specific heat at constant pressure, and 𝑔, 𝑘 are the
acceleration due to gravity and the thermal conductivity of
the fluid, respectively. The term𝑄

𝑜
(𝑇 − 𝑇

∞
) is assumed to be

the amount of heat generated or absorbed per unit volume𝑄
𝑜

as a coefficient constant, which may take on either positive or
negative value.When the wall temperature𝑇 exceeds the free
stream temperature𝑇

∞
, the source term𝑄

𝑜
> 0 and heat sink

when 𝑄
𝑜
< 0.

The boundary conditions for the velocity, temperature,
and concentration fields are given as follows:

𝑢 = 𝑈 + 𝜅𝜐

𝜕𝑢

𝜕𝑦

, V = 0,

𝑇 = 𝑇
𝑤
, 𝐶 = 𝐶

𝑤
, at 𝑦 = 0,

(2a)

𝑢 = 0, 𝑇 = 𝑇
∞
, 𝐶 = 𝐶

∞
as 𝑦 󳨀→ ∞. (2b)

To transform the governing equations into a set of similarity
equations, the following dimensionless parameters are intro-
duced:

𝜂 = √

𝑐
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(3)

The transformed momentum, energy, and concentration
equations together with the boundary conditions given by (1),
(2a), and (2b) can be written as
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(4)

The transformed boundary conditions are

𝑓 (0) = 0, 𝑓
󸀠
(0) = 1 + 𝐾𝑓

󸀠󸀠
(0) ,
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𝑓
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(5b)

where primes denote differentiation with respect to 𝜂 and the
seven parameters appearing in (4) are defined as follows:

Pr = 𝜐
𝛼
𝑚

, Le = 𝜐
𝐷
𝐵

, 𝑀 =

𝜎

𝜌
𝑓

𝐵
2

𝑜

𝑏

, 𝛼 =

𝛼
1
𝑏

𝜇

,

𝑄 =

𝑄
𝑜

𝑏(𝜌𝐶)
𝑓

, Nb =
(𝜌𝐶)
𝑝
𝐷
𝐵
(𝐶
𝑤
− 𝐶
∞
)

(𝜌𝐶)
𝑓
𝜐

,

Nt =
(𝜌𝐶)
𝑝
𝐷
𝑇
(𝑇
𝑤
− 𝑇
∞
)

(𝜌𝐶)
𝑓
𝑇
∞
𝜐

.

(6)

In (6), Pr, Le,𝑀, 𝛼, 𝑄,Nb, andNt denote the Prandtl number,
the Lewis number, the magnetic field strength parameter,
the viscoelastic parameter, the heat source/sink parameter,
the Brownian motion parameter, and the thermophoresis
parameter, respectively.
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The physical quantities of interest are the local heat flux
Nu and the local mass diffusion flux Sh, which are defined as

Nu =
𝑥𝑞
𝑤

𝑘 (𝑇
𝑤
− 𝑇
∞
)

, Sh =
𝑥𝑞
𝑚

𝐷
𝐵
(𝐶
𝑤
− 𝐶
∞
)

, (7)

where 𝑞
𝑤
and 𝑞

𝑚
are the heat flux and the mass flux at the

surface, respectively, which are given by

𝑞
𝑤
= −𝑘(

𝜕𝑇
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)

𝑦=0
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𝑚
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Using (3) in (7), one can obtain
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𝑥

Nu
𝑥
= −𝜃
󸀠
(0) , Re−1/2

𝑥
Sh
𝑥
= −𝜙
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(0) , (9)

where Re
𝑥
= 𝑢
𝑤
(𝑥)𝑥/𝜐 is the local Reynolds number based

on the stretching velocity 𝑢
𝑤
(𝑥). Kuznetsov and Nield [6]

referred to Re−1/2
𝑥

Nu
𝑥
and Re−1/2

𝑥
Sh
𝑥
as the reduced Nusselt

number Nur = −𝜃
󸀠
(0) and reduced Sherwood number

Shr = −𝜙󸀠(0), respectively. The analytical solutions of the
set of partial differential equations given by (4) are generally
intractable because these equations are highly nonlinear. The
variational finite element method (FEM) is used to obtain
numerical solutions. These techniques have been used very
successfully in nonlinear magnetofluid dynamics.

