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Clustering is one of the important methods for prolonging the network lifetime in wireless sensor networks (WSNs). It involves
grouping of sensor nodes into clusters and electing cluster heads (CHs) for all the clusters. CHs collect the data from respective
cluster’s nodes and forward the aggregated data to base station. Amajor challenge inWSNs is to select appropriate cluster heads. In
this paper, we present a fuzzy decision-making approach for the selection of cluster heads. Fuzzymultiple attribute decision-making
(MADM) approach is used to select CHs using three criteria including residual energy, number of neighbors, and the distance from
the base station of the nodes. The simulation results demonstrate that this approach is more effective in prolonging the network
lifetime than the distributed hierarchical agglomerative clustering (DHAC) protocol in homogeneous environments.

1. Introduction

Advancements in low-power electronic devices integrated
with wireless communication capabilities are one of the
recent areas of research in the field of the wireless sensor
networks (WSNs). WSNs consist of spatially distributed
autonomous sensors distributed over a region of interest to
observe some phenomenon through either some random
or strategic methods. Considerable amount of work has
enabled the design, the implementation, and the deployment
of these sensor networks tailored to the unique require-
ment of sensing and monitoring in real-time applications.
These nodes have onboard wireless modules which consist
of microcontroller, transreceiver, and power and memory
units. A sensor mode is mounted on the node with multiple
types of sensors depending on the type of application such
as environmental monitoring [1], surveillance [2], military
applications, automation in transportation, health [3], and
industrial applications [4].

One of the stringent requirements of these nodes is the
efficient use of the stored energy. Several algorithms have

been designed for efficient management of nodes energy in
WSNs using various clustering schemes [5, 6]. WSN divides
clusters each having a coordinator (cluster head) responsible
for gathering the data from the nodes and sending it to
the sink (base station). Sensors are often deployed densely
to satisfy the coverage requirement, which enables certain
nodes to enter the sleep mode thereby allowing significant
energy savings. The cluster heads can be selected randomly
or based on one or more criteria. Selection of cluster head
largely affects WSNs lifetime. Ideal cluster head is the one
which has the highest residual energy, the maximum number
of neighbor nodes, and the smallest distance from base
station. Simultaneous consideration of all these criteria in
CHs selection is tedious task and can be solved usingmultiple
attribute decision-making (MADM) approaches [7–10]. A
number of MADM approaches are reported and have been
successfully applied in various scientific-, engineering-, and
social-science based decision-making problems.Thesemeth-
ods quantitatively select alternatives based on their multiple
attributes/criteria. In real-time problem, it is often found that
the estimation of the exact values of all the criteria is difficult.
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In such cases fuzzy-based MADMmethodologies [11–13] are
found to be efficient and effective. In the present paper, we
have made an attempt to employ these approaches in order to
prolonging the life time of WSNs.

2. Background

Anumber of clustering protocols have been explored in order
to obtain the effective energy usage in WSNs. Heinzelman
et al. [14] proposed low-energy adaptive cluster hierarchy
(LEACH). It is based on randomized rotation of the CHs to
distribute the energy load among the sensor nodes evenly in
the entire network. Each node elects itself as a CH based on a
probabilistic scheme and broadcasts its availability to all the
sensor nodes present in the area.The received signal strength
is the prime parameter for determining the communication
distance between the nodes. The CH performs aggregation
of the packets received from all the nodes present in their
cluster. Also, all the nodes get a chance to become the CH to
balance the overall energy consumption across the network.
Although the complexity of LEACH is low, the algorithm is
not energy efficient due to irregular distribution of the CHs.
Kumar et al. [15] proposed energy-efficient heterogeneous
clustered (EEHC) scheme in heterogeneous environment in
which a percentage of nodes are equipped with more energy
than others.The nodes play the role of a cluster head based on
the weighted election probabilities according to the residual
energy. Though the concept of heterogeneity is introduced,
this protocol does not consider different parameters for the
selection ofCHs.Distributed hierarchical agglomerative clus-
tering (DHAC) [16] classifies sensor nodes into appropriate
groups instead of simply gathering nodes to some randomly
selected CHs. The application and the evaluation of methods
of various dendrogram techniques such as SLINK, CLINK,
UPGMA, and WPGAM, with quantitative and qualitative
data, are demonstrated in this method. The hybrid energy-
efficient distributed protocol (HEED) [17] is single-hop
clustering protocol in which CHs are selected based on a
hybrid metric consisting of residual energy and neighbors
proximity. Nodes having high residual energy and operating
under low communication cost can become CHs. Multiple
CHs are used for transferring the data to the base station
using the concept of multihop communication. But HEED
does not guarantee the optimum number of elected CHs.
Multicriteria decision-making-based approach, trapezoidal
fuzzy AHP (FAHP), and hierarchical fuzzy integral [18], have
been investigated in clustering on WSNs. The selection of
cluster heads is optimized to develop a distributed energy-
efficient clustering algorithm using three criteria including
energy status; QoS impact and location. According to these
criteria, each node computes a composite value by using fuzzy
integral, which is mapped onto the time axis, and a time-
trigger mechanism makes the node broadcast cluster-head
information. Karaca et al. [19] proposed analytic hierarchy
Process (AHP), which is used to centralize CH selection
scheme. The factors contributing to the network lifetime are
residual energy, mobility, and the distance to the involved
cluster centroid. CHs are selected in each cycle based on

