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We consider a new application of the normalized Hilbert-Huang transform to extract directly the phase from a single fringe pattern.
We present a technique to provide, with good accuracy, the phase distribution from a single interferogram without unwrapping
step and this by a new exploitation of the analytic signal corresponding to each intrinsic mode function, resulting from one-
dimensional empirical mode decomposition of the fringe pattern. A theoretical analysis was carried out for this technique, followed
by computer simulations and a real experimental fringe pattern for verification.

1. Introduction

In optical techniques, several physical magnitudes in a
variety of scientific and engineering fields are encoded as the
phase of a periodic intensity profile. The developments of
more sophisticated phase evaluation algorithms are contin-
uously needed [1, 2].

The use of a single fringe pattern for phase retrieval is
more suitable in dynamic processes. The unwrapping step,
which provides, a continuous phase distribution over its def-
inition domain implies several difficulties and sophisticated
algorithms are then needed [3].

Recently, the normalized Hilbert-Huang transform
(NHHT) has emerged as a promising and powerful tool for
processing nonlinear and nonstationary signals. It consists of
three parts: empirical mode decomposition (EMD), intrinsic
mode functions (IMF) normalization, and Hilbert spectral
analysis (HSA). The NHHT was developed by Huang et
al. [4–7] to overcome the limitations set by the Bedrosian
and Nuttall theorems when applying the regular Hilbert
transform [8–12].

In our work, we attempt to retrieve the unwrapped phase
from a single image. Our fringe analysis technique consists
of decomposing the fringe pattern into IMFs, applying the
HSA to each normalized IMF, then constructing individual
analytic signals and computing the phase gradient. This leads

directly to the phase distribution avoiding the complex step
of phase unwrapping.

Computer simulation results obtained using our method
are in very good agreement with those produced using phase-
shifting methods [13]. To validate the performance of the
proposed technique, it has been further tested on experimen-
tal fringe patterns. It was shown that the result totally agrees
with that retrieved by phase-shifting techniques.

2. Empirical Mode Decomposition for
Fringe Pattern Analysis

The fringe pattern, derived from a two-beam interferometer
is characterized by the sinusoidal dependence of the intensity
on the spatial coordinates (x, y) of the image plane [1, 2]:
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, (1)

where a(x, y) is the background. The terms b(x, y) and
cosφ(x, y) are the modulation intensity and the optical
phase.

The empirical mode decomposition (EMD) analysis is
an adaptive and fully driven data method to decompose
any signal into a set of components called intrinsic mode
functions (IMF) and a residue [5]. Adding all the IMFs
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together with the residue reconstructs the original signal
without information loss or distortion [14]:

I(x) =
n−1∑

k=1

IMFk(x) + Res(x). (2)

Adding all the IMFs by just skipping the DC component that
is, Res(x), we remove the background. The filtered fringe
pattern is

J(x) = b(x) cosφ(x) =
n−1∑

k=1

IMFk(x). (3)

When decomposing the intensity by EMD, the resulting IMFs
are not restricted to narrow band signals and can be both
amplitude and frequency modulated [8]. Each IMF should
be representable in the form

IMFk(x) = bk(x) cos
[
φk(x)

]
, (4)

where the amplitude bk(x) and phase φk are both physically
and mathematically meaningful. Once a suitable polar
parameterization is determined, it is possible to analyse
J(x) by processing these individual components. The most
common procedure to determine a polar representation is
the analytic method of signal processing [15].

3. Analytic Signal Construction

To construct the analytic signal corresponding to each IMF,
the simplest way is by employing the Hilbert transform [6].
The real part of an analytic signal is the original input,
whereas its imaginary component is the Hilbert transform
HT of that signal.

For each IMFk(x), the corresponding analytic signal is

Zk(x) = IMFk(x) + iHT[IMFk(x)]. (5)

Using the exponential notation

Zk(x) = bk(x)eiφk(x) (6)

the following instantaneous attributes of Zk(x) can be
defined:

bk(x) =
{

IMFk
2(x) + HT[IMFk(x)]2

}1/2
, (7)

IMFNk(x) = IMFk(x)
bk(x)

(8)

φk(x) = artctan
{
bk ·HT[IMFNk(x)]

IMFk(x)

}

(9)

fk(x) = 1
2π

dφk(x)
dx

, (10)

where bk(x) is the instantaneous amplitude, IMFNk(x) is the
normalized IMFk(x), φk(x) is the instantaneous phase, and
fk(x) is the instantaneous frequency [16].
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Figure 1: The fringe pattern I.
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Figure 2: The tree IMFs component resulting from EMD decom-
position of the data row J(y = 50).
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Figure 3: The individual contribution of each IMF to construct the
global phase phaset.
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Figure 4: (a) Phase gradient in x direction retrieved by (14), (b) phase distribution of (16), and (c) the difference map between the simulated
and the retrieved phase.

In (9), we chose to conduct Hilbert transform on
IMFNk(x) rather than on IMFk(x), and this to avoid the
Bedrosian and Nuttall restrictions [9–12].

