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The mathematical modeling of nonlinear boundary value problems in catalytically chemical reactor is discussed. In this paper,
we obtain the approximate analytical solution and the effectiveness factors for the evolution of single-step transformations under
non-isothermal conditions using homotopy perturbation method. We have applied it to many reaction models and obtained very
simple analytical expressions for the shape of the corresponding transformation rate peaks. These analytical solutions represent
a significant simplification of the system’s description allowing easy curve fitting to experiment. The accuracy achieved with our
method is checked against several reaction models and numerical results. A satisfactory agreement is noted.

1. Introduction

Non-isothermal systems, where reaction and diffusion take
place, are typical in the chemical process industry [1] and also
in biological systems [2-4]. The chemical reaction is always
central in these systems, because the rate of the reaction
often will determine how fast chemicals can be produced.
A high rate can be realized when the reaction is far from
equilibrium. But an operation far from equilibrium is also an
operation in which the energy dissipation is large. With the
present interest to save valuable resources, chemical reactors
should be studied also from the perspective of obtaining a
more energy-efficient operation, in addition to maintaining
the production of chemicals. In biological systems, one may
expect that energy efficiency is an issue of survival, especially
under harsh conditions [5]. In such cases and probably many
others, a thermodynamic description will be important to
understand the transport phenomena involved [4, 6]. Studies
of minimum energy dissipation start with an expression for
the entropy production [7-9].

Chemical reactions are inherently non-linear processes,
and are most successfully described in the field of reaction
kinetics by the law of mass action [10, 11]. The reaction
rate is not commonly expressed as a function of the reaction

Gibbs energy. This is not surprising, because classical non-
equilibrium thermodynamics [12, 13] assumes a linear rela-
tion between these two variables, and experimental evidence
indicates that this is only correct very close to chemical
equilibrium. The first to address this problem successfully
was Kramers [14] who described the reaction as a diffusion
process along a reaction coordinate.

The extension in the context of non-equilibrium ther-
modynamics was first proposed by Prigogine and Mazur
[15-17]. By integrating over these variables to obtain the
thermodynamic level, one can describe several phenomena,
which are non-linear on the macroscopic level, and which
retain a linear force-flux relation on the mesocopic level. This
applies not only to chemical reactions [18], but for instance
also to adsorption [19], nucleation [20], electrode over poten-
tials [21] and active transport in biology [4]. The number of
cases studied is now growing fast. The coupling of chemical
reactions to other processes is then important [8, 18, 22-
25]. Non-equilibrium thermodynamics is not only a theory
for transport processes, it is also a theory for fluctuations.
It has been demonstrated that the fluctuating contributions
to the thermodynamic fluxes in a non-equilibrium system
satisfy the fluctuation-dissipation theorem just like they do
in equilibrium [26].



The theory of non-equilibrium thermodynamics is based
on the assumption of local thermodynamic equilibrium.
The validity of this assumption has been established by
molecular dynamics simulations in several cases [27-29].
Fluctuations and the resulting correlation functions away
from equilibrium were then not considered. One of the major
findings has been that although local equilibrium is valid
for the description of the mean values of thermodynamic
fields, it is no longer valid for the description of the fluc-
tuations around their average non-equilibrium values [26].
Recently Vergara et al. [30] developed the multicomponent
diffusion system including cross-term diffusion coefficients
relating to flux of the component i to concentration gradients
of component j. But in our problem the cross-diffusion
is neglected. Ikeda et al. [31] analyzed this problem for
a reaction-diffusion problem with a temperature gradient
using a linear approximation for the description of the
reaction. For the reaction-diffusion problem the assumption
of local equilibrium has to be extended to be valid also
along the reaction coordinate. However, to the best of our
knowledge, till date no general analytical expressions of mass
concentrations and effectiveness factors have been reported.
The purpose of this communication is to derive the approxi-
mate analytical expression of mass concentration for planar
particles by solving the non-linear differential equations
using He's homotopy perturbation method [32-35].

2. Mathematical Formulation of
the Problem and Analysis

The mathematical description of a catalytic chemical reactor
(m,q) : mA +gB — P isgiven by [1]

2
%—qﬁzf(u):O for 0 < x <L,
x
p (1)
u=1 atx=1, —u=0 at x =0,
dx

where x is the spatial coordinate, f(u) is the reaction rate
function (which is non-linear), and L is the half thickness of
porous slab (). The mass concentration u is defined as the
following function:

u= &,
Cas

where C, is the volumetric molar concentration of the key
component A, C g is the surface value of the key component
A, and ¢ is the corresponding Thiele modulus which is
defined as follows:

2 m—1 ~p
(/) _ L kSCAS CBS' (3)
DA

Here kg, D4, and Cgg are the specific kinetic constant, effec-
tive diffusivity coefficient, and the dimensionless concentra-
tion of the component B, respectively. Also the temperature
T and the mass concentration u are no longer independent,
which satisfies the following relation:

T=d(l-u)+1, (4)

2)
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where d is the thermicity of the reaction and is defined as
follows:

_ DyCys (-AH)

d
kT

)