the mobility and the remaining energy of the nodes. It
is reported that the AHP approach improves the network
lifetime remarkably.

3. System Model and Assumptions

The following assumptions are considered in the present
study.

(1) Nodes are dispersed randomly in a 100 × 100 square
unit region following a uniform distribution.

(2) All the nodes send hello messages to the base station
containing their local information.

(3) The initial number of clusters is fixed by taking
the optimum value and keeps on varying with the
node density once the nodes start dying. The smaller
clusters merge with the bigger ones.

(4) The base station (BS) is a node with no energy
constraint and enhanced computation capabilities
and placed at the center of the field.

(5) A simple radio energy dissipation model [14] in
transmitting a 𝑘 bit message over a distance 𝑑 to
achieve an acceptable signal-to-noise ratio (SNR) is
used. Energy consumption in data transmission can
be estimated as

𝐸
𝑇𝑋

= {
𝑘 ∗ 𝐸elec + 𝑘 ∗ 𝜀fs ∗ 𝑑

2 if 𝑑 ≤ 𝑑
𝑜
,

𝑘 ∗ 𝐸elec + 𝑘 ∗ 𝜀mp ∗ 𝑑
4 if 𝑑 ≥ 𝑑

𝑜
,

(1)

where 𝐸elec is the energy dissipated per bit to run the
transmitter or the receiver circuit, 𝜀fs is the energy
consumed in the amplifier when 𝑑 ≤ 𝑑

𝑜
and 𝜀mp is

the energy consumed in the amplifier when 𝑑 ≥ 𝑑
𝑜
.

The energy consumed while reception is

𝐸
𝑅𝑋

= 𝑘 ∗ 𝐸elec. (2)

4. Multicriteria Decision-Making
(MCDM) Approaches

MCDM techniques have been applied for quantitative
decision-making problems in wide range of scientific and
engineering fields. MCDM can be divided into two main
categories: multiobjective decision-making (MODM) [10]
andmultiattribute decisionmaking (MADM) approaches [7].
MODMselects alternatives which are nondominating in view
of all criteria under study. On the other hand, MADM tech-
niques quantitatively compare and rank alternatives based on
the degree of desirability of their attributes being considered
for the study. In the present study, MODM (Pareto optimal
technique) and MADM (fuzzy TOPSIS) approaches are used
to select cluster heads.

4.1. Pareto Optimal Solution. The Pareto optimal solutions
are nondominated in a given solution space (Figure 1) as
described by the economist Vilfredo Pareto [20]. In mul-
tiobjective decision-making problems, the solution space is



ISRN Sensor Networks 3

Property 1 (lesser is desirable)

Pr
op

er
ty

 2
 (l

es
se

r i
s d

es
ira

bl
e)

Pareto front

Solution space

Figure 1: Schematic for Pareto optimal solution in two-dimensional
space.

defined as a region consisting of all possible solutions. Solu-
tion space can be classified into three sets, namely, (a) com-
pletely dominated, (b) neither dominated, nor dominating
and (c) nondominated. In a completely dominated solution,
there exists at least one (real) alternative which completely
overshadows all the properties of all the alternatives in a
desirable manner. In the second type of set, the alternatives
have properties some of which are dominated by the others
while the rest are dominating; thus, they are also not ideal
for application. Nondominated solutions are the alternatives
that have the best trade-off between properties and are not
dominated by any other alternative in the solution space.