The expansion of the signal in terms of the functions
given in (6) is

Z(x) =
n−1∑

k=1

Zk(x) =
n−1∑

k=1

bk(x)eiφk(x), (11)

b(x)eiφ(x) =
n−1∑

k=1

bk(x)eiφk(x). (12)

Typically, the modulation term b(x) is a slowly and
smoothly varying function compared to φ(x), The gradient
of (12) leads to:

ib(x)
∂φ(x)
∂x

eiφ(x) =
n−1∑

k=1

[
∂bk(x)
∂x

+ i2π fk(x)bk(x)
]
eiφk(x).

(13)
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Figure 5: Fringe pattern for an aluminium transducer suspension
assembly from a hard disk drive that was tilted between measure-
ments.
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Figure 6: The four IMFs resulting from EMD decomposition of the data row J(y = 110).

Dividing (13) by (12) gives then the phase gradient by the
real part� of the complex expression in

∂φ(x)
∂x

= �
∣∣
∣
∣
∣∣

{∑n−1
k=1

[
2π fk(x)bk(x)− i(∂bk(x)/∂x)

]
eiφk(x)

}

{∑n−1
k=1 bk(x)eiφk(x)

}

∣∣
∣
∣
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(14)

which leads to the phase by integration of the gradient.
As we can see, the IMFk contribution to the phase

gradient is

�
∣
∣∣
∣
∣∣

{[
2π fk(x)bk(x)− i(∂bk(x)/∂x)

]
eiφk(x)

}
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}

∣
∣∣
∣
∣∣
. (15)

4. Numerical Simulations

The numerical simulation consists in generating digitally
fringe patterns to verify the ability of the method to deter-
mine the phase distribution. The test phase function we used
is

φ
(
x, y

) = 0.0009 ·
[

(x − 128)2 +
(
y − 128

)2
]
. (16)

The intensity distribution of fringe pattern shown in Figure 1
is

I
(
x, y

) = 1 + cos
(
φ
(
x, y

))
. (17)

We illustrated in Figure 2 the IMF is extracted by EMD from
a data row corresponding to y = 50.

As we can see in Figure 3, the physical significance of each
IMF is proven since we can see their individual contributions
to the global phase phaset.

For determining the phase distribution of two dimen-
sional fringe pattern, the previous procedure is generalized
to all rows of the image.

The difference map between the simulated phase in
Figure 4(a) and the retrieved phase in Figure 4(b) is given
in Figure 4(c) where we can see that the error is small in

general. Even over the large error location, the error values
are smaller than 5%, except for the end region, where the end
effect of the Hilbert transform causes additional problems.
The occasionally large error values offer an indication where
the method failed. All such locations occur at the minimum
amplitude. Overall, the NHHT method gives a more consis-
tent, stable quadrature to construct the analytic signal.

5. Experimental Results

To illustrate the use of our method for real applications,
we tested its performance on a rough ground finish, alu-
minium surface from a hard disk drive assembly. Changes
were induced by tilting the surface and recording interfero-
grams before and after. Figure 5 shows a fringe pattern with
9 fringes of tilt.

The 1D empirical mode decomposition method is also
applied successively to reduce speckle noise in the correlation
fringes produced in digital speckle pattern interferometry
(DSPI) [17–19]. When decomposing a data row of the fringe
pattern, it is clearly shown in Figure 6 that the first and
second IMF contain only speckle noise and must be omitted
to construct a smooth fringe pattern.

The results are of the same order of accuracy to DSPI
measurements using the Carré algorithm [20] as it is shown
in Figures 7(a) and 7(b). It is worth noting that our method
gives the phase distribution with a single image and without
unwrapping, while most phase evaluation methods require
unwrapping phase over its definition domain, in the manner
to provide a continuous phase distribution.

6. Conclusion

In this paper, we have presented and tested a new method
of phase extraction from a single fringe pattern. This was
achieved by a new exploitation of the analytic signal corre-
sponding to each normalized intrinsic mode function. More-
over, we gave a physical sense of IMFS derived from fringe
pattern decomposition by EMD. We used the NHHT since it
has helped to overcome many of the difficulties of the regular
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Figure 7: (a) Phase retrieved using our method, and (b) phase retrieved with Carré algorithm.

Hilbert transform, it gives consistent and stable quadrature
when constructing analytic signals. The method applied to
simulated and experimental fringe patterns is compared to
phase-shifting methods. It shows great robustness and a very
close agreement in the computation of the phase.

In summary, the advantages of this technique over other
methods include the following.

(1) This method is adequate for real-time acquisition
since it provides the optical phase distribution from
only one single fringe pattern with a high accuracy.

(2) It is possible to perform an accurate phase demodu-
lation on the fringe pattern even when the image is
noisy.

(3) This technique requires less processing time in com-
putation and is easy to implement.

(4) This technique leads directly to the phase distribution
avoiding the complex step of phase unwrapping.

(5) The NHHT applied to fringe pattern analysis has
defined the qualitative and quantitative contribution
of IMFs to recover the phase. This way of fringe
pattern analysis is as far as we know has not yet been
reported.
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