Here —AH is the reaction heat; k is the effective thermal
conductivity inside the porous slab; and T'y is the dimensional
temperature at the external pellet surface. AH/T repre-
sents the entropy change “AS” of a system under this pro-
cess. Entropy increases in all spontaneous processes. Hence
entropy may be regarded as a measure of disorder or random-
ness of the molecules of the system. For isothermal process,
the entropy changes of the universe during a reversible
process are zero. The entropy of the universe increases in an
irreversible process. The parameter d represents the deviation
from isothermal conditions, being d < 0 and d > 0 for
endothermic and exothermic reactions, respectively. Now the
dimensionless reaction rate function f(u) including (1) is
given by

£ = exp | 0], ©
where the parameter c is defined as follows:
c=y-d, (7)
where y is the Arrhenius group and is defined as
E
Y= Rry (8)

Here E denotes the activation energy; R is the universal
gas constant. Hence the corresponding non-linear boundary
value problem is given by

2
d_u_¢zum+qexp[ c(1-u)

d(l-u)+1

i ]=0 for0<x<L,
X

u=1 forx=1L, @:O for x = 0.
dx
)
Using the following dimensionless variables:
X
=1-73, =1-u
z I y u (10)

Now (9) becomes in dimensionless form as follows:

2
%—gbz(l—y)m*qexp[ < ]zo for0< z<1,

dy+1
(11)
d
y=0 forz=0, d—}Z/=0 for z = 1. (12)

The internal effectiveness factor (7) is a measure of the relative
importance of diffusion to reaction limitations. That is,

actual overall reaction rate

n

rate if entire surface were exposed to C,g, T
(13)
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The effectiveness factor for the heterogeneous chemical reac-

tion is [22-26]
_1[dy
= ([52 [dZ ]Z:O. (14)

3. Solution of Boundary Value Problem
Using HPM

Recently, many authors have applied the homotopy pertur-
bation method (HPM) to solve the non-linear problems
in physics and engineering sciences [36-39]. Recently this
method is also used to solve some of the non-linear problem
in physical sciences [32-34]. This method is a combination of
homotopy in topology and classic perturbation techniques.
He used to solve the Lighthill equation [32], the Diffusion
equation [33], and the Blasius equation [34, 35]. The HPM is
unique in its applicability, accuracy and efficiency. The HPM
uses the imbedding parameter p as a small parameter, and
only a few iterations are needed to search for an asymptotic
solution. Using this method, we can obtain the following
solution to (11) and (12) for the following three cases (see
Appendices A-C):

Case 1. When the reaction orders g = 0 and m = 0,
the analytical solution of (11) to (12) using homotopy
perturbation method [35, 40-44] is

d(3 > (k
)’(Z)=[(-'—2t:2n())—i}+[i+kl]cos(kz)
4 [fan® +k2](sin(kz))

[ ¢*d ((1 — tan’ (k)) cos (2kz) + 2 tan (k) sin (2kz)) ]
6¢ck?

. [ ¢°d (tan (k) z cos (kz) — z sin (kz)) ]

ke
(15)
where
k=g, (16)
o - [¢2d(1 —t:;nz (k))] ) [d(3+ta2112 (k))], 1)
6ck 2c

1 , ¢°d
k, = Foos (0 <|[kk1 sin (k)] - (ﬁ)

X [(1 ~ tan® (k)) sin (2k)

—2tan (k) cos (2k)]
2
- <(€<_cd ) [tan (k) (cos (k) — k sin (k))

— (sin (k) + k cos (k))] } ,
(18)

provided ¢ # 0. Using (14), the effectiveness factor # is given
by

_ [ sin (av/c) ] - [ d sin (av/c) ]
av/c cos (ar/c) ac3? cos (av/c)
_[ 2d sin (a/c) ]+[ d ]
3ac3*cos® (a+/c) acos? (a+/c)

Case 2. When the reaction orders g = 0 and m = 1, we can
obtain the analytical solution of (11) to (12) using homotopy
perturbation method as follows:

(c+cd) (3+tan2 (a)) 1
}/(Z)f |: 2(6—1)3 _(C—l):|

tan (a)
(c-1)
[ (/)2 (c+cd) ((1 — tan’ (a)) cos (2az) + 2 tan (a) sin (2uz))

- 6a%(c — 1)

+ az} (sin (az))

+ :7@11) +a1] (cos (az)) + [

[ ¢2 (c + cd) (tan (a) z cos (az) — z sin (az))

i a(c-1) ’
(20)
where
a=¢vVc-1, (21)
B ¢ (c +cd) (1 — tan’ (a))
“ = 6a%(c — 1)
(22)
(c+cd) (3 + tan® (a))
- 2c-1)

2
a, = ! {(aal sin (a)) - <7¢ e+ Cd)>

acos (a) 3a(c - 1)°

X [(1 - tan’ (a)) sin (2a) — 2 tan (a) cos (2a)]

2
+ (M) [tan (a) (cos (a) — asin (a))
a(c-1)
—(sin (a) + acos(a))] } R
(23)

provided ¢ # 1. Using (14), the effectiveness factor # is given
by

e sin(a\/c— 1)
[acos (a\/c— 1) (c— 1)5/2]
[ cd sin (av/c) :|
+
(c - 1)*cos? (a c-1
[ ZCdsin(a c— 1) ]

3a(c — 1)*?cos? (a c— 1)




B [ 2csin(a\/c—1) ]

| 3acos® (a c— 1) (c-1)°?