4.2. Fuzzy Membership Function. It is often difficult to assign
precise values of attributes of the sensor nodes in each cycle.
The merit of using fuzzy approach is to assign the relative
importance of criteria using fuzzy numbers instead of precise
numbers. Linguistic variables are used in fuzzy logic to
evaluate the importance of the criteria and the ratings of
different alternatives with respect to various criteria. In the
present algorithm, the existing precise values are transformed
into five levels, fuzzy linguistic variables: very low (VL), low
(L), medium (M), high (H), and very high (VH).

As a rule of thumb, each rank is assigned an evenly spread
membership function that has an interval of 0.30 or 0.25, and
a transformation table is shown in Table 1. For example, the
fuzzy variable, VL, has its associated triangular fuzzy number
with the minimum of 0.00, mode of 0.10, and maximum of
0.25. Similarly, other variables L, M, H, and VH have similar
trend as shown. Figure 2 illustrates the fuzzy membership
function [12].

4.3. Fuzzy TOPSIS Approach. Technique for order prefer-
ence by similarity to ideal solution (TOPSIS) is one of
the MADM approaches in which a decision matrix having
“𝑚” alternatives and “𝑛” attributes can be assumed to be

Table 1: Transformation of fuzzy membership function.

Rank Membership functions
Very low (VL) (0.00, 0.10, 0.25)
Low (L) (0.15, 0.30, 0.45)
Medium (M) (0.35, 0.50, 0.65)
High (H) (0.55, 0.70, 0.85)
Very high (VH) (0.75, 0.90, 1.00)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
VL L M VHH

Figure 2: Fuzzy triangular membership functions.

problem of “𝑛” dimensional hyperplane having “𝑚” points
whose location is given by the value of their attributes [12].
The optimum alternative has the shortest distance from the
positive ideal solution (the best possible case) and the furthest
distance from the negative ideal solution (worst possible
case), respectively. This technique has been widely applied
in various scientific and engineering applications [12, 21–23].
Sometimes it is difficult to assign a precise performance rating
to an alternative for the attributes under consideration.Thus,
to solve this issue, fuzzy approach can be used to assign the
relative importance of attributes using fuzzy numbers instead
of precise numbers. This section is an extension of TOPSIS
to the fuzzy environment [11–13], which is helpful in solving
the decision-making problem under fuzzy environment. The
fuzzy TOPSIS can be applied on decision matrix as
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where 𝑥
𝑖𝑗
, 𝑖 = 1, 2, 3, . . . 𝑚, 𝑗 = 1, 2, 3, . . . , 𝑛 and 𝑤

𝑗
, 𝑗 =

1, 2, . . . , 𝑛, are linguistic triangular fuzzy numbers, 𝑥
𝑖𝑗
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performance rating of the 𝑖th alternative. 𝑤
𝑗
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weight of the 𝑗th criterion,𝐶
𝑗
.The normalized fuzzy decision

matrix denoted by 𝑅̃ is given as
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. (4)
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The weighted normalized fuzzy decision matrix is
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Steps for fuzzy TOPSIS procedure are as follows.

Step 1. Choose the linguistic ratings (𝑥
𝑖𝑗
), 𝑖 = 1, 2, 3, . . . , 𝑚

and 𝑗 = 1, 2, 3, . . . , 𝑛 for alternatives with respect to criteria
and the appropriate linguistic variables (𝑤

𝑗
, 𝑗 = 1, 2, . . . , 𝑛)

for the weight of the criteria. If the range of triangular
fuzzy numbers belongs to [0, 1], then there is no need for a
normalization.

Step 2. Obtain the weighted normalized fuzzy decision
matrix given by (6).

Step 3. The selection of an alternative is based on the shortest
distance from the positive ideal solution (𝐴+) and the furthest
from the negative ideal solution (𝐴−), which are defined as
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(7)

Step 4. The separation measures are the distances of each
alternative from 𝐴

+ and 𝐴− given as
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(8)

Step 5. TOPSIS rank indices can be estimated as

𝐶𝐶
𝑖
=

𝑑
−

𝑖

𝑑
+

𝑖
+ 𝑑
−

𝑖

. (9)

Nodes of higher TOPSIS index are selected for cluster heads.

