
Hindawi Publishing Corporation
ISRN Probability and Statistics
Volume 2013, Article ID 543723, 12 pages
http://dx.doi.org/10.1155/2013/543723

Research Article
Tightness Criterion and Weak Convergence for
the Generalized Empirical Process in 𝐷[0, 1]

Maciej Ziemba

Department of Mathematics, Lublin University of Technology, ul. Nadbystrzycka 38d,
20-618 Lublin, Poland

Correspondence should be addressed to Maciej Ziemba; maciek.ziemba@gmail.com

Received 27 June 2013; Accepted 23 August 2013

Academic Editors: M. Campanino, S. Lototsky, H. J. Paarsch, and L. Sacerdote

Copyright © 2013 Maciej Ziemba. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We prove Shao and Yu’s tightness criterion for the generalized empirical process in the space 𝐷[0, 1] with 𝐽
1
topology. Covariance

inequalities are used in applying the criterion to particular types of the empirical processes. We weaken the assumptions imposed
on the covariance structure as well as the properties of the underlying sequence of r.v.’s, under which presented processes converge
weakly.

1. Introduction

Let {𝑋
𝑛
}
𝑛≥1

be a sequence of absolutely continuous identically
distributed (i.d.) random variables (r.v.’s) with an unknown
distribution function (d.f.)𝐹 and probability density function
(p.d.f.) 𝑓. The empirical distribution function, based on the
first 𝑛 r.v.’s, is defined by 𝐹

𝑛
(𝑥) = 𝑛

−1
∑

𝑛

𝑗=1
𝐼[𝑋

𝑗
≤ 𝑥]. It is

well known, however, that this estimate does not make use
of the smoothness of 𝐹, that is, the existence of the p.d.f. 𝑓.
Therefore, the kernel estimate

𝐹
𝑛
(𝑥) =

1

𝑛

𝑛

∑

𝑗=1

𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑛

) (1)

has been proposed, where the kernel function 𝐾 is a known
d.f. and {ℎ

𝑛
}
𝑛≥1

is a sequence of positive constants descending
at an appropriate rate. Such estimator has been deeply studied
in the last two decades mainly by Cai and Roussas in [1–4],
Li and Yang in [5] and others. Asymptotic normality, Berry-
Essen bounds for smooth estimator 𝐹

𝑛
(𝑥) are only examples

of their fruitful results.
Recently, Li et al. proposed in [6] the so-called recursive

kernel estimator of the d.f. 𝐹 as follows:

𝐹
𝑛
(𝑥) =

1

𝑛

𝑛

∑

𝑗=1

𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑗

) . (2)

The seemingly tiny modification they introduced to the
formula of the typical kernel estimator has an important
advantage. Namely, in the case of a large size of a sample,
𝐹
𝑛
(𝑥) can be easily updated with each new observation since

it is computable recursively by

𝐹
𝑛
(𝑥) =

𝑛 − 1

𝑛
𝐹
𝑛−1

(𝑥) +
1

𝑛
𝐾(

𝑥 − 𝑋
𝑛

ℎ
𝑛

) , (3)

where 𝐹
0
(𝑥) = 0. The authors discussed the asymptotic bias

and quadratic-mean convergence and established the point-
wise asymptotic normality of 𝐹

𝑛
(𝑥) under relevant assump-

tions.
In this paper, however, we will focus on the empirical

process built on an estimator 𝐹
𝑛
(𝑥) of the d.f. 𝐹 rather than

𝐹
𝑛
(𝑥) itself. Let us recall that the following process:

𝛼
𝑛
(𝑥) = √𝑛 [𝐹

𝑛
(𝑥) − 𝐸𝐹

𝑛
(𝑥)] , where 𝑥 ∈ R (4)

is called the empirical process built on an estimator 𝐹
𝑛
(𝑥).

Yu [7] studied the case when𝐹
𝑛
(𝑥) is a standard empirical

d.f. and showed weak convergence of 𝛼
𝑛
(⋅) to the Gaussian

process assuming stationarity and association of the underly-
ing r.v.’s. Cai and Roussas [1] obtained a similar result in the
case when 𝐹

𝑛
(𝑥) is the kernel estimator of the d.f. 𝐹 built on

a stationary sequence of negatively associated r.v.’s.
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In this paper, we shall study the empirical process 𝛼
𝑛
(𝑥)

generated by the generalized kernel estimator of the d.f. given
by the formula

𝐹
𝑛
(𝑥) =

1

𝑛

𝑛

∑

𝑗=1

𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑛,𝑗

) , where (5)

A1: {𝑋
𝑗
}
𝑗≥1

is a sequence of absolutely continuous i.d. r.v.’s
taking values in [0, 1] and having twice differentiable
d.f. 𝐹 with first and second derivative bounded;

A2: 𝐾 is a kernel function such that ∫R 𝑢𝑑𝐾(𝑢) = 0 and
∫R 𝑢

2
𝑑𝐾(𝑢) < ∞ with bounded derivative 𝑘;

A3: {ℎ
𝑛,𝑗
}
𝑛≥1,𝑗∈{1,...,𝑛}

is a sequence of positive constants
subject to the following conditions: lim

𝑗,𝑛→∞
ℎ
𝑛,𝑗

= 0,
lim

𝑗,𝑛→∞
𝑛ℎ

4

𝑛,𝑗
= 0 (actually, since 𝑗 ≤ 𝑛, 𝑗 → ∞

under the limit suffices).

Explicitly, we take a look onto the process

𝛼
𝑛
(𝑥) =

1

√𝑛
⋅

𝑛

∑

𝑗=1

[𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑛,𝑗

) − 𝐸𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑛,𝑗

)] , (6)

we shall call from now on the generalized empirical process.
Let us pay attention to the fact that in the case of

(i) ℎ
𝑛,𝑗

= ℎ
𝑛
for 𝑗 ∈ {1, . . . , 𝑛}, 𝛼

𝑛
(𝑥) is the empirical

process based on the kernel estimator of the d.f. 𝐹;
(ii) ℎ

𝑗,𝑗
= ℎ

𝑗+1,𝑗
= ℎ

𝑗+2,𝑗
= ⋅ ⋅ ⋅ =: ℎ

𝑗
for 𝑗 ∈ N, 𝛼

𝑛
(𝑥)

is the empirical process based on the recursive kernel
estimator of the d.f. 𝐹;

(iii) 𝐾(𝑡) = 𝐼
[0,∞]

(𝑡), 𝛼
𝑛
(𝑥) is the standard empirical

process (based on the empirical d.f.).

It is well known that the crucial procedure in showing
weak convergence for an empirical process is to verify tight-
ness. In [8], Shao and Yu gave the following criterion:

∃
𝐶
1
>0
∃

𝑝>2
∃

𝑝
1
>1
∃

0≤𝑟
1
≤1
∃

𝑝
2
>1−𝑟
1

∀
𝑥,𝑦∈[0,1]

𝐸
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥) − 𝛼
𝑛
(𝑦)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶
1
(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑝
1

+ 𝑛
−𝑝
2
/2󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑟
1

) ,

(7)

under which the standard empirical process based on sta-
tionary sequence of uniform [0, 1] r.v.’s is tight. It is stated
there that the proof of that fact is an easy standard procedure
parallel to the one presented in [9]. It is the main aim of this
paper to carry it in details but for the generalized empirical
process defined by (6) and without assuming stationarity.
Nevertheless, wewill always return to stationarity assumption
while establishing weak convergence.

In order to obtain tightness, one has to assume appro-
priate covariance structure of the underlying r.v.’s, that is,
the covariance of a pair of r.v.’s 𝑋

𝑖
and 𝑋

𝑗
has to decline

at the right rate while 𝑖 and 𝑗 are growing apart. In this
paper we lower the demanded rate of covariance decay using
the covariance inequalities for associated (c.f. [10, 11]) and
multivariate totally positive of order 2 (MTP

2
) (c.f. [12]) r.v.’s

obtained in [13].

The paper is organized as follows. In Section 2 we present
the proof of the Shao and Yu’s tightness criterion formulated
for our generalized empirical process. Sections 3 and 4 are
devoted to application of the criterion to showing tightness
and thus weak convergence of the specific types of empirical
processes. Section 5 concerns weak convergence of the recur-
sive kernel-type process for i.i.d. r.v.’s.

2. Tightness Criterion

We start with the key point of the paper.

Theorem 1. Let {𝛼
𝑛
(𝑥)}

𝑛≥1
∈ 𝐷[0, 1] be the generalized empir-

ical process defined as in (6). One assume that A1, A2, A3 hold.
If there exist constants 𝐶 > 0, 𝑝 > 2, 𝑝

1
> 1, 0 ≤ 𝑝

3
≤ 1,

𝑝
2
> 1 − 𝑝

3
, such that for any 𝑥, 𝑦 ∈ [0, 1] and 𝑛 ∈ N the

following inequality holds:

𝐸
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥) − 𝛼
𝑛
(𝑦)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶 ⋅ (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑝
1

+ 𝑛
−𝑝
2
/2
⋅
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑝
3

) ,

(8)

then the process {𝛼
𝑛
(𝑥)}

𝑛≥1
is tight in𝐷[0, 1] with 𝐽

1
topology.