[ cdsin(a c—l)

- | 3acos (a\/c - 1) (c- 1)5/2
[ 7csin(a\/c— 1)

- | 3acos (a\/c - 1) (c- 1)5/2

¢
" _cosz(a c—l)(c—l)z]

[ sin(a c—l)
' _acos(a\/c—l)(c—l)S/2 '

(24)

Case 3. When the reaction orders ¢ = 1 and m = 1,
the analytical solution of (11) to (12) using the homotopy
perturbation method is given by

(cd +2c—1) (3 +tan’ (b)) 1
2(c-2)° (-2

y(z) = [

@ 1 B + bl] (cos (bz))

[ ¢* (cd+2c-1) ((l—tan2 (b)) cos (2bz)+2 tan (b) sin (sz))
- 6b*(c-2)*

. [ ¢* (cd+2c—1) (tan (b) z cos (bz) -z sin (bz)) }
b(c-2)*

+ Ein_(;]; + bz] (sin (b2)),

(25)
b=¢Vc-2, (26)

¢ (cd +2c—1) (1 - tan’ (b))

b, = 2 2
6b"(c —2)

(27)

(cd+2c-1) (3 + tan’ (b))

- 2c-2)° ’
~ 1 ) ¢ (cd+2c-1)
bz = (bcos (b)) {bbl sin (b) - [ 3b(c - 2)? }
X ((1 — tan’ (b)) sin (2b)
—2tan (b) cos (2b))

(28)

[¢2(cd+2c—1)]
Lo latac-l)
b(c - 2)*

x (tan (b) (cos (b) — bsin (b))

— (sin (b) + bcos (b)) ]» .
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The above expression is valid only if ¢ #2. Using (14), the
effectiveness factor # is given by

B ¢*sin (a\/c - 2)
- acos (aVc - 2) (c- 2)5/2 ]
cd sin (av/c)
| (c—2)°cos? (a\/c - 2)
[ 2cd sin (a\/c— 2)
- | 3a(c - 2)*%cos3 (a\/c - 2)
[ 4c sin (a c— 2)
B | 3acos? (ch - 2) (c-2)°" ]
[ cd sin (aVc— 2)
- | 3acos (a\/c - 2) (c- 2)5/2
14c¢ sin (a\/c— 2)
| 3acos (a\/c - 2) (c- 2)5/2

2c
" | cos? (a\/c—Z) (c—2)2:|
13sin (avc - 2)
| 3acos (a\/c— 1)(6— 1)5/2
[ 2sin(a\/c—2)
! | 3acos (a\/c—z) (c—2)5/2

1
B | cos? (a\/c—Z) (c—2)2:| '
(29)

4, Numerical Simulation

The non-linear equations (11) to (12) for the five cases
are solved by numerical methods. The function pdex4, in
Matlab software, is used to solve two-point boundary value
problems (BVPs) for ordinary differential equations which
are given in Appendices D-H. In Tables 1, 2, 3, 4, and 5,
the numerical results are also compared with the obtained
analytical expressions (see (15), (20), and (25)) and Villa et
al. [1] results for some fixed value of ¢ = 0.5.

5. Results and Discussions

Tables 1-5 represent the dimensionless mass concentration
y(z) versus the dimensionless spatial coordinate z for the
following different values of the dimensionless parameters ¢
and d:

(i) whenm =0,9=0,¢ =0.5,c¢ > 0,and d > 0.
(ii) whenm =0,9=0,¢ =0.5,c <0,and d < 0.
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TaBLE 1: Comparison of our analytical expression of concentration profiles y(z) with numerical results and Villa et al. [1] results
corresponding to Case 1, form = 0, ¢ = 0,and ¢ = 0.5, whenc > 0and d > 0.

Dimensionless spatial coordinate z

c d
0.0 0.25 0.5 0.75 1.00

Numerical 0.000000 0.073340 0.128200 0.162200 0.173700
25 0.5 ¥(z) Analytical (15) 0.000000 0.070005 0.121817 0.153614 0.164329
Villa et al. [1] 0.000000 0.074132 0.129628 0.164013 0.175663
Numerical 0.000000 0.068130 0.118500 0.149500 0.160000
2 0.4 ¥(2) Analytical (15) 0.000000 0.066522 0.115447 0.145359 0.155421
Villa et al. [1] 0.000000 0.068637 0.119455 0.150699 0.161243
Numerical 0.000000 0.060340 0.104200 0.130700 0.139700
1 0.2 ¥(2) Analytical (15) 0.000000 0.060165 0.103798 0.130241 0.139099
Villa et al. [1] 0.000000 0.060524 0.104481 0.131152 0.140093
Numerical 0.000000 0.057310 0.098580 0.123500 0.131804
0.5 0.1 ¥(z) Analytical (15) 0.000000 0.057319 0.098578 0.123460 0.131775
Villa et al. [1] 0.000000 0.057394 0.098722 0.123652 0.131985
Numerical 0.000000 0.055960 0.096080 0.120200 0.128300
0.25 0.05 ¥(z) Analytical (15) 0.000000 0.055977 0.096116 0.120262 0.128321
Villa et al. [1] 0.000000 0.055994 0.096149 0.120306 0.128369