5. Cluster Formation and Data
Transfer Methodologies

All the selected CHs now send advertisement messages in
the network declaring their presence as cluster heads. Each
node now measures the distance from all the cluster heads.

The node joins the CH with minimum distance and sends a
message to the nearest cluster head. If the distance between
the node and the CH is more than its distance to the BS,
the node will communicate with the BS directly. Otherwise,
it joins cluster based on the nearest distance (Euclidean
distance), thereby forming clusters.The nodes are reclustered
based on the distance with the selected cluster head using a
distance matrix, DM (𝑚 × 𝑛), given as follows:

DM =

[
[
[
[

[

𝑑CH1,𝑥1 𝑑CH1,𝑥2 ⋅ ⋅ ⋅ 𝑑CH1,𝑥𝑛
𝑑CH2,𝑥1 𝑑CH2,𝑥2 ⋅ ⋅ ⋅ 𝑑CH2,𝑥𝑛

...
...

...
...

𝑑CH𝑚,𝑥1 𝑑CH𝑚,𝑥2 𝑑CH𝑚,𝑥3 𝑑CH𝑚,𝑥𝑛

]
]
]
]

]

, (10)

where 𝑑 is the Euclidean distance between CH and a node
based on its location information. If 𝑦 and 𝑧 represent the
locations of the two nodes 𝑝 and 𝑞, then the Euclidean
distance is

𝑑
𝑝,𝑞

= [(𝑝
𝑥
− 𝑞
𝑥
)
2
+ (𝑝
𝑦
− 𝑞
𝑦
)
2

]

1/2

. (11)

Each element 𝑑
𝑖,𝑗

in the distance matrix represents the
distance between the 𝑖th cluster head and 𝑗th node. The
column containing the minimum value represents the cluster
number to be joined by the corresponding node. For example,
if 𝑑CH2,𝑥1 is the minimum value in the first column, in this
situation the node 𝑥

1
gets associated with the second cluster,

where CH2 is cluster head.
Once the clusters are formed, the CH assigns a time slot

for eachmember after receiving all CH joinmessages fromall
the nodes. Each cluster head is responsible for gathering the
data from all the nodes in the cluster. When a frame of data
from all the members is received, the CH sends the frame to
the base station after applying data aggregation.TheCHmust
remain in active state, while themember nodes can go to sleep
mode from time to time. It is to be noted that the reclustering
methodology is also adopted in LEACH protocol, where CHs
are elected by using the probabilistic approach rather than
the deterministic technique. The operation of reclustering
and data transmission continues for many cycles until the
death of all the nodes. If the size of the cluster is smaller
than the predefined threshold, the cluster merges with the
neighboring clusters. With the start of the death of nodes, it
is found that there are a lesser number of nodes present in
each cluster now. Thus, as the number of alive nodes starts
decreasing with cycles, the number of clusters also decreases,
and the decrease in the number of alive nodes eventually
results in the reduction in the number of clusters.The amount
of information also decreases with the fewer nodes left in the
physical area.

6. Results and Discussions

In each cycle, it is important to decide the numbers of
clusters/CHs that exist in the WSN for maximizing the
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Table 2: Decision matrix for fuzzy TOPSIS analysis in the second
cycle.

Cluster head
no.

Residual
energy, Eo
(joules), C1

Number of
neighbors, 𝑛,

C2

Distance
from sink, 𝑑,

C3
CH1 0.9998 7 21.583
CH2 0.9998 9 24.2745
CH3 0.9887 8 20.9972
CH4 0.9894 10 39.3231
CH5 0.9998 6 23.2092
CH6 0.9998 10 39.8408
CH7 0.9998 3 7.6944
CH8 0.9988 4 4.5873
CH9 0.9998 9 25.5698
CH10 0.9947 6 10.6745
CH11 0.9964 5 9.8442
CH12 0.9998 4 16.642
CH13 0.9919 9 24.2008
CH14 0.9998 6 17.6095

Table 3: Normalized decision matrix for fuzzy TOPSIS.