Proof. The proof boils down to showing that under the
assumptions made inTheorem 1, conditions ofTheorem 13.2
in [9] hold. Let us recall that in light of the above mentioned
theorem, a process {𝛼

𝑛
(𝑥)}

𝑛≥1
is tight in𝐷[0, 1] if

lim
𝑎→∞

lim sup
𝑛→∞

𝑃 (
󵄩󵄩󵄩󵄩𝛼𝑛

󵄩󵄩󵄩󵄩 ≥ 𝑎) = 0, (9)

lim
𝛿→0

lim sup
𝑛→∞

𝑃 (𝑤
󸀠

1
(𝛼

𝑛
, 𝛿) ≥ 𝜖) = 0 ∀𝜖 > 0, (10)

where ‖ ⋅ ‖ is the supremum norm, that is,
󵄩󵄩󵄩󵄩𝛼𝑛

󵄩󵄩󵄩󵄩 = sup
0≤𝑥≤1

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥)

󵄨󵄨󵄨󵄨 (11)

and 𝑤
󸀠

1
(𝛼

𝑛
, 𝛿) is the modulus of continuity of the function

𝛼
𝑛
∈ 𝐷[0, 1], that is

𝑤
󸀠

1
(𝛼

𝑛
, 𝛿) := inf

{𝑡𝑖}

max
1≤𝑖≤]

sup
𝑥,𝑦∈[𝑡𝑖−1,𝑡𝑖)

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 . (12)

The infimum runs over all finite “𝛿-sparse” decompositions
{[𝑡

𝑖−1
, 𝑡

𝑖
), 𝑖 ∈ 1, . . . , ]} of the interval [0, 1]. In other words, it

runs over all choices of increasingly ordered points {𝑡
𝑖
}
1≤𝑖≤]

such that min
1≤𝑖≤](𝑡𝑖 − 𝑡

𝑖−1
) > 𝛿, where 𝑡

0
= 0, 𝑡] = 1.

Let us first show that condition (9) is satisfied. According
to the corollary following Theorem 13.2 in [9], it suffices to
show

lim
𝑎→∞

lim sup
𝑛→∞

𝑃 (𝛼
𝑛
:
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥)
󵄨󵄨󵄨󵄨 ≥ 𝑎) = 0 ∀𝑥 ∈ [0, 1] , (13)

that is,

∀
𝜂≥0

∃
𝑎>0

∀
𝑛∈N𝑃 (𝛼

𝑛
:
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥)
󵄨󵄨󵄨󵄨 ≥ 𝑎) ≤ 𝜂 ∀𝑥 ∈ [0, 1] . (14)

Let us fix 𝑥 ∈ [0, 1] and 𝜂 > 0. We need to find 𝑎 = 𝑎(𝜂) > 0,
such that

𝑃 (√𝑛
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑛
(𝑥) − 𝐸𝐹

𝑛
(𝑥)

󵄨󵄨󵄨󵄨󵄨
≥ 𝑎) ≤ 𝜂 ∀𝑛 ∈ N, (15)
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where

𝐹
𝑛
(𝑥) =

1

𝑛

𝑛

∑

𝑗=1

𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑛,𝑗

) (16)

is the generalized kernel estimator of the d.f.𝐹. ApplyingChe-
byshev’s inequality we shall find 𝑎 satisfying

𝑎 ≥
√𝑛

𝜂
⋅ 𝐸

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑛
(𝑥) − 𝐸𝐹

𝑛
(𝑥)

󵄨󵄨󵄨󵄨󵄨
∀𝑛 ∈ N. (17)

Such 𝑎 exists if 𝐸|𝛼
𝑛
(𝑥)| < ∞ for all 𝑛 ≥ 1. Implementing

𝑦 = 0 and 𝑝
3
= 0 in the assumption (8), we get for 𝑝 > 2,

𝑝
1
, 𝑝

2
> 1

𝐸
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥)
󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶 ⋅(|𝑥|
𝑝
1+𝑛

−𝑝
2
/2
|𝑥|

𝑝
3) ≤ 𝐶 ⋅(1+

1

𝑛𝑝
2
/2
) ≤ 2𝐶.

(18)

Now, applying Hölder’s inequality, we arrive at

𝐸
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥)
󵄨󵄨󵄨󵄨 ≤

4
√𝐸

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥)

󵄨󵄨󵄨󵄨

4

, (19)

which in light of the inequality (18) for 𝑝 = 4, is bounded
from above by 4√2𝐶 < ∞. Therefore condition (9) holds.

We shall now proceed to checking condition (10). Let us
recall that the modulus of continuity of the function 𝑥 ∈

𝐶[0, 1], 𝛿 > 0, is given by the formula

𝑤
1
(𝑥, 𝛿) = sup

0≤𝑦≤1−𝛿

sup
𝑦≤𝑥≤𝑦+𝛿

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 . (20)

As it is shown in [9] (page 123), there is a relation between
𝑤

1
(⋅, ⋅) and 𝑤󸀠

1
(⋅, ⋅) in the spaces 𝐶[0, 1] and𝐷[0, 1] relatively.

Namely, for 𝑥 ∈ 𝐷[0, 1] and 𝛿 < 1/2

𝑤
1
(𝑥, 2𝛿) ≥ 𝑤

󸀠

1
(𝑥, 𝛿) . (21)

Thus,

𝑃 (𝑤
󸀠

1
(𝛼

𝑛
, 𝛿) ≥ 𝜖) ≤ 𝑃 (𝑤

1
(𝛼

𝑛
, 2𝛿) ≥ 𝜖) . (22)

Therefore, condition (10) holds if we show

∀
𝜖>0

∀
𝜂>0

∃
0≤𝛿<1/2

∃
𝑛
0

∀
𝑛≥𝑛
0

𝑃 (𝑤
1
(𝛼

𝑛
, 2𝛿) ≥ 𝜖) ≤ 𝜂. (23)

With a view to obtaining the desired inequality we shall pro-
ceed patiently in five steps.

Step 1. We need a moment inequality for the r.v. 𝛼
𝑛
(𝑥)−𝛼

𝑛
(𝑦)

involving the distance between the points 𝑥 and 𝑦. Let us
then assume that for the constants 𝐶, 𝑝, 𝑝

1
, 𝑝

2
, 𝑝

3
given in

Theorem 1, inequality (8) holds. Fix 𝜖 > 0, 𝜂 > 0 and define
the quantity 𝑟

𝑛
= 𝜖/√𝑛, 𝑛 ∈ N. Next, we fix 𝑥, 𝑦 ∈ [0, 1] and

take 𝑛 large enough so that 𝑟
𝑛
≤ |𝑥−𝑦|.Then 𝑛−1/2

≤ |𝑥−𝑦|𝜖
−1

and we have

𝐸
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥) − 𝛼
𝑛
(𝑦)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝐶 (1 + 𝜖
−𝑝
2)
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

min{𝑝
1
,𝑝
2
+𝑝
3
}

. (24)

Step 2. Let us now fix 𝑛 ∈ N, 𝛿 ∈ (0, 1) and consider the fol-
lowing r.v.’s:

𝜒
𝑖
= 𝛼

𝑛
(𝑦 + 𝑖𝑟

𝑛
) − 𝛼

𝑛
(𝑦 + (𝑖 − 1) 𝑟

𝑛
) (25)

for 𝑖 ∈ 1, 2, . . . , 𝑚
𝑛
, where𝑚

𝑛
= 𝑚(𝑛, 𝛿) is such that 𝑟

𝑛
𝑚

𝑛
≤ 𝛿.

It is easy to see that for 𝑆
𝑖
:= ∑

𝑖

𝑘=1
𝜒

𝑘

max
1≤𝑖≤𝑚

𝑛

󵄨󵄨󵄨󵄨𝑆𝑖

󵄨󵄨󵄨󵄨 = max
1≤𝑖≤𝑚

𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑟

𝑛
) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 . (26)

Let us notice that for r.v.’s {𝜒
𝑖
}
𝑖≥1

the conditions of Theo-
rem 10.2 in [9] are satisfied with 4𝛽 = 𝑝, 𝑢

𝑙
= 𝑟

𝑛
∀

𝑖<𝑙≤𝑗
and

2𝛼 = min{𝑝
1
, 𝑝

2
+ 𝑝

3
}. Therefore, we are equipped with the

following maximal inequality:

𝑃( max
1≤𝑖≤𝑚

𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑟

𝑛
) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 ≥ 𝜆)

≤

𝐶
𝑝,min{𝑝

1
,𝑝
2
+𝑝
3
}

𝜆𝑝
(𝑚

𝑛
𝑟
𝑛
)
min{𝑝

1
,𝑝
2
+𝑝
3
}

(27)

for all 𝜆 > 0.

Step 3. Let 𝑀 = sup
𝑥∈[0,1]

𝑓(𝑥), where 𝑓 is the p.d.f. of r.v.’s
{𝑋

𝑗
}
𝑗≥1

. For fixed 𝜖, 𝜂 > 0 let us take 𝛿 > 0 such that

𝐶
𝑝,min{𝑝

1
,𝑝
2
+𝑝
3
}

(𝑀𝜖)
𝑝

⋅ (2𝛿)
min{𝑝

1
,𝑝
2
+𝑝
3
}
< 𝜂 (28)

and define𝑚
𝑛
:= ⌊𝛿/𝑟

𝑛
⌋. For sufficiently large 𝑛 ∈ N we have

𝑚
𝑛
≥ 1 and then we get

𝑟
𝑛
𝑚

𝑛
≤ 𝛿 < (𝑚

𝑛
+ 1) 𝑟

𝑛
≤ 2𝑚

𝑛
𝑟
𝑛
≤ 𝛿. (29)

Step 4. Our goal is to obtain an inequality which enables us
to bound the supremum of the increment of the function 𝛼

𝑛

via the maximum of the increments of that function on some
subintervals. To bemore precise, wewill find the upper bound
for

sup
𝑦≤𝑥≤𝑦+𝑚

𝑛
𝑞

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 (30)

in terms of

max
1≤𝑖≤𝑚

𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑞) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 , (31)

where 𝑥, 𝑦 ∈ [0, 1], 𝑦 ≤ 𝑥 ≤ 𝑦 + 𝑞, 𝑞 ≥ 𝜖/𝑛 and𝑚
𝑛
is defined

as in Step 3.
Let us recall that 𝛼

𝑛
(𝑥) = √𝑛(𝐹

𝑛
(𝑥) − 𝐸𝐹

𝑛
(𝑥)), where

𝐹
𝑛
(𝑥) = (1/𝑛)∑

𝑛

𝑗=1
𝐾((𝑥 − 𝑋

𝑗
)/ℎ

𝑛,𝑗
). From the triangle ine-

quality we can see that

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

≤
√𝑛

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

[𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑛,𝑗

) − 𝐾(

𝑦 − 𝑋
𝑗

ℎ
𝑛,𝑗

)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ √𝑛 (
󵄨󵄨󵄨󵄨󵄨
𝐸𝐹

𝑛
(𝑥) − 𝐹 (𝑥)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐸𝐹

𝑛
(𝑦) − 𝐹 (𝑦)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝐹 (𝑥) − 𝐹 (𝑦)

󵄨󵄨󵄨󵄨 ) .