TaBLE 2: Comparison of our analytical expression of concentration profiles y(z) with numerical results and Villa et al. [1] results
corresponding to Case 1, form = 0, g = 0,and ¢ = 0.5, whenc < 0and d < 0.

Dimensionless spatial coordinate z

c d
0.0 0.25 0.5 0.75 1.00

Numerical 0.000000 0.044356 0.074890 0.092878 0.098564
-2.5 -0.5 y(2) Analytical (15) 0.000000 0.044254 0.074608 0.092320 0.098140
Villa et al. [1] 0.000000 0.045077 0.076180 0.094425 0.100440
Numerical 0.000000 0.037821 0.062402 0.076523 0.080991
-5 —-0.5 y(2) Analytical (15) 0.000000 0.037461 0.062200 0.076257 0.080814
Villa et al. [1] 0.000000 0.039354 0.065829 0.081121 0.086125
Numerical 0.000000 0.032841 0.053973 0.068000 0.070002
-7.5 -0.5 y(z) Analytical (15) 0.000000 0.032651 0.053454 0.067831 0.069662
Villa et al. [1] 0.000000 0.035385 0.058706 0.072018 0.076351
Numerical 0.000000 0.040345 0.067145 0.083100 0.087989
-4 -0.2 y(z) Analytical (15) 0.000000 0.040097 0.067028 0.082520 0.087574
Villa et al. [1] 0.000000 0.041559 0.069825 0.086265 0.091662
Numerical 0.000000 0.038110 0.062899 0.077121 0.081987
-5 -0.2 ¥(z) Analytical (15) 0.000000 0.037684 0.062628 0.076831 0.081440
Villa et al. [1] 0.000000 0.039551 0.066203 0.081619 0.086668

(iii) whenm =1,9=0,¢ = 0.5,¢ > 0,and d > 0.
(iv) whenm =1,g=0,¢=0.5,c < 0,and d < 0.
(v) whenm =1,9=1,¢=0.5,c>0,andd > 0.
From these tables it is evident that the values of

the dimensionless mass concentration y(z) decrease, when
dimensionless parameters ¢ and d decrease. In Tables 1-5,

our analytical results for the mass concentrations y(z) are
compared with the numerical results and Villa et al. results
[1]. Villa et al. [1] obtained the analytical solution of this
problem only for taking the parametric restrictions.

In Tables 1-4, our analytical results are compared with
the numerical results and Villa et al. [1] results. A good
agreement between them is noted. In Table 5 for the Case 3,
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TaBLE 3: Comparison of our analytical expression of concentration profiles y(z) with numerical results and Villa et al. [1] results
corresponding to Case 2, form = 1, g = 0,and ¢ = 0.5, whenc > 0and d > 0.

Dimensionless spatial coordinate z

c d
0.0 0.25 0.5 0.75 1.00

Numerical 0.000000 0.059510 0.102600 0.128600 0.137400
2 0.4 y(z) Analytical (20) 0.000000 0.058307 0.100271 0.125535 0.133966
Villa et al. [1] 0.000000 0.059654 0.102825 0.128938 0.137675
Numerical 0.000000 0.054380 0.093160 0.116400 0.124100
1.01 0.2 y(2) Analytical (20) 0.000000 0.055077 0.093182 0.116617 0.123772
Villaetal. [1] (c=1) 0.000000 0.054316 0.093042 0.116241 0.123967
Numerical 0.000000 0.052160 0.089100 0.111100 0.118400
0.5 0.1 y(2) Analytical (20) 0.000000 0.052036 0.88869 0.110829 0.118125
Villa et al. [1] 0.000000 0.052090 0.088971 0.110966 0.118275
Numerical 0.000000 0.051160 0.087260 0.108700 0.115900
0.25 0.05 y(2) Analytical (20) 0.000000 0.051052 0.087075 0.108510 0.115625
Villa et al. [1] 0.000000 0.051065 0.087099 0.108542 0.115660
Numerical 0.000000 0.050590 0.086210 0.107400 0.114400
0.1 0.02 y(z) Analytical (20) 0.000000 0.050474 0.086019 0.107144 0.114151
Villa et al. [1] 0.000000 0.050476 0.086023 0.107149 0.114157
Numerical 0.000000 0.050250 0.085590 0.106600 0.113500
0.01 0.002 y(2) Analytical (20) 0.000000 0.050130 0.085393 0.106333 0.113278
Villa et al. [1] 0.000000 0.050130 0.085393 0.106333 0.113278
Numerical 0.000000 0.050220 0.085530 0.106500 0.113500
0.001 0.0002 y(2) Analytical (20) 0.000000 0.050096 0.085330 0.106253 0.113191
Villa et al. [1] 0.000000 0.050096 0.085330 0.106253 0.113191

TaBLE 4: Comparison of our analytical expression of concentration profiles y(z) with numerical results and Villa et al. [1] results
corresponding to Case 2, form = 1, ¢ = 0,and ¢ = 0.5, whenc < 0 and d < 0.