3. Method of Solution

3.1. Finite ElementMethod. Thefinite elementmethod (FEM)
is a numerical and computer-based technique of solving
a variety of practical engineering problems that arise in
different fields such as, in heat transfer, fluid mechanics [26],
chemical processing [27], rigid body dynamics [28], solid
mechanics [29], and many other fields. It is recognized by
developers and users as one of the most powerful numerical
analysis tools ever devised to analyze complex problems of
engineering. The sophistication of the method, its accuracy,
simplicity, and computability all make it a widely used tool
in the engineering modelling and design process. It has
been applied to a number of physical problems, where the
governing differential equations are solved by transforming
them into a matrix equation. The primary feature of FEM
is its ability to describe the geometry or the media of the
problem being analyzed with great flexibility. This is because
the discretization of the domain of the problem is performed
using highly flexible uniform or nonuniform patches or ele-
ments that can easily describe complex shapes. The method
essentially consists in assuming the piecewise continuous
function for the solution and obtaining the parameters of the
functions in a manner that reduces the error in the solution.
The steps involved in the finite element analysis are as follows.

3.1.1. Discretization of the Domain. The basic concept of
the FEM is to divide the domain or region of the problem
into small connected patches, called finite elements. The
collection of elements is called the finite element mesh.These
finite elements are connected in a nonoverlapping manner,
such that they completely cover the entire space of the
problem.

3.1.2. Generation of the Element Equations

(i) A typical element is isolated from the mesh and
the variational formulation of the given problem is
constructed over the typical element.

(ii) Over an element, an approximate solution of the vari-
ational problem is supposed, and by substituting this
in the system, the element equations are generated.

(iii) The element matrix, which is also known as stiffness
matrix, is constructed by using the element interpo-
lation functions.

3.1.3. Assembly of the Element Equations. The algebraic equa-
tions so obtained are assembled by imposing the interelement
continuity conditions.This yields a large number of algebraic
equations known as the global finite element model, which
governs the whole domain.

3.1.4. Imposition of the Boundary Conditions. On the assem-
bled equations, the Dirichlet and Neumann boundary condi-
tions are imposed.

3.1.5. Solution of Assembled Equations. The assembled equa-
tions so obtained can be solved by any of the numerical
techniques, namely, Gauss elimination method, LU decom-
position method, and so forth.

For the solution of system of simultaneous partial differ-
ential equations as given in (4), with the boundary conditions
(5a), (5b), firstly we assume that

𝑓
󸀠
= ℎ. (10)

After substituting (10), the system of (4) reduces to

ℎ
󸀠󸀠
+ 𝑓ℎ
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2
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󸀠
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1
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𝜙
󸀠󸀠
+ Le𝑓𝜙󸀠 + Nt

Nb
𝜃
󸀠󸀠
= 0,

(11)

and the corresponding boundary conditions are:

𝑓 (0) = 0, ℎ (0) = 1 + 𝐾ℎ
󸀠
(0) ,

𝜃 (0) = 1, 𝜙 (0) = 1, at 𝜂 = 0,
(12a)

ℎ (∞) 󳨀→ 0, 𝜃 (∞) 󳨀→ 0,

𝜙 (∞) 󳨀→ 0, as 𝜂 󳨀→ ∞.
(12b)
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3.2. Variational Formulation. Thevariational form associated
with (10) and (11) over a typical quadratic element (𝜂

𝑒
, 𝜂
𝑒+1
) is

given by

∫
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where 𝑊
1
,𝑊
2
,𝑊
3
, and 𝑊

4
are arbitrary test functions and

may be viewed as the variations in 𝑓, ℎ, 𝜃, and 𝜙, respectively.