(32)
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Since 𝐾 is a nondecreasing function and applying triangle
inequality again we get

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑦 + 𝑞) − 𝛼
𝑛
(𝑦)

󵄨󵄨󵄨󵄨 +
√𝑛

󵄨󵄨󵄨󵄨󵄨
𝐸𝐹

𝑛
(𝑦 + 𝑞) − 𝐸𝐹

𝑛
(𝑦)

󵄨󵄨󵄨󵄨󵄨

+ √𝑛 (
󵄨󵄨󵄨󵄨󵄨
𝐸𝐹

𝑛
(𝑥) − 𝐹 (𝑥)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐸𝐹

𝑛
(𝑦) − 𝐹 (𝑦)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝐹 (𝑥) − 𝐹 (𝑦)

󵄨󵄨󵄨󵄨 ) .

(33)

Cai and Roussas in [1] showed that under assumptions made
on the d.f. 𝐹 and the kernel function𝐾, we have

󵄨󵄨󵄨󵄨󵄨
𝐸𝐹

𝑛
(𝑥) − 𝐹 (𝑥)

󵄨󵄨󵄨󵄨󵄨
= 𝑂 (ℎ

2

𝑛
) . (34)

Similarly, by Taylor expansion, it is easy to see that

󵄨󵄨󵄨󵄨𝐹 (𝑥) − 𝐹 (𝑦)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ⋅

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 . (35)

Thus,

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑦 + 𝑞) − 𝛼
𝑛
(𝑦)

󵄨󵄨󵄨󵄨

+ 𝐶√𝑛ℎ4

𝑛
+𝑀√𝑛𝑞,

(36)

where 𝑀 = sup
𝑥∈[0,1]

𝑓(𝑥) and 𝐶 = 𝐶
𝑓
󸀠
,𝐾

is a positive con-
stant dependent on the functions 𝐹 and𝐾.

Let us recall that 𝑦 ≤ 𝑥 ≤ 𝑦+ 𝑞,𝑚
𝑛
= ⌊𝛿/𝑟

𝑛
⌋ and 𝑞 ≥ 𝜖/𝑛.

Taking 𝑞 = (𝜖/√𝑛)(= 𝑟
𝑛
) we notice that 𝑚

𝑛
𝑞 = ⌊𝛿/𝑟

𝑛
⌋𝑟

𝑛
≤ 𝛿,

thus when 𝑛 → ∞ the interval [𝑦, 𝑦 + 𝑚
𝑛
𝑞] coincides with

[𝑦, 𝑦 + 𝛿]. Approaching the aim of Step 4, let us observe that

sup
𝑦≤𝑥≤𝑦+𝑚

𝑛
𝑞

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 = max
1≤𝑖≤𝑚

𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑞) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥
0
) − 𝛼

𝑛
(𝑦 + 𝑖max𝑞)

󵄨󵄨󵄨󵄨 ,

(37)

where 𝑥
0
∈ [𝑦+𝑖

0
𝑞, 𝑦+(𝑖

0
+1)𝑞] is a point at which the above

supremum is attained and

𝑖max :=

{{{{

{{{{

{

𝑖
0
+ 1 if 󵄨󵄨󵄨󵄨𝛼𝑛

(𝑦 + [𝑖
0
+ 1] 𝑞) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

≥
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑦 + 𝑖
0
𝑞) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

𝑖
0

otherwise.
(38)

Without the loss of generality, we may assume that 𝑖max = 𝑖
0
+

1, which implies

sup
𝑦≤𝑥≤𝑦+𝑚

𝑛
𝑞

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 = max
1≤𝑖≤𝑚

𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑞) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥
0
) − 𝛼

𝑛
(𝑦 + 𝑖

0
𝑞)
󵄨󵄨󵄨󵄨 .

(39)

Now, applying inequality (36), the definition of 𝑖max and the
triangle inequality we have

sup
𝑦≤𝑥≤𝑦+𝑚

𝑛
𝑞

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

≤ max
1≤𝑖≤𝑚

𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑞) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑦 + [𝑖
0
+ 1] 𝑞) − 𝛼

𝑛
(𝑦 + 𝑖

0
𝑞)
󵄨󵄨󵄨󵄨

+ 𝑀√𝑛𝑞 + 𝐶√𝑛ℎ4

𝑛

≤ max
1≤𝑖≤𝑚

𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑞) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑦 + [𝑖
0
+ 1] 𝑞) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑦 + 𝑖
0
𝑞) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 + 𝑀√𝑛𝑞 + 𝐶√𝑛ℎ4

𝑛

≤ 3 max
1≤𝑖≤𝑚

𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑞) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 + 𝑀√𝑛𝑞 + 𝐶√𝑛ℎ4

𝑛
.

(40)

If we plug in 𝑞 = 𝑟
𝑛
we arrive at

sup
𝑦≤𝑥≤𝑦+𝑚

𝑛
𝑟
𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 ≤ 3 max
1≤𝑖≤𝑚

𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑟

𝑛
) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

+ 𝑀√𝑛𝑟
𝑛
+ 𝐶√𝑛ℎ4

𝑛
.

(41)

Step 5. Finally, we are in a position to obtain inequality (23),
that is,

∀
𝜖>0
∀

𝜂>0
∃

0≤𝛿<1/2
∃

𝑛
0

∀
𝑛≥𝑛
0

𝑃( sup
0≤𝑦≤1−2𝛿

sup
𝑦≤𝑥≤𝑦+2𝛿

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥)−𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

≥ 𝜖) ≤ 𝜂.

(42)

We now successivelymake use the inequalities (29), (41), (27),
(29), and (28) to get

𝑃( sup
𝑦≤𝑥≤𝑦+2𝛿

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 ≥ 4𝑀𝜖 + 𝐶√𝑛ℎ4

𝑛
)

≤ 𝑃( sup
𝑦≤𝑥≤𝑦+2(𝑚

𝑛
+1)𝑟
𝑛

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 ≥ 4𝑀𝜖 + 𝐶√𝑛ℎ4

𝑛
)

≤ 𝑃(3 max
1≤𝑖≤2(𝑚𝑛+1)

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑟

𝑛
) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨

+𝑀√𝑛𝑟
𝑛
+ 𝐶√𝑛ℎ4

𝑛
≥ 4𝑀𝜖 + 𝐶√𝑛ℎ4

𝑛
)



ISRN Probability and Statistics 5

= 𝑃( max
1≤𝑖≤2(𝑚

𝑛
+1)

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑦 + 𝑖𝑟

𝑛
) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 ≥ 𝑀𝜖)

≤

𝐶
𝑝,min{𝑝

1
,𝑝
2
+𝑝
3
}

(𝑀𝜖)
𝑝

(2𝛿)
min{𝑝

1
,𝑝
2
+𝑝
3
}
≤ 𝜂

(43)

for any fixed 𝑦 ∈ [0, 1]. Since the upper bound does not
depend on 𝑦 and the probability measure as well as supre-
mum function are continuous, we obtain

𝑃( sup
0≤𝑦≤1−2𝛿

sup
𝑦≤𝑥≤𝑦+2𝛿

󵄨󵄨󵄨󵄨𝛼𝑛
(𝑥) − 𝛼

𝑛
(𝑦)

󵄨󵄨󵄨󵄨 ≥ 4𝑀𝜖 + 𝐶√𝑛ℎ4

𝑛
) ≤ 𝜂,

(44)

where 4𝑀𝜖 + 𝐶√𝑛ℎ4

𝑛
is arbitrarily small.

Since condition (10) is checked, the proof is completed.

3. Tightness of the Standard Empirical Process

In this section, we deal with the standard empirical process
built on an associated sequence of uniformly [0, 1]distributed
r.v.’s {𝑈

𝑗
}
𝑗≥1

, that is,

𝛼
𝑛
(𝑥) =

1

√𝑛

𝑛

∑

𝑗=1

(𝐼 [𝑈
𝑗
≤ 𝑥] − 𝑥) , (45)

where 𝑥 ∈ [0, 1]. We shall relax the restrictions imposed
on the process by Yu in [7] to obtain tightness. Precisely,
we do not need stationarity any more due to the technique
drawn from [14], and we lower the assumed rate at which the
covariance tends to zero.

While proving tightness of the empirical process, we will
use the criterion proved in the first section as well as some of
our covariance inequalities.

We shall start with the fact known under the name of
multinomial theorem. We recall it in the following lemma.

Lemma 2. For natural numbers𝑚, 𝑛 and 𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑚
∈ R

(𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
)
𝑚

= ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑛
=𝑚

(
𝑚

𝑘
1
, . . . , 𝑘

𝑛

) ∏

1≤𝑖≤𝑛

𝑥
𝑘
𝑖

𝑖
, (46)

where (
𝑚

𝑘
1
, . . . , 𝑘

𝑛
) = 𝑚!/(𝑘

1
! ⋅ ⋅ ⋅ 𝑘

𝑛
!) and 𝑘

1
, . . . , 𝑘

𝑛
∈

{0, 1, . . . , 𝑚}.

In particular,

(𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
)
4

≤ 4! ⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑛
=4

𝑥
𝑘
1

1
⋅ ⋅ ⋅ 𝑥

𝑘
𝑛

𝑛
, (47)

which implies for 𝑆
𝑛
:= ∑

𝑛

𝑖=1
𝑋

𝑖
, that

𝐸𝑆
4

𝑛
≤ 4! ⋅ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑛
=4

𝐸 (𝑋
𝑘
1

1
⋅ ⋅ ⋅ 𝑋

𝑘
𝑛

𝑛
)

≤ 4! ⋅

𝑛

∑

𝑡=1

∑

0≤𝑖,𝑗,𝑘≤𝑛−1

󵄨󵄨󵄨󵄨󵄨
𝐸 (𝑋

𝑡
𝑋

𝑡+𝑖
𝑋

𝑡+𝑖+𝑗
𝑋

𝑡+𝑖+𝑗+𝑘
)
󵄨󵄨󵄨󵄨󵄨
.

