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The KK-Distribution is an important clutter model for high-resolution radar sea clutter returns obtained at X-band. The
Neyman-Pearson optimal KK multilook detector has been derived recently, as well as the generalised likelihood ratio test
suboptimal detector. Both these detectors are dependent on the modified Bessel-function of the second kind. This paper suggests
a suitable suboptimal approach, using a well-known Bessel identity, eliminating the Bessel function dependence. This produces a
computationally simpler detection scheme, whose performance is analysed using clutter parameters based upon real X-band radar

returns.

1. Introduction

Coherent multilook radar detection is an area of much
activity in radar signal processing research [1-6]. Much
of the work undertaken in the literature is based upon
a Neyman-Pearson likelihood detector, which requires the
specification of an appropriate clutter model. Over the last
three decades much focus has been on the K-Distribution,
which superseded the earlier Gaussian, Lognormal, Rayleigh
and Weibull models [5-8]. The K-Distribution was intro-
duced to model observed features of real-sea-clutter returns.
In particular, the K-Distribution models fast fluctuations of
sea clutter using a conditional Rayleigh distribution, while
the underlying modulation is modelled through a gamma
distribution. The fast fluctuations are called the speckle,
while the modulation is known as the texture [7, 8]. The K-
Distribution, as an amplitude model, has density given by
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where the parameter v is referred to as the K-Distribution’s
shape parameter, while ¢ is called the scale parameter. The
shape parameter v governs the tail of the K-Distribution’s
density, and it has been found that small values of v (v <
0.1) represent more spiky clutter while larger values of v

(v > 20) produce backscattering that is closer to Rayleigh in
distribution [9].

In order to improve the fit of the K-Distribution to real
data, [10] proposed a mixture distribution version of the K-
Distribution, known as the KK-Distribution. In this mixture
model, two K-Distributions share the same shape parameter
v, but have different scale parameters ¢; and ¢,. Its density,
again in the amplitude domain, is given by the mixture

Sfrx(t) = (1 = k) fx, (& ¢c1,v) + k f, (£ ¢2,v), (2)

where each fx, is a K-Distribution with parameters as
specified. The first K-Distribution density in (2) represents
the Bragg and whitecap scatterers in the model. The second
K-Distribution in (2) represents the spike component of the
clutter. Parameter k € [0, 1] is called the mixing coefficient.
Comparison of this model to high-resolution radar sea
clutter has been recorded in [10], where it is shown that the
KK-Distribution provides a better fit to the upper tail region
of the empirical distribution than the K-Distribution. The
KK-Distribution’s validity is also supported by the analysis
of trials data in [11], who also extend the model to include
multiple looks and thermal noise.

The last few years has seen the emergence of the Pareto
model for high-resolution radar maritime clutter returns
obtained at X