Dimensionless spatial coordinate z

c d
0.0 0.25 0.5 0.75 1.00
Numerical 0.000000 0.048975 0.083298 0.103610 0.110432
0.3 -0.1 y(2) Analytical (20) 0.000000 0.048969 0.083271 0.103588 0.110316
Villa et al. [1] 0.000000 0.048985 0.083302 0.103629 0.110361
Numerical 0.000000 0.048943 0.082101 0.102105 0.108924
-0.5 -0.1 y(z) Analytical (20) 0.000000 0.048246 0.081952 0.101881 0.108475
Villa et al. [1] 0.000000 0.048288 0.082031 0.101987 0.108591
Numerical 0.000000 0.046786 0.078998 0.097997 0.104789
-1.0 -0.1 ¥(2) Analytical (20) 0.000000 0.046530 0.078818 0.097825 0.104101
Villa et al. [1] 0.000000 0.046673 0.079091 0.098191 0.104500
Numerical 0.000000 0.045001 0.076001 0.094255 0.100213
-1.5 -0.1 y(z) Analytical (20) 0.000000 0.044931 0.075901 0.094050 0.100030
Villa et al. [1] 0.000000 0.045214 0.076442 0.094775 0.100821
Numerical 0.000000 0.043678 0.073356 0.090611 0.096987
-2.0 0.1 y(z) Analytical (20) 0.000000 0.043438 0.073179 0.090530 0.096234

Villa et al. [1] 0.000000 0.043888 0.074037 0.091678 0.097487
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TaBLE 5: Comparison of our analytical expression of concentration profiles y(z) with numerical results and Villa et al. [1] results
corresponding to Case 3, form =1, g = 1,and ¢ = 0.5, whenc > 0 and d > 0.

Dimensionless spatial coordinate z

c d
0.0 0.25 0.5 0.75 1.00
Numerical 0.000000 0.053770 0.092021 0.114923 0.122500
Analytical (25) 0.000000 0.053168 0.090154 0.110179 0.119763
1.99 0.4 y(z) (error %) (0.0000) (1.1195) (2.0288) (4.0102) (2.2342)
Villa et al. [1] (¢ = 2) 0.000000 0.013657 0.023410 0.029260 0.031210
(error %) (0.0000) (74.6010) (74.5601) (74.5394) (74.5224)
Numerical 0.000000 0.049970 0.085070 0.105900 0.112800
Analytical (25) 0.000000 0.049630 0.084442 0.105065 0.108007
1.0 0.2 y(2) (error %) (0.0000) (0.6804) (0.7640) (0.7884) (4.2491)
Villa et al. [1] 0.000000 0.013358 0.022862 0.028549 0.030442
(error %) (0.0000) (73.2679) (73.1256) (73.0415) (73.0124)
Numerical 0.000000 0.048300 0.082010 0.101900 0.108500
Analytical (25) 0.000000 0.048078 0.081632 0.101452 0.108007
0.5 0.1 y(z) (error %) (0.0000) (0.4596) (0.4609) (0.4396) (0.4543)
Villa et al. [1] 0.000000 0.013216 0.022601 0.028210 0.030076
(error %) (0.0000) (72.6376) (72.7766) (72.3159) (72.2801)
Numerical 0.000000 0.047510 0.080580 0.100100 0.106500
Analytical (25) 0.000000 0.046859 0.079420 0.098604 0.104941
0.25 0.05 y(2) (error %) (0.0000) (1.3702) (1.4395) (1.4945) (1.4638)
Villa et al. [1] 0.000000 0.013146 0.022473 0.028044 0.029897
(error %) (0.0000) (72.3300) (72.1109) (71.9840) (71.9276)
Numerical 0.000000 0.047060 0.079750 0.099010 0.105400
Analytical (25) 0.000000 0.046859 0.079420 0.098604 0.104941
0.1 0.02 y(z) (error %) (0.0000) (0.4271) (0.4137) (0.4100) (0.4354)
Villa et al. [1] 0.000000 0.013104 0.022397 0.027946 0.029791
(error %) (0.0000) (72.1546) (71.9159) (71.7745) (72.3531)
Numerical 0.000000 0.046790 0.079260 0.098380 0.104700
Analytical (25) 0.000000 0.046588 0.078929 0.097971 0.104259
0.01 0.002 y(2) (error %) (0.0000) (0.4317) (0.41756) (0.4157) (0.4212)
Villa et al. [1] 0.000000 0.013080 0.022352 0.027887 0.029727
(0.0000) (72.0453) (71.7991) (71.6537) (71.6074)
Numerical 0.000000 0.046760 0.079210 0.098320 0.104600
Analytical (25) 0.000000 0.046561 0.078880 0.097907 0.104191
0.001 0.0002 y(2) (error %) (0.0000) (0.4255) (0.4166) (0.4200) (0.3910)
Villa et al. [1] 0.000000 0.013077 0.022347 0.027881 0.029721
(error %) (0.0000) (72.0337) (71.7876) (71.6425) (71.5860)

our analytical results and Villa et al. [1] results are compared
with the numerical results. Our analytical result gives good
agreement with the numerical results. In Table 6, the effec-
tiveness factors for the Cases 1 and 2, a satisfactory agreement
between our results and Villa et al. [1] results is noted.