Cluster head no. C1 C2 C3
CH1 0.9996 0.5714 0.5179
CH2 0.9988 0.8571 0.4416
CH3 0.0000 0.7143 0.5345
CH4 0.0590 1.0000 0.0147
CH5 0.9998 0.4286 0.4718
CH6 0.9998 1.0000 0.0000
CH7 0.9995 0.0000 0.9119
CH8 0.9096 0.1429 1.0000
CH9 1.0000 0.8571 0.4048
CH10 0.5433 0.4286 0.8273
CH11 0.6900 0.2857 0.8509
CH12 0.9996 0.1429 0.6581
CH13 0.2917 0.8571 0.4436
CH14 0.9998 0.4286 0.6306
Weight 0.5 0.25 0.25

energy efficiency. We have estimated the optimum number
of clusters, 𝑘opt [24], as

𝑘opt = √

𝜀fs

𝜋 (𝜀mp𝑑
4

toBS − 𝐸elec)
𝑀√𝑁. (12)

The value of 𝑘opt is estimated in the range of 9 <

𝑘opt < 11 when the base station is placed away from the
field. In the present study, we divide the network into ten
clusters each having a cluster head. For this purpose, we
have screened sensor nodes using Pareto optimal solution.
Pareto optimal CHs are selected using three criteria including
residual energy of the node, minimum distance from the
base station, and the number of neighbor nodes. It is to be
noted that maximum residual energy, least distance of the

Table 4: Decision matrix using fuzzy linguistic variables.

Cluster head no. C1 C2 C3
CH1 VH M M
CH2 VH VH M
CH3 VL H M
CH4 VL VL VL
CH5 VH M M
CH6 VH VL VL
CH7 VH VL VH
CH8 VH VL VL
CH9 VL VH M
CH10 M M VH
CH11 H L H
CH12 VH VL H
CH13 L VH M
CH14 VH M H
Weight VH M M

Table 5: Fuzzy decision matrix and fuzzy attribute weights.

Cluster head no. C1 C2 C3
CH1 (0.75, 0.9, 1) (0.35, 0.5, 0.65) (0.35, 0.5, 0.65)
CH2 (0.75, 0.9, 1) (0.75, 0.9, 1) (0.35, 0.5, 0.65)
CH3 (0, 0.1, 0.25) (0.55, 0.7, 0.85) (0.35, 0.5, 0.65)
CH4 (0, 0.1, 0.25) (0.75, 0.9, 1) (0, 0.1, 0.25)
CH5 (0.75, 0.9, 1) (0.35, 0.5, 0.65) (0.35, 0.5, 0.65)
CH6 (0.75, 0.9, 1) (0.75, 0.9, 1) (0, 0.1, 0.25)
CH7 (0.75, 0.9, 1) (0, 0.1, 0.25) (0.75, 0.9, 1)
CH8 (0.75, 0.9, 1) (0, 0.1, 0.25) (0.75, 0.9, 1)
CH9 (0.75, 0.9, 1) (0.75, 0.9, 1) (0.35, 0.5, 0.65)
CH10 (0.35, 0.5, 0.65) (0.35, 0.5, 0.65) (0.75, 0.9, 1)
CH11 (0.55, 0.7, 0.85) (0.15, 0.3, 0.45) (0.75, 0.9, 1)
CH12 (0.75, 0.9, 1) (0, 0.1, 0.25) (0.55, 0.7, 0.85)
CH13 (0.15, 0.3, 0.45) (0.75, 0.9, 1) (0.35, 0.5, 0.65)
CH14 (0.75, 0.9, 1) (0.35, 0.5, 0.65) (0.55, 0.7, 0.85)
Weight (0.75, 0.9, 1) (0.35, 0.5, 0.65) (0.35, 0.5, 0.65)

nodes from base station and maximum number of neighbor
nodes are desirable for cluster head selection. The Pareto
optimal nodes shown in Figure 3 (red-colored dots) are
the optimum selection in view of previously mentioned
three criteria whose values are shown in Table 2 for the
2nd cycle of simulation. Similar calculation is performed
in each cycle for short listing Pareto optimal sensor nodes.
These attributes of the criteria are further normalized in
the range [0, 1] given in Table 3. We have assigned 0.5,
0.25, and 0.25 subjective weights to residual energy, number
of neighbors, and, distance from base station, respectively.
Membership function (discussed in Section 4.2) is used
to convert the values (in Table 3) into linguistic variables
as shown in Table 4. Further fuzzy linguistic variables are
transformed into fuzzy triangular membership function as
shown in Table 5 and fuzzy-weighted decision matrix using
(6) as shown in Table 6. We define the fuzzy positive and
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Table 6: Fuzzy-weighted decision matrix.

Cluster head no. C1 C2 C3
CH1 (0.5625, 0.8100, 1.0000) ( 0.1225, 0.2500, 0.4225) (0.1225, 0.2500, 0.4225)
CH2 (0.5625, 0.8100, 1.0000) (0.2625, 0.4500, 0.6500) (0.1225, 0.2500, 0.4225)
CH3 (0, 0.0900, 0.2500) (0.1925, 0.3500, 0.5525) (0.1225, 0.2500, 0.4225)
CH4 (0, 0.0900, 0.2500) (0.2625, 0.4500, 0.6500) (0, 0.0500, 0.1625)
CH5 (0.5625, 0.8100, 1.0000) (0.1225, 0.2500, 0.4225) (0.1225, 0.2500, 0.4225)
CH6 (0.5625, 0.8100, 1.0000) (0.2625, 0.4500, 0.6500) (0, 0.0500, 0.1625)
CH7 (0.5625, 0.8100, 1.0000) (0, 0.0500, 0.1625) (0.2625, 0.4500, 0.6500)
CH8 (0.5625, 0.8100, 1.0000) (0, 0.0500, 0.1625) (0.2625, 0.4500, 0.6500)
CH9 (0.5625, 0.8100, 1.0000) (0.2625, 0.4500, 0.6500) (0.1225, 0.2500, 0.4225)
CH10 (0.2625, 0.4500, 0.6500) (0.1225, 0.2500, 0.4225) (0.2625, 0.4500, 0.6500)
CH11 (0.4125, 0.6300, 0.8500) (0.0525, 0.1500, 0.2925) (0.2625, 0.4500, 0.6500)
CH12 (0.5625, 0.8100, 1.0000) (0, 0.0500, 0.1625) (0.1925, 0.3500, 0.5525)
CH13 (0.1125, 0.2700, 0.4500) (0.2625, 0.4500, 0.6500) (0.1225, 0.2500, 0.4225)
CH14 (0.5625, 0.8100, 1.0000) (0.1225, 0.2500, 0.4225) (0.1925, 0.3500, 0.5525)

Table 7: Fuzzy TOPSIS analysis.

CH C1 C2 C3 𝑑
+

𝑖
𝑑
−

𝑖
𝐶𝐶
𝑖

CH1 (0.5625, 0.8100, 1.0000) ( 0.1225, 0.2500, 0.4225) (0.1225, 0.2500, 0.4225) 1.0893 0.9100 0.5448
CH2 (0.5625, 0.8100, 1.0000) (0.2625, 0.4500, 0.6500) (0.1225, 0.2500, 0.4225) 0.9768 0.9870 0.4974
CH3 (0, 0.0900, 0.2500) (0.1925, 0.3500, 0.5525) (0.1225, 0.2500, 0.4225) 1.3331 0.5136 0.7219
CH4 (0, 0.0900, 0.2500) (0.2625, 0.4500, 0.6500) (0, 0.0500, 0.1625) 1.4099 0.5143 0.7327
CH5 (0.5625, 0.8100, 1.0000) (0.1225, 0.2500, 0.4225) (0.1225, 0.2500, 0.4225) 1.0893 0.9100 0.5448
CH6 (0.5625, 0.8100, 1.0000) (0.2625, 0.4500, 0.6500) (0, 0.0500, 0.1625) 1.1255 0.9479 0.5428
CH7 (0.5625, 0.8100, 1.0000) (0, 0.0500, 0.1625) (0.2625, 0.4500, 0.6500) 1.1255 0.9479 0.5428
CH8 (0.5625, 0.8100, 1.0000) (0, 0.0500, 0.1625) (0.2625, 0.4500, 0.6500) 1.1255 0.9479 0.5428
CH9 (0.5625, 0.8100, 1.0000) (0.2625, 0.4500, 0.6500) (0.1225, 0.2500, 0.4225) 0.9768 0.9870 0.4974
CH10 (0.2625, 0.4500, 0.6500) (0.1225, 0.2500, 0.4225) (0.2625, 0.4500, 0.6500) 1.0960 0.7402 0.5969
CH11 (0.4125, 0.6300, 0.8500) (0.0525, 0.1500, 0.2925) (0.2625, 0.4500, 0.6500) 1.0946 0.8355 0.5671
CH12 (0.5625, 0.8100, 1.0000) (0, 0.0500, 0.1625) (0.1925, 0.3500, 0.5525) 1.1699 0.9067 0.5634
CH13 (0.1125, 0.2700, 0.4500) (0.2625, 0.4500, 0.6500) (0.1225, 0.2500, 0.4225) 1.1914 0.6424 0.6497
CH14 (0.5625, 0.8100, 1.0000) (0.1225, 0.2500, 0.4225) (0.1925, 0.3500, 0.5525) 1.0277 0.9475 0.5203
𝐴
+

𝑣
+

1
= (1, 1, 1) 𝑣

+

2
= (1, 1, 1) 𝑣

+

3
= (1, 1, 1)

𝐴
−

𝑣
−

1
= (0, 0, 0) 𝑣

−

2
= (0, 0, 0) 𝑣

−

3
= (0, 0, 0)

Weights (0.75, 0.9, 1) (0.35, 0.5, 0.65) (0.35, 0.5, 0.65)

negative ideal solutions (Step 3) and computed separation
measures (Step 4) and rank indices (Step 5) for Pareto optimal
sensor nodes. Table 7 shows the Pareto optimal nodes, their
properties, and fuzzy TOPSIS indices in the 2nd cycle. Table 8
lists top ten cluster heads (fromTable 7) selected in the second
cycle. Similar ranking is performed in each cycle until all the
sensor dies.

Table 9 provides the simulation parameters used in
our experiments. Each cycle consists of clustering and data
transmission phase. In clustering phase, the top ten CHs are
selected and form a cluster based on the Euclidean distance.
The CHs are selected for each cycle till all the nodes consume
their entire energy. The base station is placed far away from
the field. The lifetime of the network is measured in terms
of the number of cycles until the first node in the network
runs out of its entire energy. Figure 4 shows the results of

the experiment, where sensor nodes are deployed randomly
on a square area of 100 × 100m2 and network lifetime is
plotted, which shows the number of alive nodes over the
time in cycles. The results are finally compared with a well-
known DHAC protocol. It is reported that DHAC is more
energy efficient than other methods including LEACH and
LEACH-C. All results are expressed in averages taken over
20 random independent experiments. It is observed that the
network lifetime (when first node dies) is higher for fuzzy
TOPSIS approach than that ofDHAC (Figure 4). It shows that
the present approach is more effective in WSNs.

7. Conclusions

Fuzzy decision-making-based energy-efficient scheme is pro-
posed for WSNs. Fuzzy TOPSIS technique is used for the
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Figure 3: Pareto optimal plot for sensor nodes.

Table 8: Top ten CHs in the 2nd cycle selected based on fuzzy
TOPSIS ranks.

Rank Cluster head
1 CH4
2 CH3
3 CH13
4 CH10
5 CH11
6 CH12
7 CH1
8 CH5
9 CH6
10 CH7

Table 9: Simulation parameters used for WSNs.

Description Symbol Value
Number of nodes in the system 𝑁 100
Initial energy of node 𝐸initial 1 J
BS location — (50, 50)
Size of the data packet — 500 bytes
Hello/broadcast/CH join message — 25 bytes
Energy consumed by the amplifier to
be transmitted at a short distance 𝜀fs 10 pJ/bit/m2

Energy consumed by the amplifier to
be transmitted at a longer distance 𝜀mp 0.0013 pJ/bit/m4

Energy consumed in the electronics
circuit to be transmitted or receive the
signal

𝐸elec 50 nJ/bit

selection of cluster heads in WSNs. Three criteria including
residual energy distance of the nodes from base station and
the number of neighbor nodes are considered in order to
optimize the number of clusters/cluster heads. Simulated
network lifetime is compared with the lifetime achieved from
DHAC protocol. Simulations results demonstrate that fuzzy
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Figure 4: Network lifetime comparison.

TOPSIS achieves significant energy saving and prolonging
network lifetime compared to DHAC protocol.
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