(48)

Let us now introduce the following notation due to Doukhan
and Louhichi (see [14]) for a sequence of centered r.v.’s
{𝑋

𝑡
𝑛

}
𝑛≥1

.

𝐶
𝑟,𝑞

:= sup
󵄨󵄨󵄨󵄨󵄨󵄨
Cov (𝑋

𝑡
1

⋅ ⋅ ⋅ 𝑋
𝑡
𝑚

; 𝑋
𝑡
𝑚
+𝑟
⋅ ⋅ ⋅ 𝑋

𝑡
𝑞

)
󵄨󵄨󵄨󵄨󵄨󵄨
, (49)

where the supremum runs over all divisions of the group
composed of 𝑞 r.v.’s into two subgroups, such that the distance
between the highest index of the r.v.’s in the first group and the
lowest index of the r.v.’s from the second group is equal to 𝑟,
𝑟 ∈ {1, 2, . . .}. For 𝑟 = 0, we shall define 𝐶

0,𝑞
= 1. Let us then

put

𝑋
𝑡
1

:= 𝐼 [𝑈
𝑡
1

≤ 𝑥] − 𝑥, 𝑋
𝑡
2

:= 𝐼 [𝑈
𝑡
2

≤ 𝑥] − 𝑥. (50)

We will now estimate the summands in (48).
If max{𝑖, 𝑗, 𝑘} = 𝑖, then

󵄨󵄨󵄨󵄨󵄨
𝐸 {𝑋

𝑡
⋅ (𝑋

𝑡+𝑖
𝑋

𝑡+𝑖+𝑗
𝑋

𝑡+𝑖+𝑗+𝑘
)}
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
Cov (𝑋

𝑡
; 𝑋

𝑡+𝑖
𝑋

𝑡+𝑖+𝑗
𝑋

𝑡+𝑖+𝑗+𝑘
)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

𝑖,4
,

(51)

Similarly, for max{𝑖, 𝑗, 𝑘} = 𝑘, we have

󵄨󵄨󵄨󵄨󵄨
𝐸 {(𝑋

𝑡
𝑋

𝑡+𝑖
𝑋

𝑡+𝑖+𝑗
) ⋅ 𝑋

𝑡+𝑖+𝑗+𝑘
}
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
Cov (𝑋

𝑡
𝑋

𝑡+𝑖
𝑋

𝑡+𝑖+𝑗
; 𝑋

𝑡+𝑖+𝑗+𝑘
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

𝑘,4
.

(52)

When max{𝑖, 𝑗, 𝑘} = 𝑗, then

󵄨󵄨󵄨󵄨󵄨
𝐸 {(𝑋

𝑡
𝑋

𝑡+𝑖
) ⋅ (𝑋

𝑡+𝑖+𝑗
𝑋

𝑡+𝑖+𝑗+𝑘
)}
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
Cov (𝑋

𝑡
𝑋

𝑡+𝑖
; 𝑋

𝑡+𝑖+𝑗
𝑋

𝑡+𝑖+𝑗+𝑘
)

+𝐸 (𝑋
𝑡
𝑋

𝑡+𝑖
) 𝐸 (𝑋

𝑡+𝑖+𝑗
𝑋

𝑡+𝑖+𝑗+𝑘
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
𝑗,4

+ 𝐶
𝑖,2
𝐶

𝑘,2
.

(53)

We keep on estimating the fourth moment of 𝑆
𝑛
by intro-

ducing 𝑡 ∈ {0, . . . , 𝑛}—the index, for which |𝐸(𝑋
𝑡
𝑋

𝑡+𝑖
𝑋

𝑡+𝑖+𝑗

𝑋
𝑡+𝑖+𝑗+𝑘

)| attains its maximum.

𝐸𝑆
4

𝑛
≤ 4!𝑛 ∑

0≤𝑖,𝑗,𝑘≤𝑛−1

󵄨󵄨󵄨󵄨󵄨
𝐸 (𝑋

𝑡
𝑋

𝑡+𝑖
𝑋

𝑡+𝑖+𝑗
𝑋

𝑡+𝑖+𝑗+𝑘
)
󵄨󵄨󵄨󵄨󵄨

=4!𝑛( ∑

0≤𝑖,𝑘≤𝑗

[𝐶
𝑖,2
⋅ 𝐶

𝑘,2
+ 𝐶

𝑗,4
]+ ∑

0≤𝑖,𝑗≤𝑘

𝐶
𝑘,4
+ ∑

0≤𝑘,𝑗≤𝑖

𝐶
𝑖,4
)

= 4!𝑛( ∑

0≤𝑖,𝑘≤𝑗

𝐶
𝑖,2
⋅ 𝐶

𝑘,2
+ 3 ∑

0≤𝑘,𝑗≤𝑖

𝐶
𝑖,4
) .

(54)
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The terms obtained in (54) may further be bounded from
above in the following way:

∑

0≤𝑖,𝑘≤𝑗

𝐶
𝑖,2
⋅ 𝐶

𝑘,2
=

𝑛−1

∑

𝑗=0

𝑗

∑

𝑖,𝑘=0

𝐶
𝑖,2
𝐶

𝑘,2

≤ 𝑛

𝑛−1

∑

𝑖,𝑘=0

𝐶
𝑖,2
𝐶

𝑘,2
= 𝑛(

𝑛−1

∑

𝑖=0

𝐶
𝑖,2
)

2

,

∑

0≤𝑘,𝑗≤𝑖

𝐶
𝑖,4

=

𝑛−1

∑

𝑖=0

𝑖

∑

𝑗,𝑘=0

𝐶
𝑖,4

≤

𝑛−1

∑

𝑖=0

(𝑖 + 1) (𝑖 + 1) 𝐶
𝑖,4

=

𝑛−1

∑

𝑖=0

(𝑖 + 1)
2
𝐶

𝑖,4
.

(55)

We thus get the inequality

𝐸𝑆
4

𝑛
≤ 4!([𝑛

𝑛−1

∑

𝑖=0

𝐶
𝑖,2
]

2

+ 3𝑛

𝑛−1

∑

𝑖=0

(𝑖 + 1)
2
𝐶

𝑖,4
) . (56)

We shall now focus on estimating 𝐶
𝑟,2

and 𝐶
𝑟,4
. Since 𝑈

𝑡
1

and 𝑈
𝑡
2

are associated uniformly [0, 1] distributed r.v.’s, 𝑋
𝑡
1

and 𝑋
𝑡
2

—as monotone functions of these r.v.’s—are associat-
ed as well. In order to bound

𝐶
𝑟,2

= sup
0≤𝑡
1
<𝑡
2
≤𝑛: 𝑡
2
−𝑡
1
=𝑟

Cov (𝑋
𝑡
1

, 𝑋
𝑡
2

) , (57)

let us notice that from Schwarz inequality

Cov (𝑋
𝑡
1

, 𝑋
𝑡
2

) = 𝐸 (𝐼 [𝑈
𝑡
1

≤ 𝑥] 𝐼 [𝑈
𝑡
2

≤ 𝑥]) − 𝑥
2

≤ √𝑥2 − 𝑥
2
≤ 𝑥.

(58)

On the other hand, invoking inequalities from [13, 15],

Cov (𝑋
𝑡
1

, 𝑋
𝑡
2

)

≤ sup
𝑥∈[0,1]

[𝑃 (𝑈
𝑡
1

≤ 𝑥,𝑈
𝑡
2

≤ 𝑥) − 𝑃 (𝑈
𝑡
1

≤ 𝑥)𝑃 (𝑈
𝑡
2

≤ 𝑥)]

≤ {
𝐶 ⋅ Cov1/3

(𝑈
𝑡
1

, 𝑈
𝑡
2

) for associated r.v.’s
4 ⋅ Cov (𝑈

𝑡
1

, 𝑈
𝑡
2

) for MTP
2
r.v.’s.

(59)

As a consequence,

𝐶
𝑟,2

≤ {
min {𝑥, 𝐶 ⋅ Cov1/3

(𝑈
𝑡
1

, 𝑈
𝑡
2

)} for associated r.v.’s
min {𝑥, 4 ⋅ Cov (𝑈

𝑡
1

, 𝑈
𝑡
2

)} for MTP
2
r.v.’s,

(60)

where 𝑡
2
− 𝑡

1
= 𝑟. Still, we need the upper bound for 𝐶

𝑟,4
. It

turns out that
𝐶

𝑟,4

= sup
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Cov{
2

∏

𝑖=1

(𝐼 [𝑈
𝑡
𝑖

≤ 𝑥] − 𝑥) ;

4

∏

𝑖=3

(𝐼 [𝑈
𝑡
𝑖

≤ 𝑥] − 𝑥)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(61)

In other words, among all divisions of the group {𝑋
𝑡
𝑖

, 𝑖 ∈

{1, 2, 3, 4}} into two subgroups, 𝐶
𝑟,4

attains the biggest value
in case we take two subgroups consisted of two r.v.’s. The
supremum runs over the set {𝑡

1
, 𝑡

2
, 𝑡

3
, 𝑡

4
∈ N : 0 ≤ 𝑡

1
< 𝑡

2
<

𝑡
3
< 𝑡

4
≤ 𝑛 ∧ 𝑡

3
− 𝑡

2
= 𝑟}. Elementary calculation leads to the

following formula:

𝐶
𝑟,4

= sup 󵄨󵄨󵄨󵄨󵄨𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {1, 2, 3, 4})

− 𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {1, 2}) 𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {3, 4})

− 𝑥 [𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {1, 2, 3})

− 𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {1, 2}) 𝑃 (𝑈
𝑡
3

≤ 𝑥)

+ 𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {1, 3, 4})

− 𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {3, 4}) 𝑃 (𝑈
𝑡
1

≤ 𝑥)

+ 𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {1, 2, 4})

− 𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {1, 2}) 𝑃 (𝑈
𝑡
4

≤ 𝑥)

+ 𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {2, 3, 4})

−𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {3, 4}) 𝑃 (𝑈
𝑡
2

≤ 𝑥)]

+ 𝑥
2
[𝑃 (𝑈

𝑡
1

≤ 𝑥,𝑈
𝑡
3

≤ 𝑥)

− 𝑃 (𝑈
𝑡
1

≤ 𝑥)𝑃 (𝑈
𝑡
3

≤ 𝑥)

+ 𝑃 (𝑈
𝑡
1

≤ 𝑥,𝑈
𝑡
4

≤ 𝑥)

− 𝑃 (𝑈
𝑡
1

≤ 𝑥)𝑃 (𝑈
𝑡
4

≤ 𝑥)

+ 𝑃 (𝑈
𝑡
2

≤ 𝑥,𝑈
𝑡
3

≤ 𝑥)

− 𝑃 (𝑈
𝑡
2

≤ 𝑥)𝑃 (𝑈
𝑡
3

≤ 𝑥)

+ 𝑃 (𝑈
𝑡
2

≤ 𝑥,𝑈
𝑡
4

≤ 𝑥)

−𝑃 (𝑈
𝑡
2

≤ 𝑥)𝑃 (𝑈
𝑡
2

≤ 𝑥)]
󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑅1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑅2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑅3

󵄨󵄨󵄨󵄨 ,

(62)

where for the sake of simplicity, 𝑅
1
, 𝑅

2
, and 𝑅

3
are, respec-

tively, the free coefficient, the expression with 𝑥, and the
expression with 𝑥

2. Using the Lebowitz inequality (see [15]
for instance) and inequalities obtained in [13, 15] we arrive at
󵄨󵄨󵄨󵄨𝑅1

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨
𝑃 (𝑈

𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {1, 2, 3, 4})

−𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {1, 2}) 𝑃 (𝑈
𝑡
𝑖

≤ 𝑥, 𝑖 ∈ {3, 4})
󵄨󵄨󵄨󵄨󵄨

≤ 𝐻
𝑈
𝑡1
,𝑈
𝑡3

+ 𝐻
𝑈
𝑡1
,𝑈
𝑡4

+ 𝐻
𝑈
𝑡2
,𝑈
𝑡3

+ 𝐻
𝑈
𝑡2
,𝑈
𝑡4
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≤

{{{{{{

{{{{{{

{

𝐶(

2

∑

𝑖=1

4

∑

𝑗=3

Cov1/3
(𝑈

𝑡
𝑖

, 𝑈
𝑡
𝑗

)) for associated r.v.’s

4(

2

∑

𝑖=1

4

∑

𝑗=3

Cov (𝑈
𝑡
𝑖

, 𝑈
𝑡
𝑗

)) for MTP
2
r.v.’s.

(63)

Analogously, we get

󵄨󵄨󵄨󵄨𝑅2

󵄨󵄨󵄨󵄨

≤

{{{{{{

{{{{{{

{

2𝑥 ⋅ 𝐶(

2

∑

𝑖=1

4

∑

𝑗=3

Cov1/3
(𝑈

𝑡
𝑖

, 𝑈
𝑡
𝑗

)) for associated r.v.’s

2𝑥 ⋅ 4(

2

∑

𝑖=1

4

∑

𝑗=3

Cov (𝑈
𝑡
𝑖

, 𝑈
𝑡
𝑗

)) for MTP
2
r.v.’s,

󵄨󵄨󵄨󵄨𝑅3

󵄨󵄨󵄨󵄨

≤

{{{{{{

{{{{{{

{

𝑥
2
⋅ 𝐶(

2

∑

𝑖=1

4

∑

𝑗=3

Cov1/3
(𝑈

𝑡
𝑖

, 𝑈
𝑡
𝑗

) ) for associated r.v.’s

𝑥
2
⋅ 4(

2

∑

𝑖=1

4

∑

𝑗=3

Cov (𝑈
𝑡
𝑖

, 𝑈
𝑡
𝑗

)) for MTP
2
r.v.’s.

(64)

Eventually, we have

𝐶
𝑟,4

≤

{{{{{{

{{{{{{

{

𝑓 (𝑥) ⋅𝐶(

2

∑

𝑖=1

4

∑

𝑗=3

Cov1/3
(𝑈

𝑡
𝑖

,𝑈
𝑡
𝑗

)) for associated r.v.’s

𝑓 (𝑥) ⋅4(

2

∑

𝑖=1

4

∑

𝑗=3

Cov (𝑈
𝑡
𝑖

,𝑈
𝑡
𝑗

)) for MTP
2
r.v.’s,

(65)

where 𝑡
3
− 𝑡

2
= 𝑟 and 𝑓(𝑥) = (1 + 2𝑥 + 𝑥

2
) for 𝑥 ∈ [0, 1].

Let us now introduce the following notation:

𝜃
𝑟
=

{

{

{

sup
𝑡∈N

Cov (𝑈
𝑡
, 𝑈

𝑡+𝑟
) for 𝑟 ∈ {1, 2, . . .}

1 for 𝑟 = 0

(66)

and assume it decays powerly at rate 𝑎 in the following way:

𝜃
𝑟
= 𝑂(

1

(𝑟 + 1)
𝑎
) for 𝑎 > 0, 𝑟 ∈ {0, 1, . . .} . (67)

Let us get back to inequality (56), we can now carry on. At
first, for associated r.v.’s,

𝐸𝑆
4

𝑛
≤ 4![𝑛

𝑛−1

∑

𝑟=0

min {𝑥, 𝐶 ⋅ Cov1/3
(𝑈

𝑡
1

, 𝑈
𝑡
2

)}]

2

+ 4! ⋅ 3𝑛

𝑛−1

∑

𝑟=0

(𝑟 + 1)
2
𝑓 (𝑥) ⋅ 𝐶(

2

∑

𝑖=1

4

∑

𝑗=3

Cov1/3
(𝑈

𝑡
𝑖

, 𝑈
𝑡
𝑗

))

≤ 𝐷 ⋅ ([𝑛

𝑛−1

∑

𝑟=0

min {𝑥, (𝑟 + 1)
−𝑎/3

}]

2

+𝑛

𝑛−1

∑

𝑟=0

(𝑟 + 1)
2
(𝑟 + 1)

−𝑎/3
)

= 𝐷 ⋅ ([𝑛

𝑛

∑

𝑟=1

min {𝑥, 𝑟−𝑎/3
}]

2

+ 𝑛

𝑛

∑

𝑟=1

𝑟
2
𝑟
−𝑎/3

)

≤ 𝐷 ⋅ ([

[

𝑛 ∑

𝑟<𝑥
−3/𝑎

𝑥 + 𝑛 ∑

𝑟≥𝑥
−3/𝑎

1

𝑟𝑎/3
]

]

2

+ 𝑛

𝑛

∑

𝑟=1

𝑟
2−𝑎/3

)

≤ 𝐷
1
⋅ (𝑛

2
𝑥

2(𝑎−3)/𝑎
+ 𝜉) ,

(68)

where𝐷 and𝐷
1
are constants and

𝜉 = 𝑛

𝑛

∑

𝑟=1

𝑟
2−𝑎/3

=

{{

{{

{

𝑂(𝑛) , 𝑎 > 9

𝑂 (𝑛 ln 𝑛) , 𝑎 = 9

𝑂 (𝑛
4−𝑎/3

) , 3 < 𝑎 < 9.

(69)

It is worth mentioning, that in the last inequality of (68), we
used the estimate

∫

∞

𝑥

1

𝑡𝑝
𝑑𝑡 ∼

1

𝑥𝑝−1
for 𝑝 > 1. (70)

At the same time, in the case of MTP
2
r.v.’s, we get

𝐸𝑆
4

𝑛
≤ 𝐷

2
⋅ (𝑛

2
𝑥

2(𝑎−1)/𝑎
+ 𝜁) , (71)

where𝐷
2
is constant and

𝜁 = 𝑛

𝑛

∑

𝑟=1

𝑟
2−𝑎

=

{{

{{

{

𝑂(𝑛) , 𝑎 > 3

𝑂 (𝑛 ln 𝑛) , 𝑎 = 3

𝑂 (𝑛
4−𝑎

) , 1 < 𝑎 < 3.

(72)

Let now 𝛼
𝑛
(𝑥) = (1/√𝑛)∑

𝑛

𝑖=1
(𝐼[𝑈

𝑡
𝑖

≤ 𝑥] − 𝑥). Then

𝛼
𝑛
(𝑥) − 𝛼

𝑛
(𝑦) =

1

√𝑛

𝑛

∑

𝑖=1

(𝐼 [𝑥 < 𝑈
𝑡
𝑖

≤ 𝑦] − (𝑥 − 𝑦))

for 𝑥, 𝑦 ∈ [0, 1]

(73)
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has the fourth moment estimated—in the case of associated
r.v.’s—by

𝐸[𝛼
𝑛
(𝑥) − 𝛼

𝑛
(𝑦)]

4

= 𝐸[
1

√𝑛

𝑛

∑

𝑖=1

(𝐼 [𝑥 < 𝑈
𝑡
𝑖

≤ 𝑦] − (𝑥 − 𝑦))]

4

=
1

𝑛2
𝐸[

𝑛

∑

𝑖=1

(𝐼 [𝑥 < 𝑈
𝑡
𝑖

≤ 𝑦] − (𝑥 − 𝑦))]

4

≤ 𝐷
1
⋅ (

1

𝑛2
𝑛
2󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

2(𝑎−3)/𝑎

+
𝜉

𝑛2
)

= 𝐷
1
⋅ (

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2(𝑎−3)/𝑎

+
𝜉

𝑛2
)

=

{{{{{{

{{{{{{

{

𝑂(𝑛
−1
) , 𝑎 > 9

𝑂(
ln 𝑛
𝑛

) , 𝑎 = 9

𝑂 (𝑛
2−𝑎/3

) , 3 < 𝑎 < 9

(74)

and in the case of MTP
2
r.v.’s by

𝐸[𝛼
𝑛
(𝑥) − 𝛼

𝑛
(𝑦)]

4

≤ 𝐷
2
⋅ (

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2(𝑎−1)/𝑎

+
𝜁

𝑛2
)

=

{{{{{{

{{{{{{

{

𝑂(𝑛
−1
) , 𝑎 > 3

𝑂(
ln 𝑛
𝑛

) , 𝑎 = 3

𝑂 (𝑛
2−𝑎

) , 1 < 𝑎 < 3.

(75)

In light of the Shao and Yu’s criterion, our process is tight for
associated r.v.’s when 𝑎 > 6 and for MTP

2
r.v.’s when 𝑎 > 2.

Let us sum up this result in the following theorem.

Theorem 3. Let 𝛼
𝑛
(𝑥) = (1/√𝑛)∑

𝑛

𝑖=1
(𝐼[𝑈

𝑖
≤ 𝑥] − 𝑥) be the

empirical process built on an associated sequence of uniformly
[0, 1] distributed r.v.’s {𝑈

𝑖
}
𝑖≥1

. Let also

𝜃
𝑟
:= sup

𝑡∈N
Cov (𝑈

𝑡
, 𝑈

𝑡+𝑟
) = 𝑂 ((𝑟 + 1)

−𝑎
) ,

where 𝑟 ∈ {0, 1, . . .} , 𝑎 > 0.

(76)

Then {𝛼
𝑛
(𝑥)}

𝑛≥1
is tight for 𝑎 > 6. If the r.v.’s {𝑈

𝑖
}
𝑖≥1

are MTP
2
,

then the process is tight for 𝑎 > 2.

Yu assumed stationarity of {𝑈
𝑖
}
𝑖≥1

and
∑

∞

𝑛=1
𝑛
6,5+]Cov(𝑈

0
, 𝑈

𝑛
) < ∞ for a positive constant ],

thus, the rate of decay 𝑎 > 7, 5. Our result weakens consid-
erably these assumptions especially in the case of MTP

2
r.v.’s.

Louhichi, in [16], proposed a different tightness criterion
involving the so-called bracketing numbers. She managed
to enhance Yu’s result—even more than Shao and Yu in
[8]—since she proved that it suffices to take 𝑎 > 4 to get
tightness of the empirical process based on the associated

r.v.’s. Nevertheless, she kept the assumption of stationarity
valid.

In the final analysis, our result’s advantage is the absence
of the stationarity assumption and the rate of decay for
𝜃
𝑟
remains (up to the author’s knowledge) unimproved for

MTP
2
r.v.’s.

Unfortunately, with a view to obtainingweak convergence
of the process in question, that is also convergence of
finite-dimensional distributions, we do not know how to
manage without the assumption of stationarity.Therefore, we
conclude with the following corollary.

Corollary 4. Let 𝛼
𝑛
(𝑥) = (1/√𝑛)∑

𝑛

𝑖=1
(𝐼[𝑈

𝑖
≤ 𝑥] − 𝑥) be the

empirical process built on a stationary associated sequence of
uniformly [0, 1] distributed r.v.’s {𝑈

𝑖
}
𝑖≥1

. Let also

𝜃
𝑟
:= Cov (𝑈

1
, 𝑈

1+𝑟
) = 𝑂 ((𝑟 + 1)

−𝑎
) ,

where 𝑟 ∈ {0, 1, . . .} , 𝑎 > 0.

(77)

Then, if 𝑎 > 6

𝛼
𝑛
(⋅) 󳨀→ 𝐵 (⋅) weakly in 𝐷 [0, 1] , (78)

where 𝐵(⋅) is the zero mean Gaussian process on [0, 1] with
covariance structure defined by

𝜎
2
(𝑥, 𝑦) = 𝑥 ∧ 𝑦 − 𝑥𝑦

+

∞

∑

𝑗=1

[ Cov (𝐼 [𝑈
1
≤ 𝑥] , 𝐼 [𝑈

𝑗+1
≤ 𝑦])

+ Cov (𝐼 [𝑈
1
≤ 𝑦] , 𝐼 [𝑈

𝑗+1
≤ 𝑥])] .

(79)

If the r.v.’s {𝑈
𝑖
}
𝑖≥1

are MTP
2
, then it suffices to be 𝑎 > 2 in

order to claim the above convergence.

Proof. It remains to establish convergence of finite-dimen-
sional distributions repeating the procedure from [7].

4. Tightness of the Kernel-Type
Empirical Process

In this section we shall weaken assumption imposed on the
covariance structure of r.v.’s {𝑋

𝑗
}
𝑗≥1

by Cai and Roussas in [1]
for the kernel estimator of the d.f.

𝐹
𝑛
(𝑥) =

1

𝑛

𝑛

∑

𝑗=1

𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑛

) . (80)

They deal with a stationary sequence of negatively associated
r.v.’s (c.f. [17]) and need the same condition as Yu [7], that is,

󵄨󵄨󵄨󵄨Cov (𝑋1
, 𝑋

1+𝑛
)
󵄨󵄨󵄨󵄨 = 𝑂(

1

𝑛7,5+]
) (81)

to get tightness of the smooth empirical process (see condi-
tion (A4) in [1]).
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It turns out that it suffices to have

󵄨󵄨󵄨󵄨Cov (𝑈1
, 𝑈

1+𝑛
)
󵄨󵄨󵄨󵄨 = 𝑂(

1

𝑛3𝑝/(𝑝−1)
) , (82)

where 𝑝 > 4 is a positive constant taken from the tightness
criterion (8). It is easy to see that asymptotically we get the
rate 3.

On the way to prove it, we will also take use of a
Rosenthal-type inequality due to Shao andYu (seeTheorem 2
in [8]) we shall recall in the following lemma.

Lemma 5. Let 𝑝 > 2 and 𝑓 be a real valued function bounded
by 1 with bounded first derivative. Suppose that {𝑋

𝑛
}
𝑛≥1

is a
sequence of stationary and associated r.v.’s, such that for 𝑛 ∈ N

Cov (𝑋
1
, 𝑋

𝑛
) = 𝑂 (𝑛

−𝑏
) , for some 𝑏 > 𝑝 − 1. (83)

Then, for any 𝜇 > 0 there exists some positive constant 𝑘
𝜇

independent of the function 𝑓, for which

𝐸
󵄨󵄨󵄨󵄨𝑆𝑛

(𝑓) − 𝐸𝑆
𝑛
(𝑓)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝑘
𝜇
(𝑛

1+𝜇󵄩󵄩󵄩󵄩󵄩
𝑓

󸀠󵄩󵄩󵄩󵄩󵄩

2

+𝑛
𝑝/2 [

[

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
Cov (𝑓 (𝑋

1
),𝑓 (𝑋

𝑗
))
󵄨󵄨󵄨󵄨󵄨
]

]

).

(84)

As we can see, the lemma assumes association, but it
works for negatively associated r.v.’s as well, since in the proof,
it reaches back the result of Newman (see Proposition 15 in
[18]), where both types of association are allowed.

Let us recall that 𝛼
𝑛
(𝑥) = √𝑛(𝐹

𝑛
(𝑥) − 𝐸𝐹

𝑛
(𝑥)), where

𝐹
𝑛
(𝑥) = (1/𝑛)∑

𝑛

𝑗=1
𝐾((𝑥 − 𝑋

𝑗
)/ℎ

𝑛
). It is easy to see that

𝐸
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥) − 𝛼
𝑛
(𝑦)

󵄨󵄨󵄨󵄨

𝑝

= 𝑛
−𝑝/2

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑆
𝑛
(𝑓 (𝑋

𝑗
)) − 𝐸𝑆

𝑛
(𝑓 (𝑋

𝑗
))
󵄨󵄨󵄨󵄨󵄨

𝑝

,

(85)

where

𝑓 (𝑋
𝑗
) = 𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑛

) − 𝐾(

𝑦 − 𝑋
𝑗

ℎ
𝑛

) ,

𝑆
𝑛
(𝑓) =

𝑛

∑

𝑗=1

𝑓 (𝑋
𝑗
) .

(86)

With an intent to use Lemma 5, we need 𝑓 to be bounded
from above by 1 (which in our case is obvious) and to have
bounded 𝑓

󸀠; thus, we assume

sup
𝑡∈R

󵄨󵄨󵄨󵄨󵄨
𝐾

󸀠
(𝑡)

󵄨󵄨󵄨󵄨󵄨

1

ℎ
𝑛

≤
𝐶

𝐾

ℎ
𝑛

< ∞. (87)

Now, applying inequality (84) we have

𝐸
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥) − 𝛼
𝑛
(𝑦)

󵄨󵄨󵄨󵄨

𝑝

≤𝑘
𝜇
𝑛
−𝑝/2

{{

{{

{

𝑛
1+𝜇

𝐶
2

𝐾

ℎ2

𝑛

+𝑛
𝑝/2[

[

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
Cov (𝑓 (𝑋

1
),𝑓 (𝑋

𝑗
))
󵄨󵄨󵄨󵄨󵄨
]

]

𝑝/2

}}

}}

}

.

(88)

Newman showed in [18] that

Cov (𝑓
1
(𝑋) , 𝑓

2
(𝑌))

= ∬
R2
𝑓

󸀠

1
(𝑥) 𝑓

󸀠

2
(𝑦)

× [𝑃 (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) − 𝑃 (𝑋 ≤ 𝑥) 𝑃 (𝑌 ≤ 𝑦)] 𝑑𝑥 𝑑𝑦

(89)

if 𝑓
1
and 𝑓

2
are real valued functions on R having square

integrable derivatives 𝑓󸀠

1
and 𝑓

󸀠

2
, respectively, and provided

that 𝑓
1
(𝑋), 𝑓

2
(𝑌) have finite secondmoments. In light of that

equation and linearity of covariance, we get
󵄨󵄨󵄨󵄨󵄨
Cov (𝑓 (𝑋

1
) , 𝑓 (𝑋

𝑗
))
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∬

R2
{[𝑃 (𝑋

1
< 𝑥 − ℎ

𝑛
𝑠, 𝑋

𝑗
< 𝑥 − ℎ

𝑛
𝑡)

−𝑃 (𝑋
1
< 𝑥 − ℎ

𝑛
𝑠, 𝑋

𝑗
< 𝑦 − ℎ

𝑛
𝑡)]

− [𝑃 (𝑋
1
< 𝑥 − ℎ

𝑛
𝑠) 𝑃 (𝑋

𝑗
< 𝑥 − ℎ

𝑛
𝑡)

−𝑃 (𝑋
1
< 𝑥 − ℎ

𝑛
𝑠) 𝑃 (𝑋

𝑗
< 𝑦 − ℎ

𝑛
𝑡)]

− [𝑃 (𝑋
1
< 𝑦 − ℎ

𝑛
𝑠, 𝑋

𝑗
< 𝑥 − ℎ

𝑛
𝑡)

−𝑃 (𝑋
1
< 𝑦 − ℎ

𝑛
𝑠, 𝑋

𝑗
< 𝑦 − ℎ

𝑛
𝑡)]

− [𝑃 (𝑋
1
< 𝑦 − ℎ

𝑛
𝑠) 𝑃 (𝑋

𝑗
< 𝑦 − ℎ

𝑛
𝑡)

− 𝑃 (𝑋
1
< 𝑦 − ℎ

𝑛
𝑠)

× 𝑃 (𝑋
𝑗
< 𝑥 − ℎ

𝑛
𝑡)]} 𝑘 (𝑠) 𝑘 (𝑡) 𝑑𝑠 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(90)

Without the loss of generality, we may and do assume that
𝑥 > 𝑦, thus
󵄨󵄨󵄨󵄨󵄨
Cov (𝑓 (𝑋

1
) , 𝑓 (𝑋

𝑗
))
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∬

R2
{𝑃 (𝑦 − ℎ

𝑛
𝑠 ≤ 𝑋

1
< 𝑥 − ℎ

𝑛
𝑠,

𝑦 − ℎ
𝑛
𝑡 ≤ 𝑋

𝑗
< 𝑥 − ℎ

𝑛
𝑡)

− 𝑃 (𝑦 − ℎ
𝑛
𝑠 ≤ 𝑋

1
< 𝑥 − ℎ

𝑛
𝑠)

× 𝑃 (𝑦 − ℎ
𝑛
𝑡 ≤ 𝑋

𝑗
< 𝑥 − ℎ

𝑛
𝑡)} 𝑘 (𝑠) 𝑘 (𝑡) 𝑑𝑠 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(91)

and by triangle inequality we get
󵄨󵄨󵄨󵄨󵄨
Cov (𝑓 (𝑋

1
) , 𝑓 (𝑋

𝑗
))
󵄨󵄨󵄨󵄨󵄨

≤ ∬
R2
[∫

𝑥−ℎ
𝑛
𝑠

𝑦−ℎ
𝑛
𝑠

∫

𝑥−ℎ
𝑛
𝑡

𝑦−ℎ
𝑛
𝑡

𝑓
𝑋
1
,𝑋
𝑗
(𝑢, V) 𝑑𝑢 𝑑V

+∫

𝑥−ℎ
𝑛
𝑠

𝑦−ℎ
𝑛
𝑠

𝑓
𝑋
1
(𝑢) 𝑑𝑢∫

𝑥−ℎ
𝑛
𝑡

𝑦−ℎ
𝑛
𝑡

𝑓
𝑋
𝑗
(V) 𝑑V] 𝑘 (𝑠) 𝑘 (𝑡) 𝑑𝑠 𝑑𝑡.

(92)
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𝑓
𝑋
1
,𝑋
𝑗

(𝑢, V), 𝑓
𝑋
1

(𝑢) and 𝑓
𝑋
𝑗

(V) are the joint p.d.f. of [𝑋
1
, 𝑋

𝑗
]

and marginal p.d.f.’s of r.v.’s𝑋
1
and𝑋

𝑗
, respectively. We need

to further assume that 𝐶
1
stands for a common upper bound

of 𝑓
𝑋
1

and 𝑓
𝑋
1
,𝑋
𝑗

for all 𝑗 ∈ N, that is,

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑋
1

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶

1
,

󵄩󵄩󵄩󵄩󵄩󵄩
𝑓
𝑋
1
,𝑋
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶

1
∀𝑗 ≥ 1. (93)

Then, we finally obtain

󵄨󵄨󵄨󵄨󵄨
Cov (𝑓 (𝑋

1
) , 𝑓 (𝑋

𝑗
))
󵄨󵄨󵄨󵄨󵄨
≤ 2𝐶

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2

,

where 𝑀̃ = max {𝐶
1
, 𝐶

2

1
} .

(94)

On the other hand, proceeding like Cai and Roussas in [1], we
can shortly get

󵄨󵄨󵄨󵄨󵄨
Cov (𝑓 (𝑋

1
) , 𝑓 (𝑋

𝑗
))
󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Cov(𝐾(
𝑥 − 𝑋

1

ℎ
𝑛

) ,𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑛

))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Cov(𝐾(
𝑥 − 𝑋

1

ℎ
𝑛

) ,𝐾(

𝑦 − 𝑋
𝑗

ℎ
𝑛

))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Cov(𝐾(
𝑦 − 𝑋

1

ℎ
𝑛

) ,𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑛

))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Cov(𝐾(
𝑦 − 𝑋

1

ℎ
𝑛

) ,𝐾(

𝑦 − 𝑋
𝑗

ℎ
𝑛

))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 4𝐶
2

󵄨󵄨󵄨󵄨󵄨
Cov (𝑋

1
, 𝑋

𝑗
)
󵄨󵄨󵄨󵄨󵄨

1/3

,

(95)

where 𝐶
2
is a constant relevant to the covariance inequality

for negatively associated r.v.’s (see [13]).
We now arrive at the following inequality:

󵄨󵄨󵄨󵄨󵄨
Cov (𝑓 (𝑋

1
) , 𝑓 (𝑋

𝑗
))
󵄨󵄨󵄨󵄨󵄨

≤ max {𝐶
1
, 𝐶

2
} {

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2

,
󵄨󵄨󵄨󵄨󵄨
Cov(𝑋

1
, 𝑋

𝑗
)
󵄨󵄨󵄨󵄨󵄨

1/3

} .

(96)

Assuming |Cov(𝑓(𝑋
1
), 𝑓(𝑋

𝑗
))| = 𝑂(𝑗

−𝑟
) and proceeding

similarly to (68), we can get

[

[

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
Cov (𝑓 (𝑋

1
) , 𝑓 (𝑋

𝑗
))
󵄨󵄨󵄨󵄨󵄨
]

]

𝑝/2

≤ max {𝐶
1
, 𝐶

2
} [

[

∑

𝑗<|𝑥−𝑦|
−2/(𝑟/3)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2

+ ∑

𝑗≥|𝑥−𝑦|
−2/(𝑟/3)

1

𝑗𝑟/3
]

]

𝑝/2

≤ 2max {𝐶
1
, 𝐶

2
}
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

((𝑟−3)/𝑟)𝑝

.

(97)

To sum up, we obtain the following inequality:

𝐸
󵄨󵄨󵄨󵄨𝛼𝑛

(𝑥) − 𝛼
𝑛
(𝑦)

󵄨󵄨󵄨󵄨

𝑝

≤ 𝑘
𝜇
{𝑛

1+𝜇−𝑝/2
𝐶

2

𝐾

ℎ2

𝑛

+ 2max {𝐶
1
, 𝐶

2
}
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

((𝑟−3)/𝑟)𝑝

}

≤ 𝐶{𝑛
1+𝜇−𝑝/2 1

ℎ2

𝑛

+
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

((𝑟−3)/𝑟)𝑝

} ,

(98)

where 𝐶 = 𝑘
𝜇
max{𝐶2

𝑘
, 2max{𝐶

1
, 𝐶

2
}}. The formula of the

tightness criterion (8) implies that ((𝑟 − 3)/𝑟)𝑝 > 1, so

𝑟 >
3𝑝

𝑝 − 1
, where 𝑝 > 2. (99)

Let us recall the assumptions imposed on the bandwidhts
{ℎ

𝑛
}
𝑛≥1

by Cai and Roussas in [1]:
B1: lim

𝑛→∞
ℎ
𝑛
= 0 and ℎ

𝑛
> 0 for all 𝑛 ∈ N

+

B2: lim
𝑛→∞

𝑛ℎ
𝑛
= ∞, thus ℎ

𝑛
= 𝑂(1/𝑛

1−𝛽
), 𝛽 > 0

B3: lim
𝑛→∞

𝑛ℎ
4

𝑛
= 0, hence ℎ

𝑛
= 𝑂(1/𝑛

1/4+𝛿
), 𝛿 > 0.

In light of the above,

𝑛
1+𝜇−𝑝/2 1

ℎ2

𝑛

= 𝑛
3/2+𝜇+2𝛿−𝑝/2

, (100)

where 𝜇 > 0, 𝑝 > 2 and 0 < 𝛿 < 3/4. Confrontation with the
tightness criterion (8), forces

3

2
+ 𝜇 + 2𝛿 −

𝑝

2
< −

1

2
, (101)

which implies 𝑝 > 4. Let us conclude with the following
theorem.

Theorem6. Let 𝛼
𝑛
(𝑥) = √𝑛(𝐹

𝑛
(𝑥)−𝐸𝐹

𝑛
(𝑥)) be the empirical

process built on the kernel estimator of the d.f.𝐹 for a stationary
sequence of negatively associated r.v.’s. Assume that conditions
A1, A2, (87), B1, B2, B3 are satisfied. Then, provided that the
tightness criterion (8) holds with 𝑝 > 4, it suffices to demand

󵄨󵄨󵄨󵄨Cov (𝑈
1
, 𝑈

1+𝑛
)
󵄨󵄨󵄨󵄨 = 𝑂(

1

𝑛3𝑝/(𝑝−1)
) (102)

in order to obtain
𝛼

𝑛
(⋅) 󳨀→ 𝐵 (⋅) weakly in 𝐷 [0, 1] , (103)

where 𝐵(⋅) is the zero mean Gaussian process with covariance
structure defined by

𝜎
2
(𝑥, 𝑦) = 𝐹 (𝑥 ∧ 𝑦) − 𝐹 (𝑥) 𝐹 (𝑦)

+

∞

∑

𝑗=1

[ Cov (𝐼 [𝑋
1
≤ 𝑥] , 𝐼 [𝑋

𝑗+1
≤ 𝑦])

+ Cov (𝐼 [𝑋
1
≤ 𝑦] , 𝐼 [𝑋

𝑗+1
≤ 𝑥])] ,

(104)

and 𝑥, 𝑦 ∈ [0, 1].

Proof. The remaining covergence of finite-dimensional dis-
tributions of 𝛼

𝑛
(𝑥) is established in [1].
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5. Weak Convergence of the
Recursive Kernel-Type Empirical Process
under I.I.D. Assumption

The aim of this section is to show weak convergence of the
empirical process:

𝛼
𝑛
(𝑥) =

1

√𝑛

𝑛

∑

𝑗=1

[𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑗

) − 𝐸𝐾(

𝑥 − 𝑋
𝑗

ℎ
𝑗

)] (105)

built on i.i.d. r.v.’s {𝑋
𝑗
}
𝑗≥1

.
Wewill prove that𝛼

𝑛
(⋅) convergesweakly to the Brownian

bridge 𝐵(⋅) with the following covariance structure

𝜎
2
(𝑥, 𝑦) = 𝐹 (𝑥 ∧ 𝑦) − 𝐹 (𝑥) 𝐹 (𝑦) for 𝑥, 𝑦 ∈ [0, 1] .

(106)

It turns out that the tightness criterion (8) suffices to reach
the goal. Convergence of finite-dimensional distributions of
𝛼

𝑛
(⋅) holds and we shall show it.
Proceeding like Cai and Roussas in [1], we need to show

that for any 𝑎, 𝑏 ∈ R

𝑎𝛼
𝑛
(𝑥) + 𝑏𝛼

𝑛
(𝑦) 󳨀→ 𝑎𝐵 (𝑥) + 𝑏𝐵 (𝑦) in distribution.

(107)

Let us introduce the notation

𝑌
𝑖
(𝑥) := 𝐾(

𝑥 − 𝑋
𝑖

ℎ
𝑖

) − 𝐸𝐾(
𝑥 − 𝑋

𝑖

ℎ
𝑖

) (108)

and look into the covariance structure of 𝛼
𝑛
(⋅)

Cov (𝛼
𝑛
(𝑥) , 𝛼

𝑛
(𝑦))

= Cov( 1

√𝑛

𝑛

∑

𝑖=1

𝑌
𝑖
(𝑥) ,

1

√𝑛

𝑛

∑

𝑖=1

𝑌
𝑖
(𝑦))

=
1

𝑛

𝑛

∑

𝑖=1

Cov (𝑌
𝑖
(𝑥) , 𝑌

𝑖
(𝑦))

=
1

𝑛

𝑛

∑

𝑖=1

Cov(𝐾(
𝑥 − 𝑋

𝑖

ℎ
𝑖

) ,𝐾(
𝑦 − 𝑋

𝑖

ℎ
𝑖

)) ,

(109)

where the second equality follows from assumed indepen-
dence of r.v.’s {𝑋

𝑖
}
𝑖≥1

.
Firstly, we observe that each summand converges to𝐹(𝑥∧

𝑦) − 𝐹(𝑥)𝐹(𝑦), since

Cov(𝐾(
𝑥 − 𝑋

𝑖

ℎ
𝑖

) ,𝐾(
𝑦 − 𝑋

𝑖

ℎ
𝑖

))

= 𝐸[𝐾(
𝑥 − 𝑋

𝑖

ℎ
𝑖

)𝐾(
𝑦 − 𝑋

𝑖

ℎ
𝑖

)]

− 𝐸𝐾(
𝑥 − 𝑋

𝑖

ℎ
𝑖

)𝐸𝐾(
𝑦 − 𝑋

𝑖

ℎ
𝑖

) ,

(110)

where

𝐸[𝐾(
𝑥 − 𝑋

𝑖

ℎ
𝑖

)𝐾(
𝑦 − 𝑋

𝑖

ℎ
𝑖

)]

= ∫

𝑥∧𝑦

−∞

𝐾(
𝑥 − 𝑡

ℎ
𝑖

)𝐾(
𝑦 − 𝑡

ℎ
𝑖

)𝑑𝐹 (𝑡)

+ ∫

𝑥∨𝑦

𝑥∧𝑦

𝐾(
𝑥 − 𝑡

ℎ
𝑖

)𝐾(
𝑦 − 𝑡

ℎ
𝑖

)𝑑𝐹 (𝑡)

+ ∫

∞

𝑥∨𝑦

𝐾(
𝑥 − 𝑡

ℎ
𝑖

)𝐾(
𝑦 − 𝑡

ℎ
𝑖

)𝑑𝐹 (𝑡)

(111)

and 𝐹 denotes the common d.f. of the r.v.’s {𝑋
𝑖
}
𝑖≥1

. In [6], it
was shown that

𝐸𝐾(
𝑥 − 𝑋

𝑖

ℎ
𝑖

) 󳨀→ 𝐹 (𝑥) , (112)

and recalling that the kernel function 𝐾 is a d.f. as well, we
arrive at the conclusion.

Secondly, applying Toeplitz lemma, we get

Cov (𝛼
𝑛
(𝑥) , 𝛼

𝑛
(𝑦)) 󳨀→ 𝐹 (𝑥 ∧ 𝑦) − 𝐹 (𝑥) 𝐹 (𝑦)

=: 𝜎
2
(𝑥, 𝑦) , 𝑛 󳨀→ ∞.

(113)

Thus,

Var (𝑎𝛼
𝑛
(𝑥) + 𝑏𝛼

𝑛
(𝑦))

= 𝑎
2 Var (𝛼

𝑛
(𝑥)) + 2𝑎𝑏Cov (𝛼

𝑛
(𝑥) , 𝛼

𝑛
(𝑦))

+ 𝑏
2 Var (𝛼

𝑛
(𝑦))

󳨀→ 𝑎
2
𝜎

2
(𝑥, 𝑥) + 2𝑎𝑏𝜎

2
(𝑥, 𝑦) + 𝑏

2
𝜎

2
(𝑦, 𝑦) , 𝑛 󳨀→ ∞.

(114)

We are now on the way to prove that 𝑎𝛼
𝑛
(𝑥) + 𝑏𝛼

𝑛
(𝑦) con-

verges in distribution to 𝑎𝐵(𝑥) + 𝑏𝐵(𝑦) ∼ N(0, 𝑎
2
𝜎

2
(𝑥, 𝑥) +

2𝑎𝑏𝜎
2
(𝑥, 𝑦) + 𝑏

2
𝜎

2
(𝑦, 𝑦)), which in other words means that

1

√𝑛

∞

∑

𝑖=1

𝑎𝑌
𝑖
(𝑥) + 𝑏𝑌

𝑖
(𝑦)

√Var (𝑎𝛼
𝑛
(𝑥) + 𝑏𝛼

𝑛
(𝑦))

󳨀→ N (0, 1) . (115)

In order to obtain (115), we will use Lyapunov condition

lim
𝑛→∞

1

𝐷2+𝛿

𝑛

𝑛

∑

𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑌𝑖

(𝑥) + 𝑏𝑌
𝑖
(𝑦)

󵄨󵄨󵄨󵄨

2+𝛿

= 0 (116)

for 𝛿 = 1, where 𝐷
2

𝑛
:= Var(∑𝑛

𝑖=1
[𝑎𝑌

𝑖
(𝑥) + 𝑏𝑌

𝑖
(𝑦)]). Since

|𝐾(⋅) − 𝐸𝐾(⋅)| ≤ 2,

𝐸
󵄨󵄨󵄨󵄨𝑎𝑌𝑖

(𝑥) + 𝑏𝑌i (𝑦)
󵄨󵄨󵄨󵄨

3

≤ 8 (𝑎
3
+ 𝑏

3
) . (117)

Moreover, 𝐷2

𝑛
= 𝑛Var(𝑎𝛼

𝑛
(𝑥) + 𝑏𝛼

𝑛
(𝑦)) together with (114),

yields

𝐷
3

𝑛
= 𝑂 (𝑛

3/2
) . (118)
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Combining (117) with (118), we obtain

1

𝐷3

𝑛

𝑛

∑

𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑎𝑌𝑖

(𝑥) + 𝑏𝑌
𝑖
(𝑦)

󵄨󵄨󵄨󵄨

3

= 𝑂 (𝑛
−1/2

) , (119)

which shows that Lyapunov condition holds and completes
the proof of convergence of finite-dimensional distributions
of 𝛼

𝑛
(𝑥).
We summarize the result of that section in the following

theorem.

Theorem 7. Let 𝛼
𝑛
(𝑥) be the recursive kernel-type empirical

process defined by (105) built on i.i.d. r.v.’s {𝑋
𝑗
}
𝑗≥1

with
marginal d.f. 𝐹. If 𝛼

𝑛
(⋅) satisfies the tightness criterion (8) then

𝛼
𝑛
(⋅) 󳨀→ 𝐵 (⋅) weakly in 𝐷 [0, 1] , (120)

where 𝐵 is the Brownian bridge.
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