6. Conclusion

The steady state non-linear reaction-diffusion equation has
been solved analytically and numerically. A simple and

approximate dimensionless mass concentrations y(z) are
derived by using the HPM for all values of dimensionless
parameters ¢, d, and ¢. The HPM is an extremely simple
method and it is also a promising method to solve other non-
linear equations. This method can be easily extended to find
the solution of all other non-linear equations. The proposed
formulas are used to find the thiele module range, in which
multiple values of the effectiveness factor should be searched.
The present method is quick and efficient and is able to reduce
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TABLE 6: Comparison of our effectiveness factors ((19), (24), and (29)), and Villa et al. [1] when ¢ = 0.5.
Cases c d Effectiveness factors (7)
Villa et al. [1] Our results
2.5 0.5 1.3195 1.2526
2 0.4 1.2294 1.1952
1 0.2 1.0961 1.0903
0.5 0.1 1.0446 1.0434
Case 1 (m =0, q=0) 0.25 0.05 1.0215 1.0213
-2.5 -0.5 0.8142 0.8280
=5 -0.5 0.7461 0.7157
-7.5 -0.5 0.6797 0.6360
-4 -0.2 0.7827 0.7592
-5 -0.2 0.7493 0.7193
2.0 0.4 1.0820 1.0603
1.01 0.2 (c=1)0.9940 0.9890
0.5 0.1 0.9572 0.9564
0.25 0.05 0.9403 0.9401
0.1 0.02 0.9306 0.9305
Case2(m=1, q=0) 0.01 0.002 0.9249 0.9249
0.001 0.0002 0.9243 0.9242
-0.3 -0.5 0.9059 0.9057
-0.5 -0.5 0.8944 0.8937
-1.0 -0.5 0.8676 0.8653
-1.5 -0.2 0.8435 0.8389
-2.0 -0.2 0.8214 0.8142
1.99 0.4 (c =2)0.9991 0.9678
1.0 0.2 0.9793 0.9168
0.5 0.1 0.9699 0.8910
Case3(m=1, q=1) 0.25 0.05 0.9653 0.8783
0.1 0.02 0.9626 0.8708
0.01 0.002 0.9609 0.8663
0.001 0.0002 0.9608 0.8658
significantly the amount of computations in simulations of =~ We construct the homotopy as follows:
the catalytic chemical reactors.
Appendices d’y 2
PP (-9 |52 16+
A. Solution of Nonlinear Equations (11) and (12) , (A.2)
Using HPM ‘p [Z_Z)z’ + ey — gedy’ +¢2] —0
In this Appendix, we indicate how (15) in this paper is
derived. To find the solution of (11) and (12), when g = 0
and m = 0. When cy/(dy + 1) small, then (11) reduces to The analytical solution of (A.1) is
dz—y+¢2[l+c —cdy?’] = (A.1) 2
2’ y-edy]=o Y=Yt Py HP Yy (A.3)
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Substituting (A.3) into (A.2), we get

d (yo+py+p'yy+ )
(1_p) dz?

+¢ZC(J’0 + Py, +PZJ’2 + ) +¢2]

&’ ()’0 + PN +P2)’2 + )
TP dz?

+¢'c(yy+ Py + Py )

2
_‘pod(J’o + P +P2)’2 + ) +¢2:| =0.
(A4)

Comparing the coefficients of like powers of p in (A.4) we get

d2y
pO: dzzo +¢>zcy0 +¢2 o,

(A.5)
dz)’l 2 2 5.2
p1 : 02 +¢cy, —¢cdy, = 0.

The initial approximations are as follows:

Y0 =0,  y,(1)=0,

, (A.6)
;0 =y,(1)=0, i=123....

Solving (A.5) and using the boundary conditions (A.6) we
obtain the following results:

Yo = % [cos (kz) + tan (k) sin (kz) — 1],

[ d (3 +tan’ (k)) ]
¥, = ky cos (kz) + k, sin (kz) + | —————

2c2

. [ %d (1 — tan’ (k)) cos (2kz) ] A7)

6¢ck?

~ '¢2dtan(k)gn(2kz)]
3ck?

[ ¢*d tan (k) z cos (kz) ~ ¢*dz sin (kz)
" ck ck ’

where k, k|, and k, are defined in the text (16), (17), and (18),
respectively.
According to the HPM, we can conclude that

y=limy @) =y,+y,.

Jim, (A.8)

After putting (A.7) into (A.8) we obtain the solution in the
text (15).

B. Solution of Nonlinear Equations (11) and (12)
Using HPM

In this Appendix, we indicate how (20) in this paper is
derived. To find the solution of (11) and (12), wheng = 0
and m = 1. When cy/(dy + 1) small, then (11) reduces to

2

%+‘/’2[1+(C—1)y—(c+cd)y2]=()_ (B.1)

We construct the homotopy as follows:
P2
(1-p) [d—zf+¢2<c—1)y+¢2]

2
+p[%§+¢%c—ny—¢%c+wyf+¢ﬂ=o.

(B.2)
The analytical solution of (B.1) is
)’:J’0+Py1+P2y2+"" (B.3)
Substituting (B.3) into (B.2), we get
d* (yo+ Py, + P2+ )
+¢2 (c-1) ()’0 TPyt Pz)’z + ) + ‘(52]
(B.4)

+¢°(c-1)

d’ (yy+pyi+ Py, + )
P dz?

X (J’o + Py +P2y2 + "')_‘/’2 (¢ +cd)
2
X()’0+Py1 +P2)/z+ ) +¢2:| =0.

Comparing the coeflicients of like powers of p in (B.4) we get

2

d
PR =Dy =0
z

(B.5)

dz)’ 1, 42 2 2

pl;dz2 +¢’ (- 1)y, +¢” (c+cd) yg = 0.
The initial approximations are as follows:
7@ =0, y(1)=0,

(B.6)

Y, (0)=y,(1)=0, i=123....
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Solving (B.5) and using the boundary conditions (B.6) we
obtain the following results:

Yo = ((ci 1) > [cos (az) + tan (a) sin (az) — 1],

(c+cd) (3 + tan® (a)) :|

[ ¢ (c + cd) (1 — tan® (a)) cos (2az)
- 6(c — 1)*a?

~ [ ¢ (c + cd) tan (a) sin (2az) ]
3(c - 1)%a?

[ ¢2 (¢ + cd) tan (a) z cos (az)
(c- 1)2a

[ ¢ (c + cd) z sin (az)

(c-1)a

(B.7)

where a, a,, and a, are defined in the text (21), (22), and (23)
respectively.
According to the HPM, we can conclude that

y= I}i;nly )=y, + )1 (B.8)

After putting (B.7) into (B.8) we obtain the solution in the text
(20).

C. Solution of Nonlinear Equations (11) and (12)
Using HPM

In this Appendix, we indicate how (25) in this paper is
derived. To find the solution of (11) and (12), when g = 1
andm = 1.

When cy/(dy + 1) small, then (11) reduces to

Ly

Cl
1 (C.1)

+</52[1+(c—2)y—(cd+2c—1)y2]:0.
We construct the homotopy as follows:
dz}’ 2 2
(1—P)[d—zz+¢ (c=2)y+¢
dzy 2 2 2 2|
+p @+¢ (c=2)y—¢“(cd+2c—-1)y  +¢" | =0.
(C.2)

The analytical solution of (C.1) is

Y=Yt Py H P Yy (C3)

ISRN Physical Chemistry

Substituting (C.3) into (C.2), we get

a’ (J’o + Py +P2)’2 + )
(l_p) dz?

+¢” (c - 2) (}’0+P)’1 +0°y,+ )+¢2:|

+¢*(c-2)

d’ ()’0"’?)’1 +Pz)’2+ )
TP dz?

x(yo+ Py, + Py + )¢ (cd+2c - 1)

2
X(yo+ Py + P ys+ ) +¢2] =0.
(C.4)

Comparing the coeflicients of like powers of p in (C.4) we get

d2y
p #+¢2(C—2)y0+¢2=0,

(C.5)
1 dz)’l 2 2 2
p e +¢ (c=2)y,—¢" (cd+2c—-1)y,=0.
The initial approximations is as follows:
Yo (0) =0, )/0(1)=0,
(C.6)

y.(0) =y, (1)=0, i=1,23...

Solving (C.5) and using the boundary conditions (C.6) we
obtain the following results:

1 .
"2 [cos (bz) + tan (b) sin (bz) — 1],

¥, = [b; cos (bz) + b, sin (bz)]

[ (cd +2c-1) (3 +tan’ (b))
2(c-2)° ]

[¢ (cd +2c = 1) (1 - tan® (b)) cos (2bz)

6(c — 2)%b?

] (C7)

[ ¢ (cd +2¢ — 1) tan (b) sin (2b2) ]
3(c - 2)%v?

s [ ¢ (cd + 2c — 1) tan (b) z cos (bz) ]
(c-2)%

~ [ ¢ (cd +2¢ - 1)zsin(bz)]
(c-2)% ’
where b, b, and b, are defined in the text (26), (27), and (28),

respectively.
According to the HPM, we can conclude that

y= ;ignly (t) = yo + y1- (C.8)
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After putting (C.7) into (C.8) we obtain the solution in the
text (25).

D. MATLAB Program to Find the Numerical
Solution of Nonlinear Equations (11) and (12)

function pdex4

m = 0;
x=[00.250.50.75 1;
t=linspace(0,10000);
sol = pdepe(m,@pdex4pde,@pdexdic,@pdex4bc,x,t);
u = sol(:,:;,1);

figure
plot(x,u(end,:))
title(Cu(x,t)’)

xlabel (Distance x)
ylabel Cu(x,t)’)

function [c,f;s] = pdex4pde(x,t,u,DuDx)
c=1;

f = DuDx;

a=0.5;

c=1;

d=0.2;

m=0;

p=0;

F =a"2*(1-u)"(m+p)*exp(c*u/(1+d" u))
s=F;

ud=1;

function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create
boundary conditions

pl=ul;
ql=0;
pr=20;
qr=1.

E. MATLAB Program to Find the Numerical
Solution of Nonlinear Equations (11) and (12)

function pdex4
m = 0;
x=[00.250.50.75 1];
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t=linspace(0,10000);

sol = pdepe(m,@pdex4pde,@pdexdic,@pdex4bc,x,t);
u = sol(:,:,1);

figure

plot(x,u(end,:))

title(Cu(x,t)’)

xlabel(’Distance x’)

ylabel(Cu(x,t)’)

function [c,f;s] = pdex4pde(x,t,u,DuDx)
c=1;

f=DuDx;

a=0.5;

c=-7.5;

d=-0.5;

m=0;

p=0;

F =a"2* (1-u)"(m+p)*exp(c*u/(1+d"u))

ud=1;

function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create
boundary conditions

pl=ul;
ql=0;
pr=20;
qr=1.

F. MATLAB Program to Find
the Numerical Solution of Non-Linear
Equations (11) and (12)

function pdex4

m=0;

x=[00.250.50.75 1];

t=linspace(0,10000);

sol = pdepe(m,@pdex4pde,@pdexdic,@pdex4bc,x,t);
u = sol(:,:,1);

figure

plot(x,u(end,:))

title(Cu(x,t)’)
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xlabel("Distance x’) f=DuDx;
ylabel(Cu(x,t)’) a=0.5;
Q=== === e c=-1.5;
"""" d=-0.1;
function [c,f;s] = pdex4pde(x,t,u,DuDx) m=1;
c=1 p=0;
f = DuDx; F =a"2" (1-u)"(m+p)*exp(c*u/(1+d*u))
a=0.5; s=F;
=2 Oy e
d=04 e
m=1; function u0 = pdex4ic(x); %create initial conditions
p=0; ul = 1;

F =a"2"(1-u)"(m+p) “exp(c*u/(1+d"u));
s=F;

function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create

B ..

________ boundary conditions
. . o . pl=ul;

function u0 = pdex4ic(x); %create initial conditions

w0 = 1; ql=0;

Ol pr=0;

________ qr=1.

function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create
boundary conditions

H. MATLAB Program to Find
the Numerical Solution of Non-Linear

| =ul; .
bt Equations (11) and (12)
ql=0;
pr=0; function pdex4
qr=1. m = 0;

G. MATLAB Program to Find
the Numerical Solution of Non-Linear
Equations (11) and (12)

function pdex4
m=0;
x=[00.250.50.75 1];
t=linspace(0,10000);
sol = pdepe(m,@pdex4pde,@pdexdic,@pdex4bc,x,t);
u = sol(:,:;,1);

figure
plot(x,u(end,:))
title(Cu(x,t)")
xlabel(’Distance x’)
ylabel(Cu(x,t)’)

function [c,f,s] = pdex4pde(x,t,u,DuDx)

c=1;

x=[00.250.50.75 1];

t=linspace(0,10000);

sol = pdepe(m,@pdex4pde,@pdexdic,@pdex4bc,x,t);
u = sol(:,:;,1);

figure

plot(x,u(end,:))

title(Cu(x,t)’)

xlabel(’Distance x’)

ylabel(Cu(x,t)’)

function [c,f;s] = pdex4pde(x,t,u,DuDx)
c=1;

f = DuDx;

a=0.5;

c=1;

d=0.2;
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F =a"2"(1-u)"(m+p) “exp(c*u/(1+d*u))
s=F;

ud=1;
Oy e e e e
function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create
boundary conditions
pl=ul;
ql=0;
pr=0;
qr=1.
Nomenclature
X: Spatial coordinate (1)
z: Dimensionless spatial coordinate
u, y: Dimensionless mass concentration of
reactive component A
fu): Dimensionless reaction rate
v, w: Dimensionless functions
L: Half thickness of porous slab (1)
m,q: Whole numbers which denote the reaction
order
P: Product chemical component in a chemical
reaction
R: Universal gas constant
T: Functions which represent temperature
profile in the porous slab (°K)
Cy: Volumetric molar concentration of the key
component A
Cas: Surface value of the key component A
Dy: Effective diffusivity coefficient
kg Specific kinetic constant
Cpgs: Dimensionless concentration of component
B

d Thermicity of the reaction

y Arrhenius group

¢ = y - d: Dimensionless parameter

¢ Thiele modulus

n Effectiveness factor for the heterogeneous
chemical reaction.
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