3.3. Finite Element Formulation. The finite element model
may be obtained from above equations by substituting finite
element approximations of the form
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with
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3
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4
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𝑗
, (𝑗 = 1, 2, 3) . (15)

In our computations, the shape functions for a typical element
(𝜂
𝑒
, 𝜂
𝑒+1
) are taken as follows. Quadratic element:
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The finite element model of the equations thus formed is
given by

[

[

[

[

[

[

[

[

[

[𝐾
11
] [𝐾
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] [𝐾
13
] [𝐾
14
]
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] [𝐾
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] [𝐾
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]
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] [𝐾
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]
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]
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]
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[

[

[
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[

[
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{ℎ}

{𝜃}

{𝜙}

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

{𝑏
1
}

{𝑏
2
}

{𝑏
3
}

{𝑏
4
}

]

]

]

]

]

]

]

]

]

, (17)

where [𝐾𝑚𝑛] and [𝑏𝑚] (𝑚, 𝑛 = 1, 2, 3, 4) are defined as

𝐾
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where
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3

∑

𝑖−1

𝑓
𝑖
𝜓
𝑖
, 𝑓

󸀠
=

3

∑

𝑖=1

𝑓
𝑖

𝜕𝜓
𝑖

𝜕𝜂

,

ℎ =

3

∑

𝑖−1

ℎ
𝑖
𝜓
𝑖
, ℎ

󸀠
=

3

∑

𝑖=1

ℎ
𝑖

𝜕𝜓
𝑖

𝜕𝜂

,

𝜃
󸀠
=

2

∑

𝑖=1

𝜃
𝑖

𝜕𝜓
𝑖

𝜕𝜂

, 𝜙
󸀠
=

2
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𝑖=1
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𝑖

𝜕𝜓
𝑖

𝜕𝜂

.

(19)

In one-dimensional space, linear element, quadratic element,
or element of higher order can be taken. The entire flow
domain is divided into 10000 quadratic elements of equal
size. Each element is three-noded, and therefore the whole
domain contains 20001 nodes. At each node, four functions
are to be evaluated; hence, after assembly of the element
equations, we obtain a system of 80004 equations which are
nonlinear. Therefore, an iterative scheme must be utilized
in the solution. After imposing the boundary conditions, a
system of equations has been obtained which is solved by
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Figure 2: Velocity profile for various values of 𝐾 when Pr = Le =
10,Nb = Nt = 0.1,𝑀 = 1.0, 𝑄 = 0.05, 𝛼 = 0.5.

theGauss eliminationmethodwhilemaintaining an accuracy
of 0.00001. A convergence criterion based on the relative
difference between the current and previous iterations is
employed. When these differences satisfy the desired accu-
racy, the solution is assumed to have been converged and
iterative process is terminated. The Gaussian quadrature is
implemented for solving the integrations. The code of the
algorithm has been executed in MATLAB running on a PC.
Excellent convergence was achieved for all the results.

4. Results and Discussion

The nonlinear ordinary differential equations (4) together
with the boundary conditions (5a) and (5b) are solved numer-
ically using FEM. The numerical computations have been
carried out for different values of the parameters involved,
namely, viscoelastic parameter 𝛼, Prandtl number Pr, mag-
netic field parameter 𝑀, slip parameter 𝐾, Lewis number
Le, heat source/sink parameter 𝑄, the Brownian motion
parameter Nb, and thermophoresis parameter Nt.The effects
of the flow controlling parameters on the dimensionless
axial velocity, temperature, the nanoparticle volume fraction,
and the rate of heat and mass transfer are investigated and
presented graphically in Figures 2–15. The aim of the present
study is to examine the variations of different quantities of
parameters in which 0 ≤ 𝐾 ≤ 5, 0 ≤ 𝛼 ≤ 10, 0 ≤ Pr ≤
70, 0 ≤ 𝑀 ≤ 5, 0.1 ≤ Nt ≤ 0.5, 0.1 ≤ Nb ≤ 0.5, −0.5 ≤
𝑄 ≤ 0.5, and 5 ≤ Le ≤ 20. The computational work is carried
out by taking size of the element ∇𝜂 = 0.0001. The accuracy
of current solutions is independent of the size of the element,
thus, the results are convergence solutions.

Figures 2, 3, and 4 illustrate the velocity, temperature,
and concentration profiles for different values of the slip
parameter𝐾. Figure 2 demonstrates that the effect of increas-
ing value of slip parameter 𝐾 is to shift the streamlines
toward stretching boundary and thereby reducing thickness
of themomentum boundary layer.Therefore, the effect of slip
parameter 𝐾 is seen to decrease the boundary layer velocity
while the temperature and concentration are increased with
the increase of the slip parameter. The velocity curves show
that the rate of transport decreases with the increasing
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Figure 3: Temperature profile for various values of 𝐾 when Pr =
Le = 10,Nb = Nt = 0.1,𝑀 = 1.0, 𝑄 = 0.05, 𝛼 = 0.5.
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Figure 4: Nanoparticle concentration profile for various values of
𝐾 when Pr = Le = 10,Nb = Nt = 0.1,𝑀 = 1.0, 𝑄 = 0.05, 𝛼 = 0.5.

distance (𝜂) normally to the sheet. In all cases, the velocity
vanishes at some large distance from the sheet (at 𝜂 = 6).

The variations in velocity field, temperature distribution,
and nanoparticle concentration profile for various values of
𝑀 are presented in Figures 5, 6, and 7. It is clear from these
figures that the velocity decreases, whereas the temperature
and concentration increase with the increase of the magnetic
field parameter. This is due to the fact that the application
of transverse magnetic field in an electrically conducting
fluid produces a resistive force known as Lorentz force. This
force has the tendency to slow down the motion of the fluid
in the boundary layer and thus reducing the velocity. The
additional work done in dragging the conducting nanofluid
against the action of the magnetic field, 𝐵

𝑜
, is manifested

as thermal energy. This heats the conducting nanofluid and
elevates temperatures. Thus, the presence of magnetic field
decreases the momentum boundary layer thickness and
increases the thermal boundary layer thickness.Thewarming
of the boundary layer therefore also aids in nanoparticle
diffusion which causes a rise in nanoparticle volume fraction,
𝜙.

Figures 8, 9, and 10 show the effect of viscoelastic param-
eter 𝛼 on the evolution of fluid motion and subsequently on
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Figure 5: Velocity profile for various values of𝑀 when Pr = Le =
10,Nb = Nt = 0.1, 𝐾 = 1.0, 𝑄 = 0.1, 𝛼 = 0.5.
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Figure 6: Temperature profile for various values of𝑀 when Pr =
Le = 10,Nb = Nt = 0.1, 𝐾 = 1.0, 𝑄 = 0.1, 𝛼 = 0.5.

the distribution of heat and mass across the sheet as time
evolves. From this plot, it is evident that increasing values
of viscoelastic parameter 𝛼 opposes the motion of the liquid
close to the stretching sheet and assists the motion of the
liquid far away from the stretching sheet. Increasing values
of second-grade parameter enables the liquid to flow at a
faster rate, due to which there is decline in the heat transfer.
This is responsible for the increase in momentum boundary
layer, whereas the thermal and concentration boundary layers
reduce when the viscoelastic effects intensify.

The variation of nondimensional temperature profile
𝜃 with different values of heat source/sink parameter 𝑄
is shown in Figure 11. Increasing the heat source or sink
parameter 𝑄 has tendency to increase the thermal state of
the fluid. This increase in the fluid temperature causes more
induced flow towards the plate through the thermal buoyancy
effect. So, the thickness of the thermal boundary layer reduces
for the increase of heat sink parameter, but it increases with
heat source parameter.

In order to understand the influence of thermophoresis
parameter Nt on heat and mass transfer, the local Nusselt
and Sherwood numbers are plotted in Figures 12 and 13 for
different values of slip parameter 𝐾. It is clear from these
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Figure 7: Nanoparticle concentration profile for various values of
𝑀 when Pr = Le = 10,Nb = Nt = 0.1, 𝐾 = 1.0, 𝑄 = 0.05, 𝛼 = 0.5.
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Figure 8: Velocity profile for various values of 𝛼 when Pr = 5, Le =
10,Nb = Nt = 0.1, 𝐾 = 1.0, 𝑄 = 0.1,𝑀 = 1.0.

figures that the dimensionless heat transfer rates decrease
with the increase in thermophoresis parameter Nt or slip
parameter 𝐾, whereas the dimensionless mass transfer rates
increase with the increase in thermophoresis parameter Nt.
The numerical values of reduced Nusselt and Sherwood
numbers, for different values of viscoelastic parameter 𝛼,
against Nt are displayed in Figures 14 and 15. From the earlier
graphical results, we have noticed that the thickness of the
thermal and concentration boundary layers reduces when the
viscoelastic effects intensify. This reduction is compensated
with the increase in the rate of heat and mass transfer
at the stretching surface. Also, the profiles obtained from
these figures of reduced Nusselt and Sherwood numbers are
compared with those reported by Noghrehabadi et al. [15] in
case of 𝛼 = 0.

In the present study, the local rate of heat transfer
(reduced Nusselt number Nur) and local rate of mass transfer
at the sheet (reduced Sherwood number Shr), defined in (9),
are the important characteristics. The numerical values of
reduced Nusselt number and reduced Sherwood number are
exhibited inTables 1–3. Table 1 shows the excellent correlation
between the current FEM computations and the earlier
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Figure 9: Temperature profile for various values of 𝛼 when Pr =
5, Le = 10,Nb = Nt = 0.1, 𝐾 = 1.0, 𝑄 = 0.1,𝑀 = 1.0.
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Figure 10: Nanoparticle concentration profile for various values of
𝛼 when Pr = 5, Le = 10,Nb = Nt = 0.1, 𝐾 = 1.0, 𝑄 = 0.1,𝑀 = 1.0.

Table 1: Comparison of results for reduced Nusselt number −𝜃󸀠(0).

Pr Khan and
Pop [5] Wang [21] Reddy Gorla

and Sidawi [22]
Present
results

0.07 0.0663 0.0656 0.0656 0.0660
0.20 0.1691 0.1691 0.1691 0.1691
0.70 0.4539 0.4539 0.5349 0.4539
2.00 0.9113 0.9114 0.9114 0.9113
7.00 1.8954 1.8954 1.8905 1.8954
20.0 3.3539 3.3539 3.3539 3.3539
70.0 6.4621 6.4622 6.4622 6.4621

results of Khan and Pop [5], Wang [21], and Reddy Gorla
and Sidawi [22], for reduced Nusselt number (−𝜃󸀠(0)) by
neglecting the Brownian effect (Nb), slip effect (𝐾), magnetic
effect (𝑀), and thermophoresis (Nt) for various values of
Prandtl number (Pr) with step size, h = 0.0003. Variations of
reducedNusselt numberNur and reduced Sherwood number
ShrwithNt are depicted in Table 2. Further, for various values
of Nt and Nb, the results are compared with those reported
by Khan and Pop [5] and Noghrehabadi et al. [15], and the
comparison is found to be in good agreement for each value
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Figure 11: Temperature profile for various values of 𝑄 when Pr =
Le = 10,𝑀 = 1.0,Nb = Nt = 0.1, 𝐾 = 1.0, 𝛼 = 0.5.
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Figure 12: Heat transfer rate against Nt for several values of𝐾when
Pr = Le = 10,Nb = 0.1, 𝛼 = 0.5,𝑀 = 1.0, 𝑄 = 0.1.

of Nt and Nb, which confirms that the present results are
accurate. The numerical values of reduced Nusselt number
and reduced Sherwood number are provided in Tables 3(a)
and 3(b) for some values of Nt and Nb when Pr = Le =
10, 𝛼 = 0.5,𝑀 = 1.0, 𝑄 = 0.1, and 𝐾 = 0.0. It is observed
that reduced Nusselt number is a decreasing function, while
reduced Sherwood number is an increasing function of Nt.

5. Conclusions

The problem of MHD boundary layer flow of a viscoelastic
nanofluid past a stretching sheet has been solved numerically
to exhibit the effect of partial slip (i.e., Navier’s condition)
and heat source/sink on the fluid flow and heat transfer
characteristics. By using a similarity transformation, the
conservative equations for mass, momentum, energy, and
nanoparticle concentration are transformed into the ordinary
differential equations. We used the finite element method
(FEM) for the numerical solution of these equations. The
effects of different controlling parameters on the flow field
and heat transfer characteristics are examined. The variation
of reduced Nusselt number and Sherwood number with Nt
for various values of 𝛼 and 𝐾 is presented in graphical form.
The result can be summarized as follows.
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Table 2: Comparison of results for the reduced Nusselt number (−𝜃󸀠(0)) and reduced Sherwood number (−𝜙󸀠(0)) when Le = Pr = 10 and
𝑀 = 𝑄 = 𝐾 = 𝛼 = 0.

Nt Nb
Nur Shr

Khan and Pop [5] Noghrehabadi et
al. [15] Present results Khan and Pop [5] Noghrehabadi et

al. [15] Present results

0.1 0.1 0.9524 0.9523768 0.95243 2.1294 2.1293938 2.12936
0.2 0.1 0.6932 0.6931743 0.69331 2.2740 2.2740215 2.27404
0.3 0.1 0.5201 0.5200790 0.52010 2.5286 2.5286382 2.52862
0.4 0.1 0.4026 0.4025808 0.40264 2.7952 2.7951701 2.79511
0.5 0.1 0.3211 0.3210543 0.32116 3.0351 3.0351425 3.03519
0.1 0.2 0.5056 0.5055814 0.50565 2.3819 2.3818706 2.38182
0.1 0.3 0.2522 0.2521560 0.25228 2.4100 2.4100188 2.40995
0.1 0.4 0.1194 0.1194059 0.11948 2.3997 2.3996502 2.39960
0.1 0.5 0.0543 0.0542534 0.05429 2.3836 2.3835712 2.38353
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Figure 13:Mass transfer rate against Nt for several values of𝐾when
Pr = Le = 10,Nb = 0.1, 𝛼 = 0.5,𝑀 = 1.0, 𝑄 = 0.1.

(1) With the increase in the second-grade parameter
𝛼, the velocity and the momentum boundary layer
thickness increases; however, the temperature and
nanoparticles concentration decrease.

(2) Temperature increases and thermal boundary layer
thickens when the strength of heat source/sink
parameter 𝑄 increases.

(3) There is a decrease in the velocity, but temperature
and concentration are found to increase with an
increase in velocity slip parameter𝐾.

(4) Magnetic field decelerates the flow and enhances
temperatures and nanoparticle volume fraction (con-
centration) distributions in the boundary layer.

(5) With the increase in the slip parameter 𝐾, heat
transfer rate and mass transfer rate decrease.

(6) By the increase of thermophoretic number Nt, the
effect of velocity slip parameter𝐾 on reduced Nusselt
number Nur and reduced Sherwood number Shr
increases and decreases, respectively.
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Figure 14: Heat transfer rate against Nt for several values of 𝛼 when
Pr = Le = 10,Nb = 0.1, 𝑀 = 0.0, 𝑄 = 0 = 𝐾.
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Figure 15: Mass transfer rate against Nt for several values of 𝛼when
Pr = Le = 10,Nb = 0.1,𝑀 = 0.0, 𝑄 = 0 = 𝐾.
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Table 3: (a) Variations of Nur with Nb and Nt when Pr = Le = 10,
𝛼 = 0.5,𝑀 = 1.0, 𝑄 = 0.1, and 𝐾 = 0.0. (b) Variations of Shr with
Nb and Nt when Pr = Le = 10, 𝛼 = 0.5,𝑀 = 1.0, 𝑄 = 0.1, and
𝐾 = 0.0.

(a)

Nt Nur
Nb = 0.1 Nb = 0.2 Nb = 0.3 Nb = 0.4

0.1 0.83289 0.408410 0.174510 0.057570
0.2 0.58529 0.275840 0.108720 0.026926
0.3 0.41947 0.188260 0.065546 0.006881
0.4 0.30630 0.128890 0.036352 −0.006670
0.5 0.22710 0.087425 0.015958 −0.016150

(b)

Nt Shr
Nb = 0.1 Nb = 0.2 Nb = 0.3 Nb = 0.4

0.1 2.0459 2.3053 2.3371 2.3293
0.2 2.1501 2.4178 2.4280 2.3997
0.3 2.3591 2.5365 2.5079 2.4573
0.4 2.5804 2.6421 2.5735 2.5029
0.5 2.7779 2.7294 2.6256 2.5383

(7) The reduced Nusselt number and reduced Sherwood
number both increases with the increase of viscoelas-
tic parameter 𝛼.
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