
Research Article
On Formal and Automatic Security Verification
of WSN Transport Protocols

Vinh Thong Ta,1 Levente Buttyán,1,2 and Amit Dvir3

1 Laboratory of Cryptography and Systems Security (CrySyS), Budapest University of Technology and Economics,
Budapest 1117, Hungary

2MTA-BME Information Systems Research Group, Magyar tudósok körútja 2, Budapest 1117, Hungary
3 Computer Science Department, College of Management Academic Studies, 7 Yitzhak Rabin Boulevard,
75190 Rishon LeZion, Israel

Correspondence should be addressed to Levente Buttyán; buttyan@crysys.hu

Received 21 October 2013; Accepted 17 December 2013; Published 4 March 2014

Academic Editors: J. Li, S. Srinivasan, and Y. Yu

Copyright © 2014 VinhThong Ta et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We address the problem of formal and automated security verification of transport protocols for wireless sensor networks (WSN)
that may perform cryptographic operations. The verification of this class of protocols is difficult because they typically consist
of complex behavioral characteristics, such as real-time, probabilistic, and cryptographic operations. To solve this problem, we
propose a probabilistic timed calculus for cryptographic protocols and demonstrate how to use this formal language for proving
security or vulnerability of protocols. The main advantage of the proposed language is that it supports an expressive syntax and
semantics, allowing for studying real-time, probabilistic, and cryptographic issues at the same time. Hence, it can be used to verify
systems that involve these three properties in a convenient way. In addition, we propose an automatic verification method, based
on the well-known PAT process analysis toolkit, for this class of protocols. For demonstration purposes, we apply the proposed
manual and automatic proof methods for verifying the security of DTSN and SDTP, which are two of the recently proposed WSN
transport protocols.

1. Introduction

Numerous transport protocols have been proposed specifi-
cally designed for applications of wireless sensor networks
(WSN), requiring particularly reliable delivery and conges-
tion control (e.g., multimedia sensor networks) [1]. Two of
the latest protocols are the distributed transport for sensor
networks (DTSN) [2] and its secured version, the secure
distributed transport protocol for sensor networks (SDTP)
[3]. In DTSN and SDTP the intermediate nodes can cache
the packets with some probability and retransmit them upon
request, providing reliable transmission, energy efficiency,
and distributed functionality.

Unfortunately, existing transport protocols for WSNs
(including DTSN) do not include sufficient security mecha-
nisms or totally ignore the security issue.Hence,many attacks
have been found against existing WSN transport protocols
[4]. Broadly speaking, these attacks can be classified into

two groups: attacks against reliability and energy depleting
attacks. Reliability attacks aim to mislead the nodes so
that loss of a data packet remains undetected. In the case
of energy depleting attacks, the goal of the attacker is to
perform energy-intensive operations in order to deplete the
nodes’ batteries [4]. In particular, using a fake or altered
acknowledgmentmessage, an attacker can give the sender the
impression that data packets arrived safely when they may
actually have been lost. Similarly, forging or altering negative
acknowledgment packets to trigger unnecessary retransmis-
sion can lead to faster draining of the node’s batteries. While
futile retransmissions do not directly harm the reliability of
service, they are still undesirable. Systematic mathematical
and automated methods are needed for finding the weak-
nesses in these protocols; however, this is a very hard task due
to their complexity.This served as amotivation and challenge
for our work, to which we proposed solutions.

Hindawi Publishing Corporation
ISRN Sensor Networks
Volume 2014, Article ID 891467, 20 pages
http://dx.doi.org/10.1155/2014/891467

http://dx.doi.org/10.1155/2014/891467

2 ISRN Sensor Networks

In this paper, we address the problem of formal and
automated security verification of WSN transport protocols,
which typically consist of the following behavioral character-
istics: (b1) storing data packets in the buffer of intermediate
sensor nodes; (b2) probabilistic and real-time behavior;
(b3) performing cryptographic operations such as one-way
hashing, computing message authentication codes (MACs);
and so on.Wepropose a formal and an automated verification
method, based on the application of process algebra and a
model checking framework, respectively. For demonstration
purposes, we apply the proposed methods for specifying and
verifying the security of the DTSN and the SDTP protocols,
which are representative in the sense that DTSN involve
the first two behavioral characteristics (b1-b2), while SDTP
covers all of the three points (b1–b3). Specifically, the main
contributions of this paper are the followings.

(i) We propose a probabilistic timed calculus, called
𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
, for cryptographic protocols. To the best

of our knowledge, this is the first of its kind in
the sense that it combines the following three fea-
tures: (i) it supports formal syntax and semantics
for cryptographic primitives and operations; (ii) it
supports time constructs similar to the concept of
timed automata that enables us to verify real-time
systems; (iii) it also includes the syntax and semantics
of probabilistic constructs for analysing systems that
perform probabilistic behavior. The basic concept of
𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
is inspired by previous pieces of work [5–7]

proposing solutions separately for each of the three
discussed points. In particular, 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
is derived

from the applied 𝜋-calculus [5], which defines an
expressive syntax and semantics supporting crypto-
graphic primitives to analyse security protocols; a
probabilistic extension of the applied 𝜋-calculus [6];
and a process calculus for timed automata proposed
in [7].

We note that, although in this paper the proposed
𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
calculus is used for analysing WSN trans-

port protocols, it is also suitable for reasoning about
other systems that include cryptographic operations,
as well as real-time and probabilistic behavior.

(ii) Using 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏
𝑡𝑖𝑚𝑒

we specify the behavior of the DTSN
and SDTP protocols. We propose the novel definition
of weak probabilistic timed bisimilarity and used it to
prove the weaknesses of DTSN and SDTP, as well as
the security of SDTP against some attacks.

(iii) We provide an approach for the automatic security
verification of theDTSNand SDTPprotocols with the
PAT process analysis toolkit [8], which is a powerful
general purpose model checking framework. To the
best of our knowledge PAT has not been used for
this purpose before; however, in this paper we show
that the power of PAT can be used to check some
interesting security properties defined for these sys-
tems/protocols.

The structure of the paper is as follows: note that, instead
of putting into a separate section, we discuss the related pieces
of work inside each section, where we compare them with
our methods. In Section 2, we start with the introduction of
DTSN and SDTP. In Section 3, we discuss the base calculus,
𝑐𝑟𝑦𝑝𝑡, which is a modified variant of the well-known applied
𝜋-calculus [5], designed for analysing security protocols.
The extension of 𝑐𝑟𝑦𝑝𝑡, called 𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
, with timing and

probabilistic modelling elements is given in Section 4. The
security analysis of DTSN and SDTP, based on 𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
,

is provided in Section 5. The well-known model checking
framework PAT and automatic verification of SDTP are given
in Section 6. We also verified the DTSN protocol in PAT and
found attacks against it; however, due to lack of space we
do not discuss it in the paper. Interested readers can find
more details in our longer report [11]. Finally, we conclude
the paper and give an outlook on future pieces of work in
Section 7.

2. The DTSN and SDTP Protocols

2.1. DTSN: Distributed Transport for Sensor Networks. DTSN
[2] is a reliable transport protocol developed for sensor net-
works where intermediate nodes between the source and the
destination of a data flow cache data packets in a probabilistic
manner such that they can retransmit themupon request.The
main advantages of DTSN compared to a transport protocol
that uses a fully end-to-end retransmission mechanism is
that it allows intermediate nodes to cache and retransmit
data packets; hence, the average number of hops that a
retransmitted data packet must travel is smaller than the
length of the route between the source and the destination.
Intermediate nodes do not store all packets but only store
packets with some probability 𝑝, which makes it more
efficient. Note that, in the case of a fully end-to-end reliability
mechanism, where only the source is allowed to retransmit
lost data packets, retransmitted data packets always travel
through the entire route from the source to the destination.
Thus, DTSN improves the energy efficiency of the network
compared to a transport protocol that uses a fully end-to-end
retransmission mechanism.

DTSNuses special packets to control caching and retrans-
missions. More specifically, there are three types of such
control packets: Explicit Acknowledgment Requests (EARs),
Positive Acknowledgments (𝐴𝐶𝐾𝑠), and Negative Acknowl-
edgments (𝑁𝐴𝐶𝐾𝑠). The source sends an EAR packet after
the transmission of a certain number of data packets or when
its output buffer becomes full or when the application has not
requested the transmission of any data during a predefined
timeout period or due to the expiration of the 𝐸𝐴𝑅 timer
(EAR timer).

The activity timer and the EAR timer are launched by the
source for ensuring that a session will finish in a finite period
of time.The activity timer is launched when the source starts
to handle the first data packet in a session, and it is reset when
a new packet is stored or when an ACK or a NACK has been
handled by the source. When the activity timer has expired,
depending on the number of unconfirmed data packets,

ISRN Sensor Networks 3

the session will be terminated or reset. The EAR timer is
launched whenever an EAR packet or a data packet with the
EAR bit set is sent.

An 𝐸𝐴𝑅 may take the form of a bit flag piggybacked
on the last data packet or an independent control packet.
An 𝐸𝐴𝑅 is also sent by an intermediate node or the source
after retransmission of a series of data packets, piggybacked
on the last retransmitted data packet [2]. Upon receipt of
an EAR packet the destination sends an 𝐴𝐶𝐾 or a 𝑁𝐴𝐶𝐾
packet, depending on the existence of gaps in the received
data packet stream. An𝐴𝐶𝐾 refers to a data packet sequence
number 𝑛, and it should be interpreted such that all data
packets with sequence number smaller than or equal to 𝑛

were received by the destination. A 𝑁𝐴𝐶𝐾 refers to a base
sequence number 𝑛 and it also contains a bitmap, in which
each bit represents a different sequence number starting from
the base sequence number 𝑛. A𝑁𝐴𝐶𝐾 should be interpreted
such that all data packets with sequence number smaller
than or equal to 𝑛 were received by the destination and the
data packets corresponding to the set bits in the bitmap are
missing.

Within a session, data packets are sequentially numbered.
The Acknowledgment Window (AW) is defined as the num-
ber of data packets that the source transmits before generating
and sending an EAR. The output buffer at the sender works
as a sliding window, which can span more than one AW. Its
size depends on the specific scenario, namely, the memory
constraints of individual nodes.

In DTSN, besides the source, intermediate nodes also
process𝐴𝐶𝐾 and𝑁𝐴𝐶𝐾 packets.When an𝐴𝐶𝐾 packet with
sequence number 𝑛 is received by an intermediate node, it
deletes all data packets with sequence number smaller than
or equal to 𝑛 from its cache and passes the 𝐴𝐶𝐾 packet on
to the next node on the route towards the source. When
a 𝑁𝐴𝐶𝐾 packet with base sequence number 𝑛 is received
by an intermediate node, it deletes all data packets with
sequence number smaller than or equal to 𝑛 from its cache
and, in addition, it retransmits those missing data packets
that are indicated in the 𝑁𝐴𝐶𝐾 packet and stored in the
cache of the intermediate node. The bits that correspond
to the retransmitted data packets are cleared in the 𝑁𝐴𝐶𝐾
packet, which is then passed on to the next node on the route
towards the source. If all bits are cleared in the 𝑁𝐴𝐶𝐾, then
the 𝑁𝐴𝐶𝐾 packet essentially becomes an 𝐴𝐶𝐾 referring to
the base sequence number, and it is processed accordingly. In
addition, the intermediate node sets the EAR flag in the last
retransmitted data packet. The source manages its cache and
retransmissions in the same way as the intermediate nodes,
without passing on any 𝐴𝐶𝐾 and𝑁𝐴𝐶𝐾 packets.

Security Issues in DTSN. Upon receiving an 𝐴𝐶𝐾 packet,
intermediate nodes delete from their cache the stored mes-
sages whose sequence number is less than or equal to
the sequence number in the 𝐴𝐶𝐾 packet, because the
intermediate nodes believe that acknowledged packets have
been delivered successfully. Therefore, an attacker may cause
permanent loss of some data packets by forging or altering
𝐴𝐶𝐾 packets. This may put the reliability service pro-
vided by the protocol in danger. Moreover, an attacker can

trigger unnecessary retransmission of the corresponding data
packets by either setting bits in the bit map of the 𝑁𝐴𝐶𝐾
packets or forging/altering𝑁𝐴𝐶𝐾 packets. Any unnecessary
retransmission can lead to energy consumption and interfer-
ence. Note that unnecessary retransmissions do not directly
harm the reliability, but it is clear that such inefficiency is still
undesirable.

The destination sends 𝐴𝐶𝐾 or 𝑁𝐴𝐶𝐾 packets upon
reception of an𝐸𝐴𝑅.Therefore, attacks aiming at replaying or
forging 𝐸𝐴𝑅 information, where the attacker always sets the
EAR flag to 0 or 1, can have a harmful effect. Always setting
the EAR flag to 0 prevents the destination from sending an
𝐴𝐶𝐾 or𝑁𝐴𝐶𝐾 packet, while always setting it to 1 forces the
destination to send control packets unnecessarily.

2.2. SDTP: A Secure Distributed Transport Protocol for WSNs.
SDTP is a security extension of DTSN aiming at patching
the security holes in DTSN. SDTP ensures that an inter-
mediate node can verify if an acknowledgment or negative
acknowledgment information has really been issued by the
destination, if and only if the intermediate node actually has
in its cache the data packet referred to by the ACK or NACK.
Forged control information can propagate in the network
but only until it hits an intermediate node that cached the
corresponding data packet; this node can detect the forgery
and drop the forged control packet.

In particular, the security solution of SDTP works as
follows [3]: each data packet is extended with an 𝐴𝐶𝐾MAC
and a 𝑁𝐴𝐶𝐾 MAC, which are computed over the whole
packet with two different keys, an ACK key (𝐾𝐴𝐶𝐾) and a
𝑁𝐴𝐶𝐾 key (𝐾𝑁𝐴𝐶𝐾). Both keys are known only to the source
and the destination and are specific to the data packet; hence,
these keys are referred to as per-packet keys.

When the destination receives a data packet, it can check
the authenticity and integrity of each received data packet
by verifying the two MAC values. Upon receipt of an 𝐸𝐴𝑅

packet, the destination sends an 𝐴𝐶𝐾 or a 𝑁𝐴𝐶𝐾 packet,
depending on the gaps in the received data buffer. If the
destination sends an 𝐴𝐶𝐾 referring to a data packet with
sequence number 𝑛, the destination reveals (included in the
𝐴𝐶𝐾 packet) the corresponding 𝐴𝐶𝐾 key; similarly, when it
wants to signal that this data packet ismissing, the destination
reveals the corresponding 𝑁𝐴𝐶𝐾 key by including it in the
𝑁𝐴𝐶𝐾 packet. Any intermediate node that stores the packets
in question can verify if the 𝐴𝐶𝐾 or 𝑁𝐴𝐶𝐾 message that it
receives is authentic by checking if the appropriate MAC in
the stored data packet verifies correctly the𝐴𝐶𝐾 key included
in the 𝐴𝐶𝐾 packet. In case of successful verification, the
intermediate node deletes the corresponding data packets
(whose sequence number is smaller than or equal to 𝑛) from
its cache.

When anACK packet is received by an intermediate node
or the source, the node first checks if it has the corresponding
data packet. If not, then the ACK packet is simply passed on
to the next node towards the source. Otherwise, the node uses
theACKkey obtained from theACKpacket to verify theACK
MACvalue in the data packet. If this verification is successful,
then the data packet can be deleted from the cache and the
ACK packet is passed on to the next node towards the source.

4 ISRN Sensor Networks

If the verification of theMAC is not successful, then the ACK
packet is silently dropped.

When aNACKpacket is received by an intermediate node
or the source, the node processes the acknowledgment part
of the NACK packet as described above. In addition, it also
checks if it has any of the data packets that correspond to
the set bits in the bitmap of the NACK packet. If it does
not have any of those data packets, it passes on the NACK
without modification. Otherwise, for each data packet that
it has and that is marked as missing in the NACK packet, it
verifies the NACK MAC of the data packet with the corre-
sponding NACK key obtained from the NACK packet. If this
verification is successful, then the data packet is scheduled for
retransmission, the corresponding bit in the NACK packet
is cleared, and the NACK key is removed from the NACK
packet. After these modifications, the NACK packet is passed
on to the next node towards the source.

The𝐴𝐶𝐾 and𝑁𝐴𝐶𝐾 key generation andmanagement in
SDTP are as follows. The source and the destination share a
secret which we call the session master key, and we denote it
by 𝐾. From this, both the source and destination derive an
𝐴𝐶𝐾master key𝐾𝐴𝐶𝐾 and a𝑁𝐴𝐶𝐾master key𝐾𝑁𝐴𝐶𝐾 for a
given session as follows:

𝐾𝐴𝐶𝐾 = PRF (𝐾; “𝐴𝐶𝐾 master key”; SessionID) ,

𝐾𝑁𝐴𝐶𝐾 = PRF (𝐾; “𝑁𝐴𝐶𝐾 master key”; SessionID) ,
(1)

where PRF is a pseudorandom function [9] and SessionID is
a session identifier.

SDTP assumes a preestablished shared secret value, such
as a node key shared by the node and the base station,
which can be configured manually in the node before its
deployment. Denoting the shared secret by 𝑆, the session
master key𝐾 is then derived as follows:

𝐾 = PRF (𝑆; “session master key”; SessionID) . (2)

TheACK key𝐾(𝑛)

𝐴𝐶𝐾
and the NACK key𝐾(𝑛)

𝑁𝐴𝐶𝐾
for the 𝑛th

packet (i.e., whose sequence number is 𝑛) are computed as
follows:

𝐾
(𝑛)

𝐴𝐶𝐾
= PRF (𝐾𝐴𝐶𝐾; “per packet 𝐴𝐶𝐾 key”; 𝑛) ,

𝐾
(𝑛)

𝑁𝐴𝐶𝐾
= PRF (𝐾𝑁𝐴𝐶𝐾; “per packet 𝑁𝐴𝐶𝐾 key”; 𝑛) .

(3)

Note that both the source and the destination can com-
pute all these keys as they both possess the sessionmaster key
𝐾. Moreover, PRF is a one-way function; therefore, when the
ACK and NACK keys are revealed, the master keys cannot
be computed from them; and consequently, as yet unrevealed
ACK and NACK keys remain secrets too.

Security Issues in SDTP. The rationality behind this security
solution is that the shared secret 𝑆 is never leaked, and hence
only the source and the destination can produce the right
ACK and NACK master keys and per-packet keys. Since
the source never reveals these keys, the intermediate node
can be sure that the control information has been sent by
the destination. In addition, because the per-packet keys

are computed by a one-way function, when the ACK and
NACKkeys are revealed, themaster keys cannot be computed
from them; hence, the yet unrevealed ACK and NACK keys
cannot be derived. These issues give the protocol designers
an impression that SDTP is secure; however, we will formally
prove that SDTP is still vulnerable and showing a tricky attack
against it.

3. 𝑐𝑟𝑦𝑝𝑡: The Calculus for
Cryptographic Protocols

𝑐𝑟𝑦𝑝𝑡 is the base calculus for specifying and analysing
cryptographic protocols, without supporting real-time and
probabilistic systems. 𝑐𝑟𝑦𝑝𝑡 can be seen as a modified
variant of the applied 𝜋-calculus [5], designed for analysing
security protocols and proving their security properties in
a convenient way. Our goal is to extend 𝑐𝑟𝑦𝑝𝑡 with time
and probabilistic modelling elements adopting the concept of
timed and probabilistic automata, and to do this, we need to
modify the applied 𝜋-calculus in some points. Namely, we
replace process replication with recursive process invocation;
we add definition for positive integers and comparison rules
for them; we also define syntax for cache/buffer entry.

3.1. Syntax and Semantics. We assume an infinite set of
names N and variables V, where N ∩ V = 0. Further, we
define a set of distinguished variablesE that model the cache
entries for entities that store data. In the setN, we distinguish
channel names, and other kinds of data. Channel names are
denoted by 𝑐𝑖 with different indices such that 𝑐𝑖 ̸= 𝑐𝑗, 𝑖 ̸= 𝑗. The
set of nonnegative integers is denoted byI, and its elements
range over 𝑖𝑛𝑡𝑖 with different indices that are corresponding
to the numbers 0, 1, 2, and so forth.

Further, we let the remaining data be denoted by 𝑚𝑖, 𝑛𝑖,
and 𝑘𝑖. The variables are denoted by 𝑥𝑖, 𝑦𝑖, 𝑧𝑖, and the cache
entries by 𝑒𝑖 with different indices. The names and variables
with different indices are different. We let F be the set of
function symbols. To verify security protocols, in our case,
the function symbols capture the cryptographic primitives
such as hash, encryption, and MAC function. Finally, we
assume the type system of the terms as in the case of the
applied 𝜋-calculus.

We define a set of terms as

𝑡 ::= 𝑐𝑖 | 𝑖𝑛𝑡𝑖 | 𝑛𝑖, 𝑚𝑖, 𝑘𝑖 | 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 | 𝑒𝑖 | 𝑓 (𝑡1, . . . , 𝑡𝑘) , (4)

where | represents “or.” In particular, a term can be the
following.

(i) 𝑐𝑖 models a communication channel between honest
parties.

(ii) 𝑛𝑖, 𝑚𝑖, and 𝑘𝑖 are names and are used to model some
data.

(iii) 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖 are variables that can represent any term;
that is, any term can be bound to variables, similarly
as in case of the applied 𝜋-calculus [5].

(iv) 𝑒𝑖 is a cache entry.

ISRN Sensor Networks 5

(v) Finally,𝑓 is a function with arity 𝑘 and is used to con-
struct terms and to model cryptographic primitives
andmessages. Complexmessages aremodelled by the
function tuple with 𝑘 terms: tuple(𝑡1, . . . , 𝑡𝑘), which
we abbreviate as (𝑡1, . . . , 𝑡𝑘).The function symbolwith
arity zero is a constant.

For example, digital signature, encryption, and mes-
sage authentication code (MAC) can be modelled by
the functions 𝑠𝑖𝑔𝑛(𝑚, 𝑘), 𝑒𝑛𝑐(𝑚, 𝑘), and 𝑀𝐴𝐶(𝑚, 𝑘),
where 𝑚 models the message to be signed, to be
encrypted, and to be MAC-ed, respectively, and 𝑘

models the secret key. Verification of signatures and
MACs, as well as decryption, is modelled by equa-
tions. For instance, the equation 𝑑𝑒𝑐(𝑒𝑛𝑐(𝑚, 𝑘), 𝑘) =

𝑚 says that, if we decrypt the encryption enc(𝑚, 𝑘)
with the right key, then we will get the message as a
result. If incorrect key is used for decryption then the
process will get stuck and will not continue to run.

(vi) 𝑖𝑛𝑡𝑖 ranges over special functions for modelling non-
negative integers. Formally, let 0 be the base element
of setI and is formally defined as the function named
by 0. Each further integer is defined as a constructor
function named by 1, 2, and so forth. Let the function
𝑖𝑛𝑐(𝑖𝑛𝑡𝑖) be the function that increases the integer 𝑖𝑛𝑡𝑖
by one. Numbers 1, 2, . . ., are modelled by functions
𝑖𝑛𝑐(0), 𝑖𝑛𝑐(1),. . ., respectively. The relation between
these integers is defined by 𝑖𝑛𝑡𝑖 < 𝑖𝑛𝑐(𝑖𝑛𝑡𝑖) and 𝑖𝑛𝑡𝑖 =
𝑖𝑛𝑡𝑖.

The internal operation of communication entities in the
system is modelled by processes. Processes can be specified
with the following syntax and inductive definition:

𝑃,𝑄, 𝑅 ::= 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑐 ⟨𝑡⟩ ⋅ 𝑃 |𝑐 (𝑥) ⋅ 𝑃| (𝑃 | 𝑄) |𝑃 [] 𝑄|]𝑛 ⋅ 𝑃 |

𝐼 (𝑦1, . . . , 𝑦𝑛) |

[𝑡𝑖 = 𝑡𝑗] 𝑃 else 𝑄 |

[𝑖𝑛𝑡𝑖 ≥ 𝑖𝑛𝑡𝑗] 𝑃 else 𝑄 |

[𝑖𝑛𝑡𝑖 > 𝑖𝑛𝑡𝑗] 𝑃 else 𝑄 | [𝑡𝑖 = 𝑡𝑗] 𝑃 | [𝑖𝑛𝑡𝑖 ≥ 𝑖𝑛𝑡𝑗] 𝑃

| [𝑖𝑛𝑡𝑖 > 𝑖𝑛𝑡𝑗] 𝑃 | nil | let (𝑥 = 𝑡) in 𝑃,

let (𝑒 = 𝑡) in 𝑃.

(5)

(i) The process 𝑐⟨𝑡⟩ ⋅𝑃 represents the sending of message
𝑡 on channel 𝑐, followed by the execution of𝑃. Process
𝑐(𝑥) ⋅ 𝑃 represents the receiving of some message,
which is bound to 𝑥 in 𝑃.

(ii) In the composition 𝑃 | 𝑄, processes 𝑃 and 𝑄 run in
parallel. Eachmay interact with the other on channels
known to both or with the outside world, indepen-
dently of the other. For example, the communication

between the sending process 𝑐⟨𝑡⟩ ⋅ 𝑃 and receiving
process 𝑐(𝑥) ⋅ 𝑃 can be described as the parallel
composition 𝑐⟨𝑡⟩ ⋅ 𝑃 | 𝑐(𝑥) ⋅ 𝑄. The communication
can be described as a reduction step of the parallel
composition, namely, 𝑐⟨𝑡⟩⋅𝑃 | 𝑐(𝑥)⋅𝑄 → 𝑃 | 𝑄{𝑡/𝑥}.
In the resulted process, 𝑐⟨𝑡⟩⋅𝑃 proceeds to𝑃 (meaning
that 𝑡 has been sent), while 𝑐(𝑥) ⋅𝑄 proceeds to𝑄{𝑡/𝑥}
(meaning that 𝑡 has been received and now it can be
used in 𝑄 for further computations).

(iii) A choice𝑃 []𝑄 can behave as either𝑃 or𝑄depending
on the first visible/invisible action of 𝑃 and 𝑄. If the
first action of 𝑃 is enabled but the first action of 𝑄’s
is not then 𝑃 is chosen, and vice versa. In case that
both actions are enabled the behavior is the same as a
nondeterministic choice.

(iv) A restriction]𝑛 ⋅ 𝑃 is a process that makes a new,
private (restricted) name 𝑛 and then behaves as𝑃.The
scope of 𝑛 is restricted to𝑃 and is available only for the
process within its scope. A private channel 𝑐 restricted
to 𝑃 is defined by]𝑐 ⋅ 𝑃, which does not allow the
attackers to eavesdrop on the channel.

(v) A typical way of specifying infinite behavior is by
using parametric recursive definitions, like in the 𝜋-
calculus [10]. Here 𝐼(𝑦1, . . . , 𝑦𝑛) is an identifier (or
invocation) of arity 𝑛. We assume that every such
identifier has a unique, possibly recursive, definition
𝐼(𝑥1, . . . , 𝑥𝑛)

𝑑𝑒𝑓

= 𝑃, where 𝑥𝑖’s are pairwise distinct.
The intuition is that 𝐼(𝑦1, . . . , 𝑦𝑛) behaves as 𝑃 with
each 𝑥𝑖 replaced by 𝑦𝑖, respectively.

(vi) In processes [𝑡𝑖 = 𝑡𝑗]𝑃 else 𝑄; [𝑖𝑛𝑡𝑖 ≥ 𝑖𝑛𝑡𝑗]𝑃 else
𝑄; and [𝑖𝑛𝑡𝑖 > 𝑖𝑛𝑡𝑗]𝑃 else 𝑄: if (𝑡𝑖 = 𝑡𝑗), (𝑖𝑛𝑡𝑖 ≥

𝑖𝑛𝑡𝑗) and (𝑖𝑛𝑡𝑖 > 𝑖𝑛𝑡𝑗), respectively, then process 𝑃 is
“activated”; else they behave as 𝑄. When 𝑄 is the nil
process, we simply remove the else-branch from the
processes.

(vii) The process nil does nothing and is used tomodel the
termination of a process behavior.

(viii) Finally, 𝑙𝑒𝑡 (𝑥 = 𝑡) 𝑖𝑛 𝑃 (or let (𝑒 = 𝑡) 𝑖𝑛 𝑃) mean that
every occurrence of 𝑥 (or 𝑒) in 𝑃 is bound to 𝑡.

We adopt the notion of environment, well-known in process
algebra,which is used tomodel the attacker(s)who can obtain
the (publicly) exchanged messages and can modify them.
Moreover, we adopt the notation of the extended process
and active substitution in the applied 𝜋-calculus [5] to model
the information that the attacker(s) (or the environment) is
getting to know during the system run. The definition of the
extended process is as follows:

𝐴, 𝐵, 𝐶 ::= 𝑃 |(𝐴 | 𝐵)|]𝑛 ⋅ 𝐴 |]𝑥 ⋅ 𝐴| {
𝑡

𝑥

} . (6)

(i) 𝑃 is a plain network that we already discussed above.
(ii) 𝐴 | 𝐵 is a parallel composition of two extended

process.

6 ISRN Sensor Networks

(iii)]𝑛 ⋅ 𝐴 is a restriction of the name 𝑛 to 𝐴.
(iv)]𝑥 ⋅ 𝐴 is a restriction of the variable 𝑥 to 𝐴.
(v) {𝑡/𝑥} means that the binding of 𝑡 to 𝑥, denoted by

{𝑡/𝑥}, is applied to any process that is in parallel com-
position with {𝑡/𝑥}. Intuitively, the binding applies to
any process that comes into contact with it. To restrict
the binding {𝑡/𝑥} to a process 𝑃, we use the variable
restriction]𝑥 over ({𝑡/𝑥} | 𝑃), namely,]𝑥 ⋅ ({𝑡/𝑥} |

𝑃). Using this, the equivalent definition of process
𝑐⟨𝑡⟩ ⋅ 𝑃 can be given by]𝑥 ⋅ (𝑐⟨𝑥⟩ ⋅ 𝑃 | {𝑡/𝑥}). Active
substitutions are always assumed to be cycle-free.
We define𝑓V(𝐴), 𝑏V(𝐴),𝑓𝑛(𝐴), and 𝑏𝑛(𝐴) for the sets
of free and bound variables and free and boundnames
of 𝐴, respectively. These sets are defined as follow:

𝑓V ({
𝑡

𝑥

})

𝑑𝑒𝑓

= 𝑓V (𝑡) ∪ {𝑥} , 𝑓𝑛 ({

𝑡

𝑥

})

𝑑𝑒𝑓

= 𝑓𝑛 (𝑡) .

𝑏V ({
𝑡

𝑥

})

𝑑𝑒𝑓

= 0, 𝑏𝑛 ({

𝑡

𝑥

})

𝑑𝑒𝑓

= 𝑏𝑛 (𝑡) .

(7)

The concept of bound and free values is similar to
local and global scope in programming languages.
The scope of names and variables is delimited by
binders 𝑐(𝑥) (i.e., input) and]𝑛 or]𝑥 (i.e., restriction).
The set of bound names 𝑏𝑛(𝐴) contains every name 𝑛
which is under the restriction]𝑛 inside 𝐴. The set of
bound variables 𝑏V(𝐴) consists of all those variables
𝑥 occurring in 𝐴 that are bound by restriction]𝑥 or
input 𝑐(𝑥). Further, we define the set of free names
and the set of free variables. The set of free names
in 𝐴, denoted by 𝑓𝑛(𝐴), consists of those names 𝑛
occurring in 𝐴 that are not restricted names. The
set of free variables 𝑓V(𝐴) contains the variables 𝑥
occurring in𝐴which are not restricted variables (]𝑥)
or input variable (𝑐(𝑥)). A plain process 𝑃 is closed
if it contains no free variable. An extended process
is closed when every variable 𝑥 is either bound or
defined by an active substitution.

As in the applied 𝜋-calculus, a frame (𝜑) is an extended
process built up from the nil process and active sub-
stitutions of the form {𝑡/𝑥} by parallel composition and
restrictions. Formally, the frame 𝜑(𝐴) of the extended
process, 𝐴 =]𝑛1 ⋅ ⋅ ⋅ 𝑛𝑘({𝑡1/𝑥1}| ⋅ ⋅ ⋅ |{𝑡𝑛/𝑥𝑛} | 𝑃), is
]𝑛1 . . . 𝑛𝑘({𝑡1/𝑥1}| ⋅ ⋅ ⋅ |{𝑡𝑛/𝑥𝑛}).The domain of the frame 𝜑(𝐴)
(denoted by 𝑑𝑜𝑚(𝐴)) is the set {𝑥1, . . . , 𝑥𝑛}.

Intuitively, the frame 𝜑(𝐴) accounts for the static knowl-
edge exposed by 𝐴 to its environment but not for dynamic
behavior. The frame allows access to terms that the environ-
ment cannot construct. For instance, after the term 𝑡 (not
available for the environment) is output in 𝑃 resulting in 𝑃󸀠

|

{𝑡/𝑥}, 𝑡 becomes available for the environment. Finally, let 𝜎
range over substitutions (i.e., variable bindings). We write 𝜎𝑡
for the result of applying 𝜎 to the variables in 𝑡.

3.1.1. Labeled Transition System (𝛼󳨀→). The operational seman-
tics for processes is defined as a labeled transition system

(P,G, →) where P represents a set of extended processes,
G is a set of labels, and → ⊆ P ×G ×P.

Specifically, the labeled semantics defines a ternary rela-
tion, written as 𝐴 𝛼

󳨀→ 𝐵, where 𝛼 is a label of the form 𝜏,
𝑐(𝑡), 𝑐⟨𝑥⟩,]𝑥 ⋅ 𝑐⟨𝑥⟩ where 𝑥 is a variable of base type and
𝑡 is a term. The transition 𝐴

𝜏
󳨀→ 𝐵 represents a silent move

that is used to model the internal operation/computation of
processes. These internal operations, such as the verification
stepsmade on the received data, are not visible for the outside
world and, hence, to the attacker(s). The transition 𝐴

𝑐(𝑡)

󳨀󳨀→ 𝐵

means that the process𝐴 performs an input of the term 𝑡 from
the environment on the channel 𝑐 and the resulting process
is 𝐵. The label 𝑐⟨𝑥⟩ is for output action of a free variable 𝑥.
Finally, the label 𝛼 is]𝑥 ⋅ 𝑐⟨𝑥⟩ when a term is output on 𝑐. In
the following, we give some examples for labeled transitions.

Silent Transition (Internal Computations/Verification) Rules
for Processes

(Let) let 𝑥 = 𝑡 in 𝑃

𝜏
󳨀→ 𝑃{𝑡/𝑥}; let 𝑒 = 𝑡 in 𝑃

𝜏
󳨀→ 𝑃{𝑡/𝑒}.

(If1) [𝑡𝑖 = 𝑡𝑗]𝑃 else 𝑄 𝜏
󳨀→ 𝑃; [𝑡𝑖 = 𝑡𝑗]𝑃

𝜏
󳨀→ 𝑃 (if 𝑡𝑖 = 𝑡𝑗).

(If2) [𝑡𝑖 = 𝑡𝑗]𝑃 else 𝑄 𝜏
󳨀→ 𝑄; [𝑡𝑖 = 𝑡𝑗]𝑃

𝜏
󳨀→ nil (if 𝑡𝑖 ̸= 𝑡𝑗).

(If3) [𝑖𝑛𝑡𝑖 > 𝑖𝑛𝑡𝑗]𝑃 else 𝑄 𝜏
󳨀→ 𝑃; [𝑖𝑛𝑡𝑖 > 𝑖𝑛𝑡𝑗]𝑃

𝜏
󳨀→

𝑃 (if 𝑖𝑛𝑡𝑖 > 𝑖𝑛𝑡𝑗).

(If4) [𝑖𝑛𝑡𝑖 > 𝑖𝑛𝑡𝑗]𝑃 else 𝑄 𝜏
󳨀→ 𝑄; [𝑖𝑛𝑡𝑖 > 𝑖𝑛𝑡𝑗]𝑃

𝜏
󳨀→

nil (if 𝑖𝑛𝑡𝑖 ≤ 𝑖𝑛𝑡𝑗).

Action Transition (Message Input/Output) Rules for Processes

(In) 𝑐(𝑥) ⋅ 𝑃
𝑐(𝑡)

󳨀󳨀→ 𝑃{𝑡/𝑥};

(Open) if 𝐴
𝑐⟨𝑢⟩

󳨀󳨀󳨀→ 𝐴
󸀠
, 𝑢 ̸= 𝑐 then]𝑢 ⋅ 𝐴

]𝑢.𝑐⟨𝑢⟩
󳨀󳨀󳨀󳨀󳨀→ 𝐴

󸀠.

Let binds a variable to a term in a process; rules If1–If4 check
the relation of two terms or integers. Rule (In) says that, when
a term 𝑡 is received, it is bound to every occurrence of 𝑥 in
𝑃. Rule (Open) defines the output of a restricted name. Note
that these rules are examples from the full list of rules, which
can be found in [11]. From rule (Open) and the fact that]𝑥 ⋅
(𝑐⟨𝑥⟩⋅𝑃|{𝑡/𝑥}) is equivalent to 𝑐⟨𝑡⟩⋅𝑃, we have two additional
output rules

(Out-1) 𝑐⟨𝑡⟩ ⋅ 𝑃
]𝑥⋅𝑐⟨𝑥⟩
󳨀󳨀󳨀󳨀󳨀→ {𝑡/𝑥} | 𝑃,

(Out-2)]𝑛 ⋅ (𝑐⟨𝑡⟩ ⋅ 𝑃)
]𝑥.𝑐⟨𝑥⟩
󳨀󳨀󳨀󳨀󳨀→]𝑛 ⋅ ({𝑡/𝑥} | 𝑃).

For instance, based on the labeled transition system, we
have the following transitions:

𝑐 ⟨𝑡1⟩ ⋅ 𝑐 ⟨𝑡2⟩ ⋅ 𝑃

]𝑥
1
⋅𝑐⟨𝑥1⟩

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ {

𝑡1

𝑥1

} | 𝑐 ⟨𝑡2⟩ ⋅ 𝑃

]𝑥
2
⋅𝑐⟨𝑥2⟩

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ {

𝑡1

𝑥1

} | {

𝑡2

𝑥2

} | 𝑃.

(8)

ISRN Sensor Networks 7

After sending the terms 𝑡1 and 𝑡2 on public channel 𝑐

(modeled by action transitions
]𝑥
1
⋅𝑐⟨𝑥
1
⟩

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ and
]𝑥
2
⋅𝑐⟨𝑥
2
⟩

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→, resp.),
𝑡1 and 𝑡2 become available for the environment (attacker),
whose fact is specified by the active substitutions {𝑡1/𝑥1} and
{𝑡2/𝑥2}.

Similarly as in [5], we define an equational theory 𝐸𝑞, that
is, a set of equations of the form 𝑡1 = 𝑡2. This allows us to
define cryptographic primitives and operations, such as one-
way hash function and MAC computation. For instance, the
function Tuple models a tuple of 𝑛 terms 𝑡1, 𝑡2, . . . , 𝑡𝑛, and
its inverse function i returns the 𝑖th element of a tuple of 𝑛
elements, where 𝑖 ∈ {1, . . . , 𝑛}. We abbreviate the tuple as
(𝑡1, 𝑡2, . . . , 𝑡𝑛) in rest of the paper:

𝑇𝑢𝑝𝑙𝑒 (𝑡1, 𝑡2, . . . , 𝑡𝑛) ; 𝑖 (𝑡1, 𝑡2, . . . , 𝑡𝑛) = 𝑡𝑖. (9)

We model the keyed hash or MAC function with sym-
metric key 𝐾 with the binary function MAC. The MAC
verification is defined in the form of the following equation:

𝑀𝐴𝐶 (𝑡, 𝐾) ; 𝐶ℎ𝑒𝑐𝑘𝑀𝐴𝐶 (𝑀𝐴𝐶 (𝑡, 𝐾) , 𝐾) = 𝑜𝑘 (10)

Function 𝑀𝐴𝐶 computes the message authentication
code of message 𝑡 using secret key𝐾.The shared key between
node 𝑙𝑖 and node 𝑙𝑗 ismodelled by function𝐾(𝑙𝑖, 𝑙𝑗).TheMAC
verification defined by the function 𝐶ℎ𝑒𝑐𝑘𝑀𝐴𝐶 is successful
(returns a special name 𝑜𝑘) if the keys match each other.

We can also model many other cryptographic operations
and primitives such as symmetric and asymmetric encryp-
tion, digital signature, and one-way hash function. However,
in this paper we omit to detail them because we do not use
these operations. An interested reader can find more details
in our longer report [11].

4. 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏
𝑡𝑖𝑚𝑒

: Extending 𝑐𝑟𝑦𝑝𝑡 with Timed and
Probabilistic Syntax and Semantics

We propose a time and probabilistic extension to 𝑐𝑟𝑦𝑝𝑡,
denoted by 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
. Our calculus is tailored for the verifi-

cation of security protocols, especially for verifying protocols
that need to cache data, such as transport protocols for
wireless sensor networks. This is a new probabilistic timed
calculus for cryptographic protocols and, to the best of our
knowledge, the first of its kind. The design methodology of
𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
is based on the terminology proposed in previous

works, it can be seen as the modification and extension of
them and contains some novelties.

Namely, the timed extension of 𝑐𝑟𝑦𝑝𝑡 is based on the
timed calculus proposed in [7, 12], and it is also based on
the syntax and semantics of the well-known timed automata.
The probabilistic extension is inspired by the syntax and
semantics of the probabilistic extension of the applied 𝜋-
calculus proposed in [6] and the probabilistic automata in
[7]. The main difference between our work and the related
methods is that we focus on extending 𝑐𝑟𝑦𝑝𝑡, which is
different from the calculus used in those works. In addition,
we combine both timed and probabilistic elements at the
same time. Finally, we also propose a new definition called

weak probabilistic timed bisimilarity for proving the existence
of the attacks against security protocols.

The concept of 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏
𝑡𝑖𝑚𝑒

is based on the concept of prob-
abilistic timed automata; hence, the correctness of 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒

comes from the correctness of the automata because the
semantics of 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
is equivalent to the semantics of the

probabilistic timed automata, and we show that each process
in 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
has an associated probabilistic timed automaton.

Basic Time Concepts. First of all, we provide some notations
related to clocks and time constructs, borrowed from the
concept of timed automata. Assume a set C of nonnegative
real valued variables called clocks. A clock valuation over C
is a mapping V : C 󳨃→ R≥0 assigning nonnegative real values
to clocks. For a time value 𝑑 ∈ R≥0 let V + 𝑑 denote the clock
valuation such that (V + 𝑑)(𝑥𝑐) = V(𝑥𝑐) + 𝑑, for each clock
𝑥𝑐 ∈ C.

The set Φ(𝐶) of clock constraints is generated by the
following grammar:

𝜙 ::= 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒 | 𝑥𝑐 ∼ 𝑁 | 𝜙1 ∧ 𝜙2 | ¬𝜙, (11)

where 𝜙 ranges over Φ(𝐶), 𝑥𝑐 ∈ C, 𝑁 is a real number, and
∼ ∈ {<, ≤, ≥, >}. We write V ⊨ 𝜙 when the valuation V satisfies
the constraint 𝜙. Formally, V ⊨ 𝑡𝑟𝑢𝑒; V ⊨ 𝑥𝑐 ∼ 𝑁 if and only if
V(𝑥𝑐) ∼ 𝑁; V ⊨ 𝜙1 ∧ 𝜙2 if and only if V ⊨ 𝜙1 ∧ V ⊨ 𝜙2.

4.1. Syntax. In the following, we turn to define probabilistic
timed processes for 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
:

𝐴𝑝𝑡 ::= 𝐴 | 𝛼
∗
≺𝜋𝐴𝑝𝑡 | 𝜙 󳨅→ 𝐴𝑝𝑡 |

󵄩
󵄩
󵄩
󵄩
𝐶𝑅

󵄩
󵄩
󵄩
󵄩
𝐴𝑝𝑡 |

𝐴
1

𝑝𝑡 []
𝐴
2

𝑝𝑡
| 𝐴

1

𝑝𝑡
⊕𝑝𝐴

2

𝑝𝑡
| (𝐴

1

𝑝𝑡
| 𝐴

2

𝑝𝑡
) | 𝑋𝑝𝑡.

(12)

We will discuss the meaning of 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏
𝑡𝑖𝑚𝑒

processes by
showing the connection between the modeling elements of a
probabilistic timed automata and 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
. For this purpose,

we recall the definition of probabilistic timed automaton [12]:
a probabilistic timed automaton Aut is defined by the tuple
(L, 𝑙0, ∑,C,I𝑛V, 𝜅, 𝐸, Π), where

(i) L is a finite set of locations and 𝑙0 is the initial
location;

(ii) ∑ is a set of actions that range over act;
(iii) C is a finite set of clocks;
(iv) I𝑛V:L 󳨃→ Φ(C) is a function that assigns location to

a formula, called a location invariant, that must hold
at a given location;

(v) 𝜅:L 󳨃→ 2
C is the set of clock resets to be performed

at the given locations;
(iv) 𝐸 ⊆ L × ∑×Φ(C) × B × L is the set of edges; we

write 𝑙
𝑎𝑐𝑡,𝜙

󳨀󳨀󳨀→ 𝑙
󸀠 when (𝑙, act, 𝜙, 𝐵, 𝑙󸀠) ∈ 𝐸, where act, 𝜙

are the action and the time constraint defined on the
edge and 𝐵 is the set of the clocks to be reset at 𝑙󸀠;

(iiv) Π = {𝜋1, . . . , 𝜋𝑛} is a finite set of probability distri-
butions; each 𝜋𝑖 is a function 𝜋𝑖 : 𝐸 󳨃→ [0, 1] for

8 ISRN Sensor Networks

any 𝑖 = {1, . . . , 𝑛}, where 𝜋𝑖(𝑔) is the probability of
an edge 𝑔 according to distribution 𝜋𝑖 and the sum of
the edges from a given location 𝑙 is 1.

Let us denote the set of processes in 𝑐𝑟𝑦𝑝𝑡
𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
by A𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
,

and we let 𝐴𝑙

𝑝𝑡
range over processes in A𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
. In 𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
,

each probabilistic timed process 𝐴𝑙

𝑝𝑡
corresponds to a loca-

tion 𝑙 in an automaton, such that there is an initial process
𝐴
𝑙
0

𝑝𝑡 for location 𝑙0. The set of actions ∑ corresponds to the
set of actions known in 𝑐𝑟𝑦𝑝𝑡. The set of clocks to be reset
at a given location 𝑙, 𝜅(𝑙), is defined by the corresponding
𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
process ‖𝐶𝑅‖𝐴

𝑙

𝑝𝑡
.The clock invariant at the location

𝑙 corresponds to the process 𝜙 ⊳ 𝐴
𝑙

𝑝𝑡
, and the edge guard can

be defined by 𝜙 󳨅→ 𝐴
𝑙

𝑝𝑡
. More specifically,

(i) 𝐴𝑝𝑡 can be an extended process 𝐴 without any time
construct;

(ii) 𝛼∗≺𝜋𝐴𝑝𝑡 performs 𝛼∗ as the first (not timed) action
with the distribution 𝜋, at any time, and then it
behaves like 𝐴𝑝𝑡; note that 𝛼

∗ can be]𝑥.𝑐⟨𝑥⟩, 𝑐⟨𝑢⟩,
𝑐(𝑡), and the silent action 𝜏; for instance, if 𝐴𝑝𝑡 is
𝑐(𝑡).𝑃, where𝑃 is the plain process in 𝑐𝑟𝑦𝑝𝑡, then 𝛼∗ is
𝑐(𝑡); this process corresponds to the automaton edge

𝑙

𝛼
∗
,𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀→𝜋𝑙
󸀠, where 𝛼∗≺𝜋𝐴𝑝𝑡 and 𝐴𝑝𝑡 corresponds to

locations 𝑙 and 𝑙󸀠, respectively;
(iii) 𝜙 󳨅→ 𝐴𝑝𝑡 represents a time guard of an action

and says that the first action 𝛼
∗ of 𝐴𝑝𝑡 is performed

if the guard (time constraint) 𝜙 holds; this process

intends to model the edge 𝑙
𝛼
∗
,𝜙

󳨀→𝜋 𝑙
󸀠 in the automaton

syntax, where 𝐴𝑝𝑡 corresponds to 𝑙, while the explicit
appearance of the target location 𝑙

󸀠 is omitted in the
process; in the transition, the action 𝛼∗ is performed
according to the distribution 𝜋; when an action has
a time guard true it means that the action can be
performed at any time;

(iv) 𝜙 ⊳ 𝐴𝑝𝑡 represents a clock invariant over 𝐴𝑝𝑡; this
process corresponds to the location invariant in an
automaton; like in timed automaton, this means that
the system cannot “stay” in process𝐴𝑝𝑡 once the time
constraint 𝜙 becomes invalid; if it cannot move from
this process via any transition, then it is a deadlock
situation; invariants can be used to model timeout;

(v) in the timed process ‖𝐶𝑅‖𝐴𝑝𝑡, first, the clocks in the
set 𝐶𝑅 are reset and then it behaves like 𝐴𝑝𝑡 with the
reset clock values;

(vi) 𝐴1

𝑝𝑡
[]𝐴

2

𝑝𝑡
and 𝐴

1

𝑝𝑡
| 𝐴

2

𝑝𝑡
describe the first-action

choice and the parallel composition of two processes,
respectively; process 𝐴1

𝑝𝑡
⊕𝑝𝐴

2

𝑝𝑡
behaves like 𝐴1

𝑝𝑡
with

probability 𝑝, and it behaves as 𝐴2

𝑝𝑡
with (1 − 𝑝);

𝐴
1

𝑝𝑡
[] 𝐴

2

𝑝𝑡
corresponds to a location 𝑙 from which

two edges start, and they are chosen based on the
first enable action of 𝐴1

𝑝𝑡
and 𝐴

2

𝑝𝑡
; for parallel com-

position, we define 𝐴1

𝑝𝑡
| 𝐴

2

𝑝𝑡
as a location, instead

of the parallel composition of two automata; process
𝐴
1

𝑝𝑡
⊕𝑝 𝐴

2

𝑝𝑡
corresponds to a location 𝑙 from which

two edges start: 𝑙
𝛼
∗
,𝜙

󳨀→𝑝 𝑙1 and 𝑙
𝛼
∗
,𝜙

󳨀󳨀󳨀→1−𝑝𝑙2, where 𝑙1 and
𝑙2 correspond to 𝐴1

𝑝𝑡
and 𝐴2

𝑝𝑡
, respectively;

(vii) 𝑋𝑝𝑡 is a process variable to which one of the timed
processes 𝜙 󳨅→ 𝐴𝑝𝑡, 𝜙 ⊳ 𝐴𝑝𝑡, and ‖𝐶𝑅‖𝐴𝑝𝑡 can
be bound; Note that this differs from [10], as for our
problem, we restrict process variables (𝑋𝑝𝑡) to be only
those processes that have time constructs defined on
it; the reason we do this is that we want to avoid the
recursive process invocation for extended processes,
which may lead to an infinite invocation cycle (e.g.,
𝐴 = {𝑡/𝑥}|𝐴, where the process variable is bound to
𝐴); hence it is not well-defined.

Definition 1. We extend the definition of free and bound
variables in Section 3 with the set of clock variables. The
set of free variables and bound variables of 𝐴𝑝𝑡, denoted by
𝑓V𝑐(𝐴𝑝𝑡) and 𝑏V𝑐(𝐴𝑝𝑡), respectively, are as follows.

(i) 𝑓V𝑐(𝜙 󳨅→ 𝐴𝑝𝑡) = clock(𝜙) ∪ 𝑓V𝑐(𝐴𝑝𝑡): edge guards
contains free clock variables.

(ii) 𝑓V𝑐(𝜙 ⊳ 𝐴𝑝𝑡) = clock(𝜙) ∪ 𝑓V𝑐(𝐴𝑝𝑡): invariant
contains free clock variables.

(iii) 𝑏V𝑐(‖𝐶𝑅‖𝐴𝑝𝑡) = 𝑏V𝑐(𝐴𝑝𝑡) ∪ 𝐶𝑅: clocks to be reset are
bound clock variables.

(iv) 𝑓V𝑐(𝐴1

𝑝𝑡
[] 𝐴

2

𝑝𝑡
) = 𝑓V𝑐(𝐴1

𝑝𝑡
) ∪ 𝑓V𝑐(𝐴2

𝑝𝑡
);

𝑏V𝑐(𝐴1

𝑝𝑡
[] 𝐴

2

𝑝𝑡
) = 𝑏V𝑐(𝐴1

𝑝𝑡
) ∪ 𝑏V𝑐(𝐴2

𝑝𝑡
).

(v) 𝑓V𝑐(𝐴1

𝑝𝑡
| 𝐴

2

𝑝𝑡
) = 𝑓V𝑐(𝐴1

𝑝𝑡
) ∪ 𝑓V𝑐(𝐴2

𝑝𝑡
); 𝑏V𝑐(𝐴1

𝑝𝑡
|

𝐴
2

𝑝𝑡
) = 𝑏V𝑐(𝐴1

𝑝𝑡
) ∪ 𝑏V𝑐(𝐴2

𝑝𝑡
).

(iv) 𝑓V𝑐(𝐴1

𝑝𝑡
⊕𝑝 𝐴

2

𝑝𝑡
) = 𝑓V𝑐(𝐴1

𝑝𝑡
) ∪ 𝑓V𝑐(𝐴2

𝑝𝑡
);

𝑏V𝑐(𝐴1

𝑝𝑡
⊕𝑝 𝐴

2

𝑝𝑡
) = 𝑏V𝑐(𝐴1

𝑝𝑡
) ∪ 𝑏V𝑐(𝐴2

𝑝𝑡
).

The free and bound clock variables of choices and parallel
composition are the union of the free and bound clock
variables of each process. The reason that the set of clock
variables is divided into bound and free parts is to avoid
conflicts of clock valuations. For instance, let us consider the
process 𝑥𝑐 ≤ 8 ⊳ (‖𝑥𝑐‖𝐴𝑝𝑡), in which the clock 𝑥𝑐 is reset,
and this affects the invariant 𝑥𝑐 ≤ 8. Further, in the parallel
composition (‖𝑥𝑐‖𝐴𝑝𝑡)|(𝑥𝑐 ≤ 8 ⊳ 𝐴

󸀠

𝑝𝑡
) the clock variable 𝑥𝑐

is the shared variable of the two processes; however, the reset
of 𝑥𝑐 affects the behavior of process (𝑥𝑐 ≤ 8) ⊳ 𝐴

󸀠

𝑝𝑡
. This is

undesirable since the operational semantics of a process also
depends on the behavior of the environment (which is hard
to control).

Hence, we define the notion of processes that do not
contain any conflict of clock variables, using the following
inductive definition and the predicate 𝑛𝑐V (which refers to
”non-conflict of clock variables”):

(1) 𝑛𝑐V(𝐴);
(2) 𝑛𝑐V(𝑋𝑝𝑡);
(3) 𝑛𝑐V(𝛼∗≺𝜋𝐴𝑝𝑡) if and only if 𝑛𝑐V(𝐴𝑝𝑡);

ISRN Sensor Networks 9

(4) 𝑛𝑐V(‖𝐶𝑅‖𝐴𝑝𝑡) if and only if 𝑛𝑐V(𝐴𝑝𝑡);
(5) 𝑛𝑐V(𝜙 󳨅→ 𝐴𝑝𝑡);
(6) 𝑛𝑐V(𝜙 ⊳ 𝐴𝑝𝑡) : in both cases, if and only if 𝑛𝑐V(𝐴𝑝𝑡) ∧

(𝑐𝑙𝑜𝑐𝑘(𝜙) ∩ 𝜅(𝐴𝑝𝑡) = 0).

Rule 1 holds because an extended process 𝐴 does not
include any clock variables. Rule 2 says that the recursive
process invocation of plain processes is nonconflict because a
plain process does not contain clock variables. Rule 3 comes
from the fact that action 𝛼∗ is free from clock variables. Rule
4 says that the outermost clock resettings do not cause the
conflict of variables in process Apt. Rules 5 and 6 say that if
guard and invariant constructs are placed outside then their
clock variables cannot be reset within 𝐴𝑝𝑡, to avoid conflict.
For the full list of 𝑛𝑐V rules please check our report [11].

In the following, for each 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏
𝑡𝑖𝑚𝑒

process we add rules
that associate each process with the invariant and resetting
functions 𝜕 and 𝜅, respectively. Note that we only give the two
most important rules in this paper; the full list can be found
in [11]. Consider the following:

(rk) 𝜅(‖𝐶𝑅‖𝐴𝑝𝑡) = 𝐶𝑅 ∪ 𝜅(𝐴𝑝𝑡);
(ri) 𝜕(𝜙 ⊳ 𝐴𝑝𝑡) = 𝜕(𝐴𝑝𝑡) ∧ 𝜙.

Rule rk says that the set of clocks to be reset in 𝜅(‖𝐶𝑅‖𝐴𝑝𝑡)

is 𝐶𝑅 and the clock resets occur in 𝐴𝑝𝑡, and rule ri says that
the invariant of process 𝜙 ⊳ 𝐴𝑝𝑡 is the intersection of 𝜙 and
the invariant predicate in 𝐴𝑝𝑡.

4.2. Operational Semantics. The formal semantics of
𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
follows the semantics of probabilistic timed

automata. Namely, a state 𝑠 is defined by the pair (𝐴𝑝𝑡, V),
where V is the clock valuation at the location with label 𝐴𝑝𝑡

with the time issues defined at the location. The initial state
𝑠0 consists of the initial process and initial clock valuation
(𝐴0

𝑝𝑡
, V0). Note that the initial process 𝐴

0

𝑝𝑡
is the initial status

of a system behavior, while V0 typically contains the clocks
in the reset state. The operational semantics of 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
is

defined by a probabilistic timed transition system (PTTS).
A probabilistic timed transition system can be seen

as the labeled transition system extended with time and
probabilistic constructs. In our model, we follow the concept
of [7, 12], but we also improve them with language elements
and a new definition of bisimilarity for proving/refuting the
security properties of protocols.

Definition 2. Let ∑ be the set of actions. A probabilistic
timed transition system is defined as the tuple 𝑃𝑇𝑇𝑆 =

(S, ∑ ×R≥0
× Π, 𝑠0, → 𝑃𝑇𝑇𝑆,U, 𝐹), where

(i) S is a set of states, and 𝑠0 is an initial state;
(ii) → 𝑃𝑇𝑇𝑆 ⊆ S×(∑×R≥0

)×Π×S is the set of probabilis-
tic timed labeled transitions; a transition is defined
between the source and target state, and the label of
the transition is composed of the actions, the time
stamp (duration), and the probability of the action;
when (𝛼∗, 𝑑, 𝜋) ∈ ∑×R≥0

×Πwedenote the transition

from 𝑠 to 𝑠󸀠 by 𝑠
𝛼
∗
(𝑑),𝜋

󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆𝑠
󸀠; the appearance of 𝜋 on

the arrowmeans that the transition is performed with
the probability according to the distribution 𝜋; the
label 𝛼∗(𝑑) says that performing either a visible 𝛼 or
invisible (silent) 𝜏 action (𝛼∗ = 𝛼∪𝜏) consumes𝑑 time
units; we interpret 𝑑 as the time for executing action
𝛼
∗, and there is no idling time at 𝑠 before performing

an action;
(iii) U ⊆ R≥0

× S is the until predicate and is defined at
a state 𝑠 with a time duration 𝑑; whenever (𝑑, 𝑠) ∈ U
we use the notationU𝑑;

(iv) the scheduler 𝐹 chooses nondeterministically the
distribution of action transition steps.

The probabilistic timed transition system 𝑃𝑇𝑇𝑆 should
satisfy the two axioms, Until and Delay (in both cases ⇒
denotes logical implication):

(𝑈𝑛𝑡𝑖𝑙) for all 𝑑, 𝑑󸀠 ∈ R≥0,U𝑑(𝑠)∧(𝑑
󸀠
< 𝑑) ⇒ U𝑑󸀠(𝑠),

(𝐷𝑒𝑙𝑎𝑦) for all𝑑 ∈ R≥0, 𝑠
𝛼
∗
(𝑑),𝜋

󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆𝑠
󸀠 for some 𝑠󸀠 ⇒

U𝑑(𝑠).

These two axioms define formally the meaning of the
notions delay and until. Basically, axiom Until says that if the
system stays in state 𝑠 until 𝑑 time units then it also stays
in this state before 𝑑. While the axiom Delay says that if the
system performs an action 𝛼 at time 𝑑 then it must wait until
𝑑. Note that the meaning of until differs from time invariant,
because, in case of until, the system waits (stays idled) at
least 𝑑 time units in a given state, whilst time invariant says
that the system must leave a given state when 𝑑 time units
have elapsed (if it cannot move from the state then we get
deadlock).

In addition,U are the smallest set satisfying the following
rules:

(u1) U𝑑(𝐴, V);
(u2) U𝑑(𝛼

∗
≺𝜋𝐴𝑝𝑡, V);

(u3) U𝑑(𝜙 󳨅→ 𝐴𝑝𝑡, V) ifU𝑑(𝐴𝑝𝑡, V);
(u4) U𝑑(‖𝐶𝑅‖𝐴𝑝𝑡, V) ifU𝑑(𝐴𝑝𝑡, V[𝑟𝑠𝑡 : 𝐶𝑅]);
(u5) U𝑑(𝜙 ⊳ 𝐴𝑝𝑡, V) ifU𝑑(𝐴𝑝𝑡, V)∧ ⊨ (V + 𝑑)(𝜙);

(u6) U𝑑(𝐴
1

𝑝𝑡
[] 𝐴

2

𝑝𝑡
, V) ifU𝑑(𝐴

1

𝑝𝑡
, V) ∨U𝑑(𝐴

2

𝑝𝑡
, V);

(u7) U𝑑(𝐴
1

𝑝𝑡
| 𝐴

2

𝑝𝑡
, V) ifU𝑑(𝐴

1

𝑝𝑡
, V) ∨U𝑑(𝐴

2

𝑝𝑡
, V);

(u8) U𝑑(𝐴
1

𝑝𝑡
⊕𝑝 𝐴

2

𝑝𝑡
, V) ifU𝑑(𝐴

1

𝑝𝑡
, V) ∨U𝑑(𝐴

2

𝑝𝑡
, V);

(u9) U𝑑(𝑋𝑝𝑡, V) ifU𝑑(𝑃[𝑃/𝑋𝑝𝑡], V).

Rules (u1-u2) are theUntil axioms for the states (𝐴, V) and
(𝛼∗≺𝜋𝐴𝑝𝑡, V). In u3 the system stays in the state (𝜙 󳨅→ 𝐴𝑝𝑡,
V) until 𝑑 time units if this is valid to the state (𝐴𝑝𝑡, V) as
well. Rules (u4-u5) come from the definition of the clock
reset and invariant. In rule (u4) V[𝑟𝑠𝑡 : 𝐶𝑅] represents the
clock valuation V where the clocks in 𝐶𝑅 are reset. Rules (u6–
u8) say that the system stays until 𝑑 time units at the state
with 𝐴

1

𝑝𝑡
[]𝐴

2

𝑝𝑡
, 𝐴1

𝑝𝑡
|𝐴

2

𝑝𝑡
, and 𝐴

1

𝑝𝑡
⊕𝑝𝐴

2

𝑝𝑡
if it stays 𝑑 time in

the state with one of the two processes 𝐴1

𝑝𝑡
and 𝐴2

𝑝𝑡
. Rule u9

is concerned with the until predicate for (recursive) process

10 ISRN Sensor Networks

variable 𝑋𝑝𝑡, which comes directly from the definition of
recursive process invocation. Note that 𝑃 is a plain process
defined in 𝑐𝑟𝑦𝑝𝑡.

We define the satisfaction predicate ⊨, ⊨⊆ Φ(C), on clock
constraints. For each 𝜙 ∈ Φ(C) we use the shorthand ⊨ V(𝜙)
if and only if V satisfies 𝜙, for all valuation V. The set of
past closed constraint, Φ(C) ⊆ Φ(C), is used for defining
semantics of location invariant, for all V ∈ V, 𝑑 ∈ R≥0:
⊨ (V + 𝑑)(𝜙) ⇒⊨ (V)(𝜙). Intuitively, this says that if the
valuation V + 𝑑, which is defined as V(𝑥𝑐) + 𝑑 for all clocks 𝑥𝑐,
satisfies the constraint 𝜙 then so does V. We adopt the variant
of time automata used in [7], where location invariant and
clock resets are defined as functions 𝜕 and 𝜅 assigning a set of
clock constraints Φ(C) and a set of clocks to be resetR(C),
respectively, to a 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
process.

The probabilistic timed transition (action) rules for
𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
are given as follows. We provide the connection

of each PTTS transition with the edge syntax well-known in
probabilistic timed automata. Consider the following:

(a1) (𝛼∗≺𝜋𝐴𝑝𝑡, V)
𝛼
∗
(𝑑),𝜋

󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆(𝐴𝑝𝑡, V + 𝑑) if 𝛼
∗
≺𝜋

𝐴𝑝𝑡

𝛼
∗
,𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀→
𝜋
𝐴𝑝𝑡;

(a2) (‖𝐶𝑅‖𝐴𝑝𝑡, V)
𝛼
∗
(𝑑),𝜋

󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆(𝐴
󸀠

𝑝𝑡
, V󸀠) if (𝐴𝑝𝑡, V[𝑟𝑠𝑡 : 𝐶𝑅])

𝛼
∗
(𝑑),𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝜋(𝐴
󸀠

𝑝𝑡
, V󸀠);

(a3) (𝜙 󳨅→ 𝐴𝑝𝑡, V)
𝛼
∗
(𝑑),𝜋

󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆(𝐴
󸀠

𝑝𝑡
, V󸀠) if (𝐴𝑝𝑡, V)

𝛼
∗
(𝑑),𝜙

󳨀󳨀󳨀󳨀󳨀→
𝜋

(𝐴
󸀠

𝑝𝑡
, V󸀠) ∧ (V + 𝑑)(𝜙);

(a4) (𝜙 ⊳ 𝐴𝑝𝑡, V)
𝛼
∗
(𝑑),𝜋

󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆(𝐴
󸀠

𝑝𝑡
, V󸀠) if (𝐴𝑝𝑡, V)

𝛼
∗
(𝑑),𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝜋(𝐴
󸀠

𝑝𝑡
, V󸀠) ∧ (V + 𝑑)(𝜙);

(a5) (𝐴𝑝𝑡, V)
𝛼
∗
(𝑑),𝜋

󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆(𝜙 ⊳ 𝐴
󸀠

𝑝𝑡
, V󸀠) if (𝐴𝑝𝑡, V)

𝛼
∗
(𝑑),𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝜋

(𝐴
󸀠

𝑝𝑡
, V󸀠) ∧ (V + 𝑑)(𝜙);

(a6) (𝐴1

𝑝𝑡
[] 𝐴

2

𝑝𝑡
, V)

𝛼
∗
(𝑑),𝜋

󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆(𝐴
1
󸀠

𝑝𝑡
, V󸀠) if (𝐴

1

𝑝𝑡
, V)

𝛼
∗
(𝑑),𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝜋(𝐴
1
󸀠

𝑝𝑡
, V󸀠);

(𝑎7/𝑎) (𝐴1

𝑝𝑡
⊕𝑝𝐴

2

𝑝𝑡
, V)

𝛼
∗
(𝑑),𝜋(𝑝)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆(𝐴
1
󸀠

𝑝𝑡
, V󸀠) if 𝐴

1

𝑝𝑡
⊕𝑝𝐴

2

𝑝𝑡

𝛼
∗
,𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀→𝜋(𝑝)𝐴
1
󸀠

𝑝𝑡
;

(𝑎7/𝑏) (𝐴1

𝑝𝑡
⊕𝑝𝐴

2

𝑝𝑡
, V)

𝛼
∗
(𝑑),𝜋(1−𝑝)

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆(𝐴
2
󸀠

𝑝𝑡
, V󸀠) if 𝐴

1

𝑝𝑡
⊕𝑝𝐴

2

𝑝𝑡

𝛼
∗
(𝑑),𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝜋(1−𝑝)𝐴
2
󸀠

𝑝𝑡
;

(a8) (𝐴1

𝑝𝑡
| 𝐴

2

𝑝𝑡
, V)

𝛼
∗
(𝑑),𝜋

󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆 (𝐴
1
󸀠

𝑝𝑡
| 𝑛𝑜𝑟𝑠𝑡(𝐴

2

𝑝𝑡
), V󸀠) if

(𝐴
1

𝑝𝑡
, V)

𝛼
∗
(𝑑),𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝜋(𝐴
1
󸀠

𝑝𝑡
, V󸀠);

(a9) (𝑋𝑝𝑡, V)
𝛼
∗
(𝑑),𝜋

󳨀󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆(𝑃
󸀠
, V󸀠) if (𝑃[𝑃/𝑋𝑝𝑡], V)

𝛼
∗
(𝑑),𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝜋

(𝑃
󸀠
, V󸀠).

In rule a2 V󸀠 = V[𝑟𝑠𝑡 : 𝐶𝑅] + 𝑑 and in the rest of the
rules V󸀠 = V + 𝑑. V[𝑟𝑠𝑡 : 𝐶𝑅] represents the valuation V where
the clocks in 𝐶𝑅 are reset. Each rule should be interpreted
that the PTTS transition on the left side can be performed if
there is an edge in a corresponding automaton. For instance,

rule a1 applies if there is an edge 𝛼∗≺𝜋𝐴𝑝𝑡

𝛼
∗
,𝑡𝑟𝑢𝑒

󳨀󳨀󳨀󳨀󳨀→𝜋𝐴𝑝𝑡 in the
corresponding automaton. Rule a1 says that after performing
action 𝛼∗ with 𝑑 time units the system gets to the process𝐴𝑝𝑡

with the clock valuation after 𝑑 time units elapsed. Rule a2
says that, by the time ‖𝐶𝑅‖𝐴𝑝𝑡 proceeds to 𝐴𝑝𝑡, the clocks
in 𝐶𝑅 will have been reset. In the rules a3 and a4 the timed
transition can be performed if (V + 𝑑)(𝜙) holds, which means
that the valuation V + 𝑑must satisfy the clock guard 𝜙. Rules
a5-a6 describe the case when process 𝐴1

𝑝𝑡
is activated (the

rules for activating 𝐴2

𝑝𝑡
are similar). 𝜋(𝑝) and 𝜋(1 − 𝑝) in

rules a7/a-b mean that in distribution 𝜋 the first and second
transitions (edges) are chosenwith probabilities𝑝 and (1−𝑝).
In a8, to avoid conflict of clock variables, we require that
after performing the transition process 𝐴2

𝑝𝑡
cannot perform

resetting at the beginning. The last rule is the action rule for
recursive process variable 𝑋𝑝𝑡. It can be proven, based on
the rules u1–u9 and a1–a9, that probabilistic timed transition
system of 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
satisfies axiomsUntil andDelay; hence, it

is well defined.

Theorem 3. For all 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏
𝑡𝑖𝑚𝑒

process 𝐴𝑝𝑡 and for all closed
valuation V0, PTTS(𝐴𝑝𝑡, V0,𝐹) is indeed the probabilistic timed
transition system defined in probabilistic timed automata.

We defined rules for renaming the clock variables and we
showed that the 𝑛𝑐𝑣 property is preserved by clock renaming;
hence, the restriction we made to process without conflict of
clock variables is harmless [7]. Based on the rules of renaming
we also added new rules for structural equivalent resulted from
renaming. We omit the discussion of these rules in detail
because we do not use them, but the reader can find it in our
longer report [11].

Weak Probabilistic Timed (Prob-Timed) Labeled Bisimulation.
We provide a novel bisimilarity definition, called weak prob-
timed labeled bisimulation for 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
, which enables us to

prove or refute the security of probabilistic timed systems.
Our proposed definition makes use of the definition of

static equivalence proposed in the applied 𝜋-calculus [5],
which says that the outputs of static equivalent processes
cannot be distinguished by the environment (or attackers).
The main advantage of static equivalence is that it only takes
into account the static knowledge exposed by two processes
to show the behavioral equivalence of them. This method is
much easier to use than using the well-known observation
equivalence [5], where we have to consider the dynamic
behavior of processes.

Let the extended process 𝐴 be {𝑡1/𝑥1}| ⋅ ⋅ ⋅ |{𝑡𝑛/𝑥𝑛} | 𝑃1 |

⋅ ⋅ ⋅ | 𝑃𝑛. The frame 𝜑 of𝐴 is the parallel composition {𝑡1/𝑥1} |
⋅ ⋅ ⋅ | {𝑡𝑛/𝑥𝑛} that models all the information that is output so
far by the process 𝐴, which are 𝑡1, . . . , 𝑡𝑛 in this case.

ISRN Sensor Networks 11

Definition 4 (static equivalence for extended processes (≈𝑠)).
Two extended processes 𝐴1 and 𝐴2 are statically equivalent,
denoted as 𝐴1

≈𝑠𝐴
2, if their frames are statically equivalent.

Two frames 𝜑1 and 𝜑2 are statically equivalent if they
include the same number of active substitutions and the same
domain, and any two terms that are equal in 𝜑1 are equal in
𝜑2 as well. Intuitively, this means that the outputs of the two
processes cannot be distinguished by the environment.

In our proposed weak prob-timed labeled bisimulation,
we extend the static equivalence with time and probabilistic
elements. The meaning of weak is that in this paper we
want to examine whether the attackers can distinguish the
behavior of two processes, based on the information they can
observe. Hence, in weak prob-timed labeled bisimulation, we
do not require the equivalence of the probability of two action
traces, because practically an observer cannot distinguish if
an action is performed with 1/2 or 1/3 probability.

Nevertheless, we also proposed the definition of strong
prob-timed labeled bisimulation in our longer report [11],
which we do not discuss in this paper, because we found that,
for analysing the security of DTSN and SDTP, it is sufficient
to use the weak prob-timed labeled bisimulation. Strong
prob-timed labeled bisimulation is stricter, since it also dis-
tinguishes two processes based on the probability of their
corresponding action traces.

Definition 5 (weak prob-timed labeled bisimulation for
𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
processes). Let 𝑃𝑇𝑇𝑆𝑖(𝐴𝑖

𝑝𝑡
, V0, 𝐹) = (S𝑖, 𝛼 × R≥0

×

Π, 𝑠
𝑖

0
, → 𝑃𝑇𝑇𝑆𝑖,U

𝑖
, 𝐹), and let 𝑖 ∈ {1, 2} be two probabilistic

timed transition systems for 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏
𝑡𝑖𝑚𝑒

processes. Weak prob-
timed labeled bisimilarity (≈𝑝𝑡) is the largest symmetric
relation R, R ⊆ S1 × S2 with 𝑠

1

0
R 𝑠

2

0
, where each 𝑠

𝑖 is
the pair of a closed 𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
process and the same initial

valuation V0 ∈ V𝑐, (𝐴𝑖

𝑝𝑡
, V0), such that 𝑠1R 𝑠2 implies that

(1) 𝐴1
≈𝑠 𝐴

2;

(2) if 𝑠1
𝜏(𝑑),𝜋

󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆1𝑠
󸀠

1
for a scheduler 𝐹, then ∃𝑠󸀠

2
such that

𝑠2

𝜏(∑𝑑
𝑖
),𝜋
𝑖

󳨐󳨐󳨐󳨐󳨐󳨐󳨐⇒𝑃𝑇𝑇𝑆2𝑠
󸀠

2
for the same 𝐹, with 𝑑 = 𝑓(∑𝑑𝑖)

for some function 𝑓, and 𝑠󸀠
1
R𝑠

󸀠

2
;

(3) if 𝑠1
𝛼(𝑑),𝜋

󳨀󳨀󳨀󳨀→𝑃𝑇𝑇𝑆1𝑠
󸀠

1
for a scheduler 𝐹 and 𝑓V(𝛼) ⊆

𝑑𝑜𝑚(𝐴
1
) ∧ 𝑏𝑛(𝛼) ∩ 𝑓𝑛(𝐴

2
) = 0, then ∃𝑠

󸀠

2
such that

𝑠2

𝛼(∑𝑑
𝑗
),𝜋
𝑖

󳨐󳨐󳨐󳨐󳨐󳨐󳨐⇒𝑃𝑇𝑇𝑆2𝑠
󸀠

2
for the same 𝐹, with 𝑑 = 𝑓(∑𝑑𝑗)

for some function 𝑓, and 𝑠
󸀠

1
R𝑠

󸀠

2
; again, 𝑑𝑜𝑚(𝐴𝑖

)

represents the domain of 𝐴𝑖.

𝐴
1 and 𝐴

2 are the extended processes we get by removing
all the probabilistic and timed elements from 𝐴

1

𝑝𝑡
and 𝐴

2

𝑝𝑡
,

respectively.

The arrow
𝛼

⇒𝑃𝑇𝑇𝑆 is the shorthand of the action trace
𝜏
󳨀→

∗

𝑃𝑇𝑇𝑆

𝛼
󳨀→𝑃𝑇𝑇𝑆

𝜏
󳨀→

∗

𝑃𝑇𝑇𝑆
, where 𝜏

󳨀→

∗

𝑃𝑇𝑇𝑆
represents a series (for-

mally, a transitive closure) of sequential transitions 𝜏
󳨀→𝑃𝑇𝑇𝑆.

∑𝑑𝑖 on ⇒𝑃𝑇𝑇𝑆 is the sum of the time elapsed at each
transition and represents the total time elapsed during the
sequence of transitions. Note that 𝑓𝑛(𝐴2

𝑝𝑡
) and 𝑑𝑜𝑚(𝐴1

𝑝𝑡
) are

the same as 𝑓𝑛(𝐴2
) and 𝑑𝑜𝑚(𝐴

1
), respectively. Moreover, a

process 𝐴𝑝𝑡 is closed if its nontimed and “nonprobabilistic”
counterpart 𝐴 is closed.

Intuitively, in case that 𝐴1

𝑝𝑡
and 𝐴2

𝑝𝑡
represent two proto-

cols (or two variants of a protocol), then thismeans that (i) the
outputs of the two processes cannot be distinguished by the
environment based on their behaviors; (ii) the time that the
protocols spend on the performed operations until they reach
the corresponding points is in some relationship defined by a
function 𝑓. Here 𝑓 depends on the specific definition of the
security property; for instance, it can return 𝑑 itself; hence,
the requirement for time consumption would be 𝑑 = ∑𝑑𝑖. In
particular, the first pointmeans that𝐴1

𝑝𝑡
and𝐴2

𝑝𝑡
are statically

equivalent; that is, the environment cannot distinguish the
behavior of the two protocols based on their outputs; the sec-
ond point says that 𝐴1

𝑝𝑡
and 𝐴2

𝑝𝑡
remain statically equivalent

after silent transition (internal computation) steps. Finally,
the third point says that the behavior of the two protocols
matches in transition with the action 𝛼.

5. Security Analysis of DTSN and SDTP
Using 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒

We formally prove the insecurity of the DTSN and SDTP
protocols using the weak prob-timed bisimilarity defined
in 𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
. We also specified the behavior of the two

protocols using the syntax of 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏
𝑡𝑖𝑚𝑒

; however, since these
descriptions are a bit complicated, for shortening andmaking
the paper readable, we only discuss themost important parts.
For the detailed descriptions, the reader is referred to our
longer research report [11].

We assume the network topology 𝑆-𝐼-𝐷, where “-” repre-
sents a bidirectional link, while 𝑆, 𝐼, and𝐷 denote the source,
an intermediate node, and the destination node, respectively.
We also include the presence of the application that uses
DTSN and SDTP, because it sends packet delivery requests
to the source and it receives delivered packets. In the rest
of the paper we refer to the application as the upper layer.
Note that the attack scenarios which can be found and proved
in this topology are also valid in other topologies including
more intermediate nodes. Moreover, we assume that each
node has three cache entries, denoted by 𝑒𝑠

𝑘
, 𝑒𝑖

𝑘
, and 𝑒𝑑

𝑘
, 1 ≤

𝑘 ≤ 3. For brevity we let 𝑒𝑠
1–3 range over 𝑒𝑠 from index 1

to index 3, and the same is true for 𝑒𝑖
1–3 and 𝑒

𝑑

1–3. We define
symmetric channels between the upper layer and the source,
𝑐𝑠𝑢𝑝; the upper layer and the destination, 𝑐𝑑𝑢𝑝; the source
and intermediate node, 𝑐𝑠𝑖; the intermediate node and the
destination, 𝑐𝑖𝑑.Moreover, we define additional channels 𝑐𝑒𝑟𝑟𝑜𝑟
and 𝑐𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐸𝑁𝐷 for sending and receiving error and session end
signals.

We define 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏
𝑡𝑖𝑚𝑒

processes upLayer, Src, Int, and Dst
for specifying the behavior of the upper layer, the source,
intermediate, and destination nodes. The DTSN protocol for

12 ISRN Sensor Networks

the given topology is specified by the parallel composition of
these four processes:

Prot(params)
𝑑𝑒𝑓

=

let (𝑒𝑠
1
, 𝑒

𝑠

2
, 𝑒

𝑠

3
, 𝑒

𝑖

1
, 𝑒

𝑖

2
, 𝑒

𝑖

3
, 𝑒

𝑑

1
, 𝑒

𝑑

2
, 𝑒

𝑑

3
, 𝑐𝑛𝑡𝑠𝑞)

= (𝐸, 𝐸, 𝐸, 𝐸, 𝐸, 𝐸, 𝐸, 𝐸, 𝐸, 1) in 𝐼𝑁𝐼𝑇𝐷𝑇𝑆𝑁();

INITDTSN()
𝑑𝑒𝑓

= 𝑐𝑠𝑢𝑝⟨𝑐𝑛𝑡𝑠𝑞⟩.𝐷𝑇𝑆𝑁(𝑝𝑎𝑟𝑎𝑚𝑠)

DTSN(params)
𝑑𝑒𝑓

=

upLayer(𝑖𝑛𝑐𝑟(𝑐𝑛𝑡𝑠𝑞)) | {𝑥𝑎𝑐𝑡
𝑐

≤ 𝑇𝑎𝑐𝑡}

⊳ 𝑖𝑛𝑖𝑡𝑆𝑟𝑐(s, d, apID, 𝑒𝑠
1−3

, sID, earAtmp) |
Int(𝑒𝑖

1−3
) | 𝐷𝑠𝑡(𝑒𝑑

1−3
, ackNbr, nackNbr, toRTX1,

nxtsq).

We refer to the tuple of parameters (cntsq, s, d, apID,
𝑒
𝑖

1−3
, sID, earAtmp, 𝑒𝑖

1−3
, 𝑒𝑑

1−3
, ackNbr, nackNbr, toRTX1,

nxtsq) by (params). The process Prot(params) describes
DTSN with variable initializations. The let construct is used
to initialize the value of the cache entries to 𝐸 and the
current sequence number to 1. The unique name 𝐸 is used to
represent the empty content. In the following, we give a brief
overview of the main processes in our specification. Each
main process is composed of additional subprocesses, which
we skip discussing here.Theprocesses are recursively invoked
in a way to model replication. Interested readers can find the
full description in [11].

We introduce two clock variables: 𝑥𝑎𝑐𝑡
𝑐

for the activity
timer and𝑥𝑒𝑎𝑟

𝑐
for the ear timer. According to the specification

of the DTSN protocol [2], to model timeout we make use of
the clock invariant defined on the process Src.The initial state
of DTSN for the given topology is specified as the process
‖𝑥

𝑎𝑐𝑡

𝑐
, 𝑥

𝑒𝑎𝑟

𝑐
‖Prot(params), which simply resets the timers at the

beginning. We define the time amount of the activity and
ear timers by 𝑇𝑎𝑐𝑡 and 𝑇𝑒𝑎𝑟, respectively. We assume that the
activity timer is launched after the upper layer has sent the
first request for the source, which is specified in INITDTSN().

In process INITDTSN(), first of all, the request for
sending the first packet with sequence number cntsq is
sent. Then, the next request, 𝑐𝑛𝑡𝑠𝑞 + 1, is enqueued in
upLayer(incr(cntsq)). The parameters of process Src are the
IDs of the source and the destination; the application ID; the
three cache entries, the session ID; and the latest number of
EAR attempts. Process Int has the content of the three cache
entries as parameter. Process Dst includes the cache entries;
the 𝐴𝐶𝐾/𝑁𝐴𝐶𝐾 numbers for composing acknowledgment
messages; the packet to be retransmitted; and the next expected
packet.
The Source Handling the Activity Timer Expiration

InitSrc(s, d, apID, 𝑒𝑠
1−3

, sID, earAtmp)
𝑑𝑒𝑓

=

𝑐𝑠𝑢𝑝(𝑥𝑠𝑞) ⋅ ({𝑥
𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡} ⊳ 𝑖𝑛𝑖𝑡𝐹𝑤𝑑𝐷𝑡

(s, apID, 𝑒𝑠
1−3

, sID, 𝑥𝑠𝑞)

[] {𝑥
𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡} ⊳ 𝑖𝑛𝑖𝑡𝑅𝑐V𝐴𝐶𝐾𝑆

(s, d, apID, 𝑒𝑠
1−3

, sID, earAtmp)
[] {𝑥

𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡} ⊳

𝑖𝑛𝑖𝑡𝑅𝑐V𝑁𝐴𝐶𝐾𝑆 (s, d, 𝑒𝑠
1−3

, apID, sID,
earAtmp)
)

[] {𝑥
𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡} ⊳ 𝑐𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐸𝑁𝐷(= 𝑆𝐸𝑁𝐷) ⋅ nil

[] {𝑥
𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡} ⊳ (𝑥

𝑎𝑐𝑡

𝑐
= 𝑇𝑎𝑐𝑡) 󳨅→

𝜏.𝑎𝑐𝑡𝑇𝑖𝑚𝑒𝑂𝑢𝑡.

The process initSrc specifies the source node starting with
the first packet delivery, when the source does not launch
the EAR timer yet but only the ACT (activity) timer. This is
defined by the clock invariant construct {𝑥𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡} ⊳ before

initSrc. The subprocess actTimeOut describes the behavior of
the protocol when the ACT timer expires. Similarly, for the
EAR timer, we define the process earTimeOut.

The three choice options represent the “wait for event”
behavior of the source. Each choice option represents a
scenario. The last (third) option describes the case when
the activity timer has elapsed. The format {𝑥𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡} ⊳

(𝑥
𝑎𝑐𝑡

𝑐
= 𝑇𝑎𝑐𝑡) 󳨅→ 𝜏.actTimeOut follows the concept of the

timed automaton and says that when the time has elapsed
the system should proceed with the process 𝜏.actTimeOut,
which describes the defined behavior of Src after timeout.
𝜏 is a silent step, moving silently to actTimeOut. In this
process, we use 𝜏.actTimeOut instead of actTimeOut, because
we insist on the semantics of timed automaton. The second
choice is for the case when the session is terminated, which
happenswhen the constant SENDhas been sent on the private
channel 𝑐𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐸𝑛𝑑. The session end signal (i.e., the constant
SEND) is sent on 𝑐𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐸𝑛𝑑 by Src according to [2].We assume
that the session termination cannot be interrupted by the
timeouts; basically, it can be seen as an atomic action. When
the first option has been chosen, it means that in that step
the source received the delivery request from the upper layer
and that no session end or timeouts happen during this
input action. The choices among the possible actions are
repeatedly put into each subprocess initFwdDt, initRcvACKS,
and initRcvNACKS. Namely, the session end, activity, and/or
𝐸𝐴𝑅 timeouts options are placed before the action steps to be
performed.

Process That Models the Behavior of an Intermediate Node

𝐼𝑛𝑡(𝑒
𝑖

1−3
)

𝑑𝑒𝑓

=

𝑐𝑠𝑖((𝑥𝑠, 𝑥𝑑, 𝑥𝑎𝑝𝐼𝐷, 𝑥𝑠𝐼𝐷, 𝑥𝑠𝑞, 𝑥𝑒𝑎𝑟, 𝑥𝑟𝑡𝑥)).
ℎ𝑛𝑑𝑙𝑒𝐷𝑡𝐼(s, d, apID, sID, sq, ear, rtx, 𝑒𝑖

1–3)

[]𝑟𝑐V𝐴𝐶𝐾𝐼(𝑒𝑖
1–3)[]𝑟𝑐V𝑁𝐴𝐶𝐾𝐼(𝑒

𝑖

1–3)

[]𝑐𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐸𝑁𝐷(= 𝑆𝐸𝑁𝐷) ⋅ nil.

In process Int the intermediate node may receive a data
packet on channel 𝑐𝑠𝑖, in which case it handles the received
packet according to the definition of DTSN, it can receive and
handle an ACK or NACK message, and it can terminate its
operationwhen it gets the session end signal (i.e., the constant
SEND).

ISRN Sensor Networks 13

We also add a probabilistic choice in the specification.
According to the definition of the DTSN protocol, the
probabilistic choice is placed within process Int(𝑒𝑖

𝑖−3
), which

is the specification of node 𝐼. In particular, after receiving a
packet, an intermediate node stores the packet in its cache
with probability 𝑝. To model this behavior, we add the prob-
abilistic choice construct in the subprocess hndleDtI, which
is responsible for handling a received data packet. Consider
the following

𝑠𝑡𝑟𝐴𝑛𝑑𝐹𝑤𝐼 (s, d, apID, sID, sq, ear, rtx, 𝑒𝑖
1−3

)

⊕𝑝𝐹𝑤𝐼 (s, d, apID, sID, sq, ear, rtx, 𝑒
𝑖

1−3
) .

(13)

Process strAndFwI, which describes the case when the inter-
mediate node stores (and forwards) the received packet, is
chosen with probability 𝑝, and process FwI that specifies the
only forwarding case is selected with probability 1 − 𝑝.

Process That Models the Behavior of the Destination:

𝐷𝑠𝑡(𝑒
𝑑

1−3
, ackNbr, nackNbr, toRTX1, nxtsq)

𝑑𝑒𝑓

=

𝑐𝑖𝑑((𝑥𝑠, 𝑥𝑑, 𝑥𝑎𝑝𝐼𝐷, 𝑥𝑠𝐼𝐷, 𝑥𝑠𝑞, 𝑥𝑒𝑎𝑟, 𝑥𝑟𝑡𝑥))

⋅ℎ𝑛𝑑𝑙𝑒𝐷𝑡𝐷𝑠𝑡

[]𝑐𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐸𝑁𝐷(= 𝑆𝐸𝑁𝐷) ⋅ nil.

For the process Dst, the destination can either receive a
data packet on channel 𝑐𝑖𝑑 or receive a session end signal.
In the first case, Dst proceeds to hndleDtDst, in which the
destination performs the verification steps and delivers the
packet to the upper layer or sends an ACK or a NACK.

To model the cryptographic primitives and operations
in SDTP, we add the following equations into the set of
equational theories:

Functions: K(n, 𝐴𝐶𝐾); K(n, 𝑁𝐴𝐶𝐾); MAC(t, K(n,
𝐴𝐶𝐾)).
Equations: CheckMac(MAC(t, K(n, 𝐴𝐶𝐾)), K(n,
𝐴𝐶𝐾)) = ok.

CheckMac(MAC(t, K(n, 𝑁𝐴𝐶𝐾)), K(n,
𝑁𝐴𝐶𝐾)) = ok,

where functions K(𝑛, 𝐴𝐶𝐾) and K(𝑛, 𝑁𝐴𝐶𝐾) specify the
𝐴𝐶𝐾 and 𝑁𝐴𝐶𝐾 per-packet keys corresponding to the
packet with sequence number 𝑛. In order to simplify the
modelling procedure, without violating the correctness of
SDTP, we make an abstraction of the key hierarchy given in
[3], where the per-packet keys are computed with a one-way
function based on the shared secret unknown to the attacker.
Instead, we assume that K(𝑛, 𝐴𝐶𝐾) and K(𝑛,𝑁𝐴𝐶𝐾) cannot
be generated (but can be intercepted) by the attackers. The
attackers can only generate keys that differ from these keys.
With this, we model the fact that the shared secret will never
be revealed during the protocol.

To model the SDTP protocol, we extend the specification
of the DTSN protocol in the following way. First, the source
node extends each packet with an ACK MAC and a NACK

MAC and then sends it to node 𝐼, which is accomplished by
the following code part in the processes initSrc and Src.

The Source Sends a Data Packet in SDTP

let (ear, rtx, earAtmp) = (val1, val2, val3) in
let (Kack, Knack) = (K(sq, ACK), K(sq, NACK)) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx),
Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx),
Knack) in
𝑐𝑠𝑖⟨(s, d, apID, sID, sq, ear, rtx, ACKMAC, NACK-
MAC)⟩.

In the first row, the variables ear, rtx, and earAtmp
are given some values val1, val2, and val3, respectively. In
the second row the ACK/NACK keys Kack and Knack are
generated, while in the third and fourth rows theACK/NACK
MACs are computed using the generated ACK/NACK keys.
Finally, the following code part in Src (initSrc)models the case
when the EAR (ACT) timer is reset (launched) and the source
gets back to the idling state. In the two processes (PR1-2), the
clock is reset and then the timeout conditions are defined
based on clock invariants (in the form {𝑥

𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡, 𝑥

𝑒𝑎𝑟

𝑐
≤

𝑇𝑒𝑎𝑟}).

Process PR1: Reseting (Launching) the 𝐸𝐴𝑅 Timer. Consider
the following:

‖𝑥
𝑒𝑎𝑟

𝑐
‖{𝑥

𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡, 𝑥

𝑒𝑎𝑟

𝑐
≤ 𝑇𝑒𝑎𝑟} ⊳Src(s, d, apID, 𝑒𝑠1−3,

sID, earAtmp).

Process PR2: Reseting (Launching) Both the 𝐸𝐴𝑅 and ACT
Timers. Consider the following:

‖𝑥
𝑒𝑎𝑟

𝑐
, 𝑥

𝑎𝑐𝑡

𝑐
‖{𝑥

𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡, 𝑥

𝑒𝑎𝑟

𝑐
≤ 𝑇𝑒𝑎𝑟} ⊳Src(s, d, apID,

𝑒
𝑠

1−3
, sID, earAtmp).

In our formal proofs, we apply the proof technique that
is usual in process algebras, such as the applied 𝜋 calculi.
Namely, we define an ideal version of the protocol run,
in which we specify the ideal/secure operation of the real
protocol. This ideal operation, for example, can require that
honest nodes always know what is the correct message they
should receive/send and always follow the protocol correctly,
despite the presence of attackers. Then, we examine whether
the real and the ideal versions, running in parallel with the
same attacker(s), are weak prob-timed bisimilar.

Definition 6. Let the processes Prot() and 𝑃𝑟𝑜𝑡𝑖𝑑𝑒𝑎𝑙() specify
the real and ideal versions of some protocol Prot, respectively.
We say that Prot is secure (up to the strictness of the
ideal version) if Prot() and 𝑃𝑟𝑜𝑡𝑖𝑑𝑒𝑎𝑙() are probabilistic timed
bisimilar: Prot() ≈𝑝𝑡𝑃𝑟𝑜𝑡𝑖𝑑𝑒𝑎𝑙().

The strictness of the security requirement, which we
expect a protocol to fulfill, depends on how ideally/securely
we specify the ideal version. Intuitively, Definition 6 says that
Prot is secure if the attackers, who can observe the output

14 ISRN Sensor Networks

Real version

cidACK

cidNACK

csi

csiACK

csiNACK

cid

cemptyC cemptyC

Src Int Dst

cncknot0

(a)

Ideal version

csi

csiACK

csiNACK

cidACK

cidNACK

cid

cemptyC cemptyC

Src Int Dst

cncknot0

cprivSD

cprivSI cprivID

(b)

Figure 1: The difference between the real and ideal version of the DTSN and the SDTP protocols.

messages on public channels, cannot distinguish the opera-
tion of the two instances.

The main difference between the ideal and the real
systems is that, in the ideal system, honest nodes are always
informed about what kind of packets ormessages they should
receive from the honest sender node. This can be achieved
by defining hidden or private channels between honest
parties, on which the communication cannot be observed
by attacker(s). In Figure 1 we show the difference in more
detail. In the ideal case, three private channels are defined
which are not available to the attacker(s). Src, Int, and Dst
denote the processes for the source, the intermediate, and
the destination nodes. Channels 𝑐𝑝𝑟𝑖V𝑆𝐷, 𝑐𝑝𝑟𝑖V𝐼𝐷, and 𝑐𝑝𝑟𝑖V𝑆𝐼 are
defined between processes Src and Dst, Int and Dst, and Src
and Int, respectively. In the rest of the paper, we refer to the
source, intermediate, and destination nodes as 𝑆, 𝐼, and 𝐷.
Whenever 𝑆 sends a packet pck on public channel 𝑐𝑠𝑖, it also
informs 𝐼 about what should 𝐼 receive, by sending at the same
time pck directly via private channel 𝑐𝑝𝑟𝑖V𝑆𝐼 to 𝐼, so when 𝐼

receives a packet via 𝑐𝑠𝑖 it compares the message with pck.
The same happens when 𝐼 sends a packet to 𝐷. Whenever,
an honest node receives an unexpected data, it interrupts
its normal operation. The channels 𝑐𝑝𝑟𝑖V𝑆𝐷 and 𝑐𝑝𝑟𝑖V𝐼𝐷 can be
used by the destination to inform 𝑆 and 𝐼 about the messages
to be retransmitted. We recall that the communication via a
private channel is not observable by the environment; hence,
it can be seen as a silent 𝜏 transition. Note that, for simplicity,
we omitted to include the upper layer and channel 𝑐𝑠𝑢𝑝 in
the figure, but we put them in our specification. Finally,
we also add additional public channels 𝑐𝑒𝑚𝑝𝑡𝑦𝐶 and 𝑐𝑛𝑐𝑘𝑛𝑜𝑡0

for signalling that the cache has been emptied and that
the number of packets to be retransmitted is larger than 0,
respectively. These additional channels are defined only for
applying bisimilarities in the security proofs, but they do not
affect the correctness of the protocol.

With this definition we ensure that the source and inter-
mediate nodes are not susceptible to the modification or
forging of ACK and NACK messages since they make the
correct decision either on retransmitting or deleting the
stored packets. Namely, this means that the honest nodes
only handle the messages received on public channels when
they are equal to the expected messages received on private
channels.

The Attacker Model M𝐴. We assume that an attacker can
intercept the information output by the honest nodes on
public channels and modify them according to its knowledge
and computation ability. The attacker’s knowledge consists
of the intercepted outputs during the protocol run and the
information it can create. The attacker(s) can modify the
elements of the plaintexts, such as the base number and the
bits of the ACK/NACKmessages, the EAR and RTX bits, and
sequence number in data packets.The attacker can also create
entire data or control packets including data it possesses.
Further, attacker(s) can send packets to its neighborhood.We
also assume several attackers who can share informationwith
each other.

To describe the activity of the attacker(s), we apply the
concept of the environment, used in the applied 𝜋-calculus
[5] that models the presence of the attacker(s) in an implicit
way. Every message that is output on a public channel is
available for the environment; that is, the environment can be
seen as a group of attackers who can share information with
each other, for instance, via a side channel.

5.1. Security Analysis of the DTSN Protocol. The security
properties we want to check in case of the DTSN protocol
is that how secure it is against the manipulation of control
and data packets. In particular, can the manipulation of
packets prevent DTSN from achieving its design goal? In this
section we demonstrate how to formally prove the security or
vulnerability of DTSN using 𝑐𝑟𝑦𝑝𝑡𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
.

First of all, we assume that, in both DTSN and SDTP,
each action (verification, sending, and receiving on public
channel) takes an equal amount of time 𝑑 and the function 𝑓
inDefinition 5 returns∑𝑑𝑖.This assumption does not change
the correctness of the protocols. We define the ideal version
of the process Prot(params), denoted by 𝑃𝑟𝑜𝑡

𝑖𝑑𝑒𝑎𝑙(params),
which contains the ideal version of DTSN(params):

/∗The Ideal Version of the DTSNProtocol for the Given
Topology ∗/

𝑃𝑟𝑜𝑡
𝑖𝑑𝑒𝑎𝑙

(𝑝𝑎𝑟𝑎𝑚𝑠)

𝑑𝑒𝑓

=

let (𝑒𝑠
1
, 𝑒

𝑠

2
, 𝑒

𝑠

3
, 𝑒

𝑖

1
, 𝑒

𝑖

2
, 𝑒

𝑖

3
, 𝑒

𝑑

1
, 𝑒

𝑑

2
, 𝑒

𝑑

3
, 𝑐𝑛𝑡𝑠𝑞)

= (𝐸, 𝐸, 𝐸, 𝐸, 𝐸, 𝐸, 𝐸, 𝐸, 𝐸, 1)

in 𝐼𝑁𝐼𝑇𝐷𝑇𝑆𝑁
𝑖𝑑𝑒𝑎𝑙

(),

ISRN Sensor Networks 15

where process 𝐼𝑁𝐼𝑇𝐷𝑇𝑆𝑁
𝑖𝑑𝑒𝑎𝑙() contains 𝐷𝑇𝑆𝑁

𝑖𝑑𝑒𝑎𝑙

(params) instead of DTSN (params).
To prove or refute the bisimilarity relation, we define

Prot(params) and 𝑃𝑟𝑜𝑡𝑖𝑑𝑒𝑎𝑙(params) such that the source and
intermediate nodes output the constants CacheEmptyS and
CacheEmptyI on the public channel 𝑐𝑒𝑚𝑝𝑡𝑦𝐶, respectively,
whenever they have emptied their buffers after processing an
ACK or a NACK message. This is defined by the following
𝑐𝑟𝑦𝑝𝑡

𝑝𝑟𝑜𝑏

𝑡𝑖𝑚𝑒
code fragment (for 𝑖 ∈ {1, 2, 3}), where process

checkEi corresponds to the 𝑖th cache entry:

checkEi(s, d, apID, 𝑒𝑠
1−3

, sID, acknum)
𝑑𝑒𝑓

=

/∗ Cache entry 𝑒𝑠
𝑖
is emptied and the number of the

empty caches is increased ∗/

let (𝑒𝑠
𝑖
, nbrEcacheS) = (𝐸, inc (nbrEcacheS)) in

.

/∗Herewe add the resetting of the two timers on process
Src ∗/

{𝑥
𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡, 𝑥

𝑒𝑎𝑟

𝑐
≤ 𝑇𝑒𝑎𝑟} ⊳ let (earAtmp = 0) in

/∗ If the cache has been emptied (emptycacheS= 3) then
CacheEmptyS is output ∗/

[emptycacheS = 3]
𝑐𝑒𝑚𝑝𝑡𝑦𝐶⟨𝐶𝑎𝑐ℎ𝑒𝐸𝑚𝑝𝑡𝑦𝑆⟩. ‖𝑥

𝑎𝑐𝑡

𝑐
, 𝑥

𝑒𝑎𝑟

𝑐
‖{𝑥

𝑎𝑐𝑡

𝑐
≤

𝑇𝑎𝑐𝑡} ⊳

Src(s, d, apID, 𝑒𝑠
1−3

, sID, earAtmp)
else ‖𝑥𝑎𝑐𝑡

𝑐
, 𝑥

𝑒𝑎𝑟

𝑐
‖{𝑥

𝑎𝑐𝑡

𝑐
≤ 𝑇𝑎𝑐𝑡} ⊳Src(s, d, apID,

𝑒
𝑠

1−3
, sID, earAtmp).

The specification of intermediate node is similar to the
case of the source, but nbrEcacheI and CacheEmptyI are used
instead of nbrEcacheS and CacheEmptyS, respectively. The
constants CacheEmptyS and CacheEmptyI are output when-
ever the number of the empty cache entries, emptycacheS,
emptycacheI, is 3, which means that the buffers of S and I are
emptied, respectively.

Lemma 7. With the defined attacker model M𝐴, the DTSN
protocol is insecure against message manipulation attacks.

According to Definition 5 processes Prot(params) and
𝑃𝑟𝑜𝑡

𝑖𝑑𝑒𝑎𝑙(params) are not weak prob-timed bisimilar because
each point of the definition is violated. The following proof
show that DTSN is vulnerable to the manipulation of control
packets: in SC-1 the attacker increases the base number in
ACKpackets causing the stored packets to be deleted from the
cache although they should not be, while in SC-2 the attacker
forces the destination node to send unnecessary ACKs or
NACKs.

(i) Scenario SC-1. This scenario can happen beside the
topology 𝑆-𝐼 that includes the attacker 𝐴 within
the transmission range of both 𝑆 and 𝐼. We show that
the trace of probabilistic timed transitions in the real

system, denoted by 𝑃𝑇𝑇𝑅𝑟𝑒𝑎𝑙𝑆𝐶1, cannot be simulated
with any corresponding trace in the ideal system.The
trace 𝑃𝑇𝑇𝑅𝑟𝑒𝑎𝑙𝑆𝐶1 describes the scenario where the
source sends the first packet (sequence number 1)
to the intermediate node on channel 𝑐𝑠𝑖. Because 𝑐𝑠𝑖
is public, this packet is obtained by the attacker(s)
(i.e., the environment), who, instead of forwarding it,
sends anACKwith base number 1 to 𝑆. 𝑆 received this
message on 𝑐𝑠𝑖𝐴𝐶𝐾, empties its buffer, and outputs the
constant CacheEmptyS on the public channel 𝑐𝑒𝑚𝑝𝑡𝑦𝐶.
AsCacheEmptySwill not be output in𝑃𝑟𝑜𝑡𝑖𝑑𝑒𝑎𝑙 if node
𝐼 has not sent anything, the first point of Definition 5
is violated.

(ii) Scenario SC-2. We prove that DTSN is susceptible
to the attacks that cause futile energy consumption,
by showing the violation of the second point of
Definition 5. This scenario can happen in the topol-
ogy 𝑆-𝐼-𝐷 that includes the attacker 𝐴 within the
transmission range of both 𝐼 and 𝐷. The follow-
ing trace 𝑃𝑇𝑇𝑅𝑟𝑒𝑎𝑙𝑆𝐶2 in the real system cannot be
simulated by the ideal system: 𝐼 sends a correct
packet towards 𝐷, which is intercepted by 𝐴. Then 𝐴
forwards the packet to 𝐷 but setting the EAR bit in it
to 1, requiring𝐷 to send an𝐴𝐶𝐾 or a𝑁𝐴𝐶𝐾. Let the
series of silent transitions 𝑠

𝜏(𝑑),𝜋

󳨀󳨀󳨀󳨀→
∗

𝑃𝑇𝑇𝑆
𝑠
󸀠 describe

the verification steps made by 𝐷 after receiving the
incorrect packet from 𝐴. Although at this time there
is not any difference in the message outputs, the ideal
system still cannot simulate this silent trace, because
in this case 𝐷 performs only one comparison step,
which takes less time units.

5.2. Security Analysis of the SDTP Protocol. We define the
ideal version of process ProtSDTP(params), denoted by
𝑃𝑟𝑜𝑡𝑆𝐷𝑇𝑃

𝑖𝑑𝑒𝑎𝑙(params), in the same concept as in 𝑃𝑟𝑜𝑡
𝑖𝑑𝑒𝑎𝑙

(params). The only difference is that, in SDTP, the processes
Src and Int are defined such that, whenever the MAC
verification made by 𝑆 and 𝐼 on the received ACK/NACK
message fails or an unexpected message is received, 𝑆 and
𝐼 output a predefined constant BadControl via the public
channel 𝑐𝑏𝑎𝑑𝑝𝑐𝑘. Note that this extension does not affect the
correctness of SDTP and only plays a role in the proofs of
weak prob-timed bisimilarity.

Since the main purpose of SDTP is using cryptographic
means to patch the security holes of DTSN, we examine the
security of SDTP according to each discussed attack scenario
to which DTSN is vulnerable.

(i) Proving SC-1. We prove that SDTP is not vulner-
able to the attack scenario (SC-1) by showing that
𝑃𝑟𝑜𝑡𝑆𝐷𝑇𝑃

𝑖𝑑𝑒𝑎𝑙(params) can simulate (according to
Definition 5) the transition trace produced by ProtS-
DTP(params). In SDTP the packet sent by 𝑆 includes
the ACK MAC and NACK MAC. Hence, when the
attacker𝐴 sends theACK to 𝑆, in both the real and the
ideal systems, the source node outputs the constant
BadControl on the channel 𝑐𝑏𝑎𝑑𝑝𝑐𝑘, because either the
MAC verification fails (in the real system) or the

16 ISRN Sensor Networks

received packet is not the expected one (ideal system).
Recall that the MAC verification fails because the
attacker does not possess the ACK/NACK keys of the
source.

(ii) Proving SC-2. Similarly, SDTP is not vulnerable to the
attack scenario (SC-2) either. 𝑃𝑟𝑜𝑡𝑆𝐷𝑇𝑃𝑖𝑑𝑒𝑎𝑙(params)
can simulate the transition trace produced by ProtS-
DTP(params). After receiving an incorrect packet
with EAR bit set to 1, in both the real and the ideal
systems, the destination node outputs the constant
BadControl on the channel 𝑐𝑏𝑎𝑑𝑝𝑐𝑘, because either the
MAC verification fails (in the real system) or the
received packet is not the expected one (ideal system).
Hence, they consume equal time units.

As we can see, with the security extensions SDTP could
eliminate the essential weaknesses of DTSN; however, we will
prove that it is still vulnerable, by showing a trace in the
real system ProtSDTP(params), which cannot be simulated in
𝑃𝑟𝑜𝑡𝑆𝐷𝑇𝑃

𝑖𝑑𝑒𝑎𝑙(params).

Lemma 8. The SDTP protocol is insecure besides the attacker
modelM𝐴.

To prove the vulnerability of SDTP using prob-timed
bisimilarity, we relax the definition of the ideal version such
that the honest nodes only compare the receivedACK/NACK
messages with the expected ones. When they receive a data
packet they proceed in the same way as the real version,
namely, without any comparison with the expected message
that it receives on private channels.

Proving SC-3.We consider the trace that refers to the topology
𝑆-𝐴1-𝐼-𝐴2. The trace describes the following scenario: 𝐴1
has received the first packet from 𝑆, it replaces the MACs
computed by 𝑆 with the MACs it computes on the same
data (denoted by 𝐴𝐶𝐾𝑀𝐴𝐶𝑎𝑡𝑡,𝑁𝐴𝐶𝐾𝑀𝐴𝐶𝑎𝑡𝑡), and it sends
the modified packet to 𝐼. Node 𝐼 forwards the packet
to 𝐴2, which, instead of forwarding it to 𝐷, sends back
the ACK message for this data packet to 𝐼, including the
corresponding ACK key for the MAC 𝐴𝐶𝐾𝑀𝐴𝐶𝑎𝑡𝑡. As the
result, node 𝐼 deletes its buffer and outputs the constant
CacheEmptyI on the public channel 𝑐𝑒𝑚𝑝𝑡𝑦𝐶. This transition
cannot be simulated by any corresponding transition trace in
𝑃𝑟𝑜𝑡𝑆𝐷𝑇𝑃

𝑖𝑑𝑒𝑎𝑙(params). Because, in this case, the ACK sent
by A2 will be received on 𝑐𝑖𝑑𝐴𝐶𝐾(𝑥

𝑟𝑐V
); then, node 𝐼 interrupts

its operation. Hence, CacheEmptyI will never be output.
Note that we also performed verification and showed

other weaknesses of SDTP; the reader can find them in our
technical report [11].

6. Automated Security Verification Using
the PAT Process Analysis Toolkit

Related Methods. SPIN model checker [14] and UPPAAL [15]
are general purpose model checking tools. CPAL-ES [16] and
ProVerif [13] are automatic verification tools developed for
verifying security protocols. The main drawback of them is

that they lack semantics and syntax for defining the systems
that include probabilistic and real-time behavior. Hence, they
cannot be used to verify WSN transport protocols such as
DTSN and SDTP. PRISM model checker [17] supports prob-
abilistic and real-time systems but its limited specification
language does not enable us to verify protocols/sytems that
may perform complex computations.

Our Method. Our method is based on the PAT process analy-
sis toolkit. PAT [8] is a self-contained framework to specify
and automatically verify different properties of concurrent
(i.e., supporting parallel compositions construct), real-time
systemswith probabilistic behavior. It provides a user friendly
graphical interface, a featured model editor, and an animated
simulator for debugging purposes. PAT implements vari-
ous state-of-the-art model checking techniques for different
properties such as reachability, LTL properties with fairness
assumptions, refinement checking, and probabilistic model
checking. To handle large state spaces, the framework also
includes many well-known model checking optimization
methods.

One of the biggest advantages of PAT compared with
other solutions is that it supports probabilistic and timed,
CSP-like behavioral syntax and semantics, which are impor-
tant in our case. Currently it contains eleven modules to
deal with problems in different domains including real-time
and probabilistic systems. PAT has been used to model and
verify a variety of systems, such as distributed algorithms,
and real-world systems like multilift and pacemaker systems.
However, PAT (so far) does not provide syntax and semantics
for specifying cryptographic primitives and operations, such
as digital signature, MAC, encryptions and decryptions, and
one-way hash function. Hence, we model cryptographic
operations used by SDTP in an abstract, simplified way. Note
that the simplification has been made in an intuitive way and
does not endanger the correctness of the protocol.

PAT is basically designed as a general purpose tool not
specifically for security protocols. It provides a CSP [18]
like syntax, but it is more expressive than CSP because it
also includes the language constructs for time and proba-
bilistic issues. PAT also provides programming elements like
communication channels, array of variables and channels,
similarly to Promela [19] (Process Meta Language), the
specification language used by the SPIN [19] model-checker.
PAThandles time in a trickyway; namely, instead ofmodeling
clocks and clock resets in an explicit manner, to make the
automatic verification more efficient it applies an implicit
representation of time (clocks).

Next, we briefly introduce the features provided by the
main modules of PAT that we use to verify the security of
DTSN and SDTP.

Communicating Sequential Programs (CSP#) Module. The
CSP# module supports a rich modeling language named
CSP# (a modified variant of CSP) that features process
algebra operators like (conditional or nondeterministic)
choices, interrupt, parallel composition, interleaving, hiding,
asynchronous message passing channel, and mathematical
operators like summation, multiplication.

ISRN Sensor Networks 17

It also provides low-level constructs like arrays, if-then-
else, and while. The modeling of communication among
processes is based on message passing via communication
channels. Communication channels sending and receiving on
a channel can be defined with the following syntax:

(1) (declaration of channel channame):
channel channame size;

(2) (output of the msg tuple (m1,m2,m3) on
channame):channame!m1.m2.m3;

(3) (input a msg (m1,m2,m3) on the
channel channame): channame?x1.x2.x3;

channel is a keyword for declaring channels only, chan-
name is the channel name, and size is the channel buffer
size. It is important that a channel with buffer size 0

sends/receives messages synchronously. A process is a rel-
evant specification element in PAT that is defined as an
equation𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑛) = ProcExp, where ProcExp defines
the behavior of process 𝑃. PAT defines special processes
to make coding be more convenient: process Stop is the
deadlock process that does nothing; process Skip terminates
immediately and then behaves exactly in the same way as
Stop.

Events are defined in PAT to make debugging more
straightforward and to make the returned attack traces more
readable. A simple event is a name for representing an
observation. Given a process 𝑃, the syntax 𝑒V -> 𝑃 describes
a process which performs 𝑒V first and then behaves as 𝑃.
An event 𝑒V can be a simple event or can be combined with
assignments which update global variables as in the following
example: 𝑒V{𝑥 = 𝑥+1; } - > 𝑆𝑡𝑜𝑝, where 𝑥 is a global variable.

A sequential composition of two processes 𝑃 and 𝑄 is
written as 𝑃;𝑄 in which 𝑃 starts first and 𝑄 starts only when
𝑃 has finished. A (general) choice is written as 𝑃[]𝑄, which
states that either 𝑃 or 𝑄 may be executed. If 𝑃 performs
an event first, then 𝑃 takes control. Otherwise, 𝑄 takes
control. Interleaving represents two processes, which run
concurrently, and is denoted by 𝑃|||𝑄.

Real-Time System (RTS) Module. The RTS module in PAT
enables us to specify and analyse real-time systems and
verify timing properties. To make the automatic verification
more efficient, unlike timed automata that define explicit
clock variables and capture real-time constraints by explicitly
setting/reseting clock variables, PAT defines several timed
behavioral patterns to capture high-level quantitative timing
requirements, such aswait, timeout, deadline,waituntil, timed
interrupt, and within. For instance, process 𝑃 interrupt[t] 𝑄
behaves as 𝑃 until 𝑡 time units elapse and then it switches to
𝑄.

Probability RTS (PRTS) Module. The PRTS module supports
means for analyzing probabilistic real-timed systems by
extending the RTS module with probabilistic choices and
assertions.Themost important extension added by the PRTS
module is the probabilistic choice (defined with the keyword
pcase):

prtsP = pcase {

[prob1]: prtsQ1

[prob2]: prtsQ2

⋅ ⋅ ⋅

[probn]: prtsQn

};

where prtsP, prtsQ1,. . ., prtsQn are PRTS processes which can
be normal processes, timedprocesses, probabilistic processes,
or probabilistic timed processes. prtsP can proceed as prtsQ1,
prtsQ2, . . ., prtsQn with probabilities prob1, prob2,. . ., probn,
respectively.

PAT supports a probabilistic assertion, which is a query
about the system’s probabilistic behaviors, namely, the reach-
abiliy of a defined goal with some probability:

#assert prtsP() reaches cond with prob/
pmin/pmax.

this returns respectively the probability, the minimal proba-
bility, and the maximal probability of the event that process
prtsP()reaches a state where the boolean expression cond is
true.

6.1. On Verifying SDTPUsing the PAT Process Analysis Toolkit.
We verify SDTP assuming the topologies Top1: 𝑆-𝐴1-𝐼-𝐷,
Top2: 𝑆-𝐼-𝐴2-𝐷, and Top3: 𝑆-𝐴1-𝐼-𝐴2-𝐷. Following the
concept in Section 5, we define public (symmetric) channels
between each node pair and define additional symmetric
channels chASPck, chASAck, chASNack, chASEAR, chADPck,
chADAck, chADNack, and chADEAR, between the attacker(s)
and its (their) honest neighbors.

As already mentioned earlier, PAT does not support
language elements for specifying cryptographic primitives
and operations in an explicit way. We specify the operation
of SDTP with the implicit representation of MACs and
ACK/NACK keys. First, recall that in SDTP the per-packet
ACK and NACK keys are generated as

𝐾
(𝑛)

𝐴𝐶𝐾
= 𝑃𝑅𝐹 (𝐾𝐴𝐶𝐾; “per packet 𝐴𝐶𝐾 𝑘𝑒𝑦”; 𝑛) ,

𝐾
(𝑛)

𝐴𝐶𝐾
= PRF (𝐾𝐾𝐴𝐶𝐾; “per packet 𝑁𝐴𝐶𝐾 key”; 𝑛) .

(14)

Following this concept, in PAT we define the ACK key
and NACK key for the packet with sequence number 𝑛

by the “pair” n.Kack and n.Knack, respectively. To reduce
the verification complexity we made abstraction on the key
generation procedure and model the session ACK/NACK
master keys by the unique constants Kack and Knack.
Then we specify the packets sent by the source node as
follows: sq.ear.rtx.sq.sq.Kack.sq.sq.Knack, where the first part
sq.ear.rtx contains the packet’s sequence number and the EAR
and RTX bits, respectively; the second part sq.sq.Kack and the
third part sq.sq.Knack represent the ACK MAC and NACK
MAC computed over the packet with sequence number sq
without the EAR and RTX bits, using the per-packet ACK
and NACK keys sq.Kack and sq.Knack. An ACK message has
the following forms: acknbr.acknbr.Kack, where acknbr.Kack

18 ISRN Sensor Networks

is the corresponding ACK key of acknbr. A NACK message
has the format acknbr.nckb1.acknbr.Kack.nckb.Knack, where
nckb.Knack is theNACKkey of the packet to be retransmitted.
The NACK message can include more bits, in a similar way.

By default, the attackers do not possess the two master
keys Kack and Knack of honest nodes but only their own
key Katt. Because honest nodes are specified to wait for these
MACs format, the attackers should compose theMACs in this
format aswell, namely, sqA.sqA.Katt.The attackers cannot use
themaster keys to construct the per-packetACK/NACKkeys,
and when they obtain a MAC, for example, sq.sq.Kack, they
cannot use sq.Kack, only in case they receives sq.Kack.

We distinguish the following scenarios and examine
the possible ability of the attacker(s). The behaviors of the
attackers are defined as the processes procA1() and procA2().
In our model, by default the attackers have two sequence
numbers seqA1 and seqA2 which are the smallest (i.e., 1)
and the largest possible sequence numbers, respectively. The
attackers can include earA ∈ {0, 1}, rtxA ∈ {0, 1} in their data
packets. The attackers, in addition, possess the predefined
values 𝑏𝐴1, . . . , 𝑏𝐴4 for requiring retransmission in NACK
messages.

Process procA1(), which defines the behavior of the
first attacker 𝐴1, is specified as an external choice among
the following four activities (each of them is composed of
additional choice options).

(1) Without Receiving Any Message. (i) 𝐴1 sends a data
packet, with seqA1.earA.rtxA or seqA2.earA.rtxA, to 𝐼;
(ii)𝐴1 sends anACK, for the packet seqA1 or seqA2, to
𝐼 or to 𝑆; (iii)𝐴1 sends aNACK, with the ack numbers
seqA1 or seqA2, and a combination of 𝑏𝐴1, . . . , 𝑏𝐴4, to
𝐼 or to 𝑆.

(2) After Receiving a Data Packet (chSAPck?seq.ear.rtx).
(i)𝐴1 sends a data packet, with the sequence number
seq, seqA1, or seqA2, and different values ear/rtx bits,
to 𝐼; (ii) 𝐴1 sends an ACK, with the ack number seq,
seqA1, or seqA2, to 𝐼 or 𝑆; (iii) 𝐴1 sends a NACK,
with the ack number seq, seqA1, or seqA2, and a
combination of 𝑏𝐴1, . . . , 𝑏𝐴4, to 𝐼 or to 𝑆.

(3) After Receiving an 𝐴𝐶𝐾 (chIAAck?ack). (i) 𝐴1 sends
a data packet, with the sequence number ack, seqA1,
or seqA2, to 𝐼; (ii) 𝐴1 sends an ACK, with the ack
number ack, seqA1, or seqA2, to 𝐼 or to 𝑆; (iii)𝐴1 sends
a NACK, with the ack number ack, seqA1, or seqA2,
and a combination of 𝑏𝐴1, . . . , 𝑏𝐴4, to 𝐼 or to 𝑆.

(4) After Receiving a𝑁𝐴𝐶𝐾with 1–4 Bits (chIANack?ack.
b1 []chIANack?ack.b1.b2 []chIANack?ack.b1.b2.b3
[]chIANack?ack.b1.b2.b3.b4). (i) 𝐴1 sends a data
packet, with with the sequence number ack, seqA1, or
seqA2, to 𝐼; (ii) 𝐴1 sends an ACK, with the sequence
number ack, seqA1, or seqA2, and a combination of
𝑏𝐴1, . . . , 𝑏𝐴4, 𝑏1, 𝑏2, 𝑏3, 𝑏4, to 𝐼 or to 𝑆; (iii) 𝐴1 sends
a NACK to 𝐼 or to 𝑆. We recall that the attacker,
besides the self-generated data, can only use the
information in the received messages. Hence, when
the attacker receives the NACK ack.b1, it can only use
(besides its own data) ack and b1.

We denote the attackers with this kind of behavior by
M𝑃𝐴𝑇

𝐴
. The SDTP protocol with the second topology is

specified as the parallel compositions of each honest node and
the attacker A1:

SDTPA1 () = procS () ||| procA1 () ||| procI () ||| procD () .

(15)

Again, each process is recursively called, in such a way
that is equivalent to replication of many instances of the
processes. For the second topology S-I-A2-D, the scenarios
and PAT codes are the same as in the case of the first topology
S-A1-I-D except that the used channels at each corresponding
step are changed as follows. In the first topology, A1 receives
data packets from S on chSAPck, which is changed to chIAPck
in the second case because now data packets come from I.
Similarly, the inputs on chSAAck and chSANack are changed
to chDAAack and chDANack, respectively. The outputs by
A on chIAPck, chIAAck, chIANack, chSAAck, and chSANack
are changed to chDAPck, chDAAck, chDANack, chIAAck,
and chIANack, respectively. The attacker process procA2()
describing the behavior of A2 is specified in the same way as
procA1() but with different channels.

The SDTP protocol with the second topology is specified
as the following parallel compositions:

SDTPA2 () = UpLayer () ||| procS ()

||| procI () ||| procA2 () ||| procD () .

(16)

For the third topology S-A1-I-A2-D, we apply the specifi-
cation of both processes A1 and A2. The SDTP protocol with
the third topology is specified as the parallel compositions of
each honest node and the two attackers:

SDTPA1A2 () = UpLayer () ||| procS () |||

procA1 () ||| procI () |||

procA2 () ||| procD () .

(17)

Assertions. The assertion, denoted by violategoal1, for verify-
ing the provision of reliable delivery of packets, is as follows:

#define violategoal1 (OutBufL == 0 &&BufI ==

0 && num𝑁𝐴𝐶𝐾 > 0),

where the (global) variables OutBufL, BufI are the number
of the occupied cache entries at the source and intermediate
node, respectively, while the variable num 𝑁𝐴𝐶𝐾 is the
number of those packets that the destination has not received
and that require to be retransmitted. Hence, (OutBufL ==
0) and (BufI == 0) represent that the cache of 𝑆 and 𝐼 are
emptied, but at the same time (num 𝑁𝐴𝐶𝐾 > 0) means that
𝐷 has not received all of the packets.

The following PAT code is applied for asking if these bad
states can be reached in SDTP:

(B1) #assert SDTP() reaches violategoal1p1;
(B2) #assert SDTP() reaches violategoal1p1 with pmax.

ISRN Sensor Networks 19

PAT code:

#define violategoal2 (freenum > acknum)

B5. #assert SDTPsubA1subA2() reaches violategoal2

B6. #assert SDTPA1A2() reaches violategoal2

Algorithm 1

subA1() =

/∗ A1 sends a data packet to I, without receiving any message, OR ∗/

A1NotRcvSndPck2I()

/∗ After receiving a data packet on channel chSAPck ∗/

[] chSAPck?seq.ear.rtx.seq1.seq2.Kack.seq3.seq4.Knack ->

(

/∗ A1 sends a data packet to I, OR ∗/

A1RcvPckSndPck2I()

/∗ A1 forwards the packet unchanged to I ∗/

[] chIAPck!seq.ear.rtx.seq1.seq2.Kack.seq3.seq4.Knack -> subA1()

)

subA2() =

/∗ A2 sends a data packet to I, without receiving any message, OR ∗/

A2NotRcvSndAck2I()

/∗ After getting a data on channel chIAPck, A2 sends ACK with seqA2 to I ∗/

[] chIAPck?seq.ear.rtx.seq1.seq2.Kack.seq3.seq4.Knack -> A2RcvPckSndAck2I()

SDTPsubA1subA2() =

UpLayer() ||| procS() ||| subA1() ||| procI() ||| subA2() ||| procD()

Algorithm 2

For the topology Top2, we run PAT to model-check (B1)
and get the result Not Valid. This means that, in the presence
of the defined attacker(s) M𝑃𝐴𝑇

𝐴
, SDTP cannot be corrupted

such that 𝐷 has not received some packets and required
retransmissions but the buffers of 𝑆 and 𝐼 are emptied.
Assertion (B2) also results in Not valid.

Now let us consider the topology Top3 that includes two
attackers 𝐴1 and 𝐴2. We specify the bad states for SDTP
(and DTSN), and we run the model checking to see if these
bad states can be reached. The bad states and the verification
goals can be defined in PAT’s language in the form of logical
formulas and assertions, respectively.

Let the number of buffer entries that are freed at node 𝐼
after receiving an ACK/NACK message be freenum, and let
the number of packets received in sequence by node 𝐷 be
acknum. The bad state violategoal2 specifies the state where
(freenum > acknum) (see Algorithm 1).

We run the PAT model checker with the attacker pro-
cesses (see Algorithm 2).

As a result, the tool returned Valid for the assertions 𝐵5
and 𝐵6 along with the following trace.

(1) A1 sends to I a data pck seqA2.ear.rtx with the
corresponding ACK MACs: seqA2.seqA2.Katt and
NACKMACs: seqA2.seqA2.Katt.

(2) I stores this pck and forwards it (unchanged) to A2.

(3) A2 received this packet and sends to I the ACK for
seqA2: seqA2.seqA2.Katt.seqA2.Katt with the 2 keys
seqA2.Katt and seqA2.Katt.

(4) As result, I deletes all the packets stored in its
buffer because the key seqA2.Katt and the MAC
seqA2.seqA2.Katt match.

In summary, we get the result that both DTSN and
SDTP are susceptible for this sandwich style attack scenario.
The main reason for this weakness is that in SDTP the
intermediate nodes do not verify the origin of the received
messages; they only check if the stored ACK/NACK MACs
match the received ACK/NACK keys.

We also performed verification and showed other weak-
nesses of SDTP; the reader can find them in our technical
report [11].

7. Conclusion

In this paper, we addressed the problem of formal and
automated security verification of WSN transport protocols
that may perform cryptographic operations. The verification
of this class of protocols is difficult because they typically
consist of complex behavioral characteristics, such as real-
time, probabilistic, and cryptographic operations. To solve
this problem, we proposed a probabilistic timed calculus
for cryptographic protocols and demonstrated how to use

20 ISRN Sensor Networks

this formal language for proving security or vulnerability
of protocols. To the best of our knowledge, this is the first
such process calculus that supports an expressive syntax and
semantics, real-time, probabilistic, and cryptographic issues
at the same time. Hence, it can be used to verify systems
that involve these three properties. In addition, we proposed
an automatic verification method, based on the PAT process
analysis toolkit for this class of protocols. For demonstration
purposes, we apply the proposedmanual and automatic proof
methods for verifying the security of DTSN and SDTP, which
are two of the recently proposed WSN transport protocols,
and showed that (i) DTSN is vulnerable to packet manipu-
lation attacks, (ii) SDTP successfully patched some security
holes found in DTSN, and (iii) SDTP is still vulnerable to the
sandwich type attack.

In the future, we focus on improving the automatic secu-
rity verification for this class of systems/protocols. Currently
we found that PAT is the most suitable tool because it
enables us to define concurrent, nondeterministic, real-time,
and probabilistic behavior of systems in a convenient way.
However, in its current form it does not support (or only in a
very limitedway) cryptographic primitives and operations, as
well as the behavior of strong (external or insider) attackers.
Finally, we believe that our proposed methods can be applied
for verifying other similar systems, which we will show in our
follow-up work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,”ComputerNetworks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] B. Marchi, A. Grilo, and M. Nunes, “DTSN: distributed trans-
port for sensor networks,” in Proceedings of the 12th IEEE Inter-
national Symposium on Computers and Communications (ISCC
’07), pp. 165–172, Aveiro, Portugal, July 2007.

[3] L. Buttyan and A. M. Grilo, “A secure distributed transport
protocol for wireless sensor networks,” in Proceedings of the
IEEE International Conference on Communications (ICC ’11), pp.
1–6, Kyoto, Japan, June 2011.

[4] L. Buttyan and L. Csik, “Security analysis of reliable transport
layer protocols for wireless sensor networks,” in Proceedings of
the IEEE Workshop on Sensor Networks and Systems for Perva-
sive Computing (PerSeNS ’10), pp. 1–6, Mannheim, Germany,
March 2010.

[5] M. Abadi and C. Fournet, “Mobile values, new names, and
secure communication,” in Proceedings of the 28th ACM Sym-
posium on Principles of Programming (POPL’01), pp. 104–115,
January 2001.

[6] J. Goubault-Larrecq, C. Palamidessi, and A. Troina, “A prob-
abilistic applied pi-calculus,” in Programming Languages and
Systems, pp. 175–190, Springer, 2007.

[7] P. R. D’Argenio and E. Brinksma, “A calculus for timed autom-
ata,” Tech. Rep., Theoretical Computer Science, 1996.

[8] L. Yang et al., Pat: process analysis toolkit.

[9] T. Dierks and E. Rescorla, “The transport layer security (TLS)
protocol version 1. 2,” RFC 5246, Internet Engineering Task
Force, 2008.

[10] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile
processes, parts I and II,” Information and Computation, vol.
100, no. 1, pp. 1–77, 1992.

[11] T. V. Thong and A. Dvir, “On formal and automatic security
verification of wsn transport protocols,” Tech. Rep. 2013/014,
Cryptology Eprint Archive, 2013.

[12] R. Lanotte, A. Maggiolo-Schettini, and A. Troina, “Weak bisim-
ulation for prob-abilistic timed automata,” in Proceedings of the
International Conference on Software Engineering and Formal
Methods (SEFM ’03), pp. 34–43, IEEE CS Press, 2003.

[13] B. Blanchet, “Automatic proof of strong secrecy for security
protocols,” in Proceedings of the 2004 IEEE Symposium on
Security and Privacy, pp. 86–100, Oakland, Calif, USA, May
2004.

[14] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar,
“SPINS: security protocols for sensor networks,” in Proceedings
of the 7th ACM Annual International Conference on Mobile
Computing and Networking (MobiCom ’01), pp. 189–199, Rome,
Italy, July 2001.

[15] J. Bengtsson and F. Larsson, “Uppaal a tool for automatic ver-
ification of real-time systems,” Tech. Rep., Uppsala University,
1996.

[16] J. D. Marshall II and X. Yuan, “An analysis of the secure routing
protocol for mobile ad hoc network route discovery: Using
intuitive reasoning and formal verification to identify flaws,”
Tech. Rep., The Florida State University, 2003.

[17] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4-0: ver-
ification of probabilistic realtime systems,” in Proceedings of the
23rd International Conference on Computer Aided Verification
(CAV ’11), G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806 of
Lecture Notes in Computer Science, pp. 585–591, Springer, 2011.

[18] C. A. R. Hoare, “Communicating sequential processes,” Com-
munications of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[19] G. Holzmann, The Spin Model Checker: Primer and Reference
Manual, Addison-Wesley Professional, 1st edition, 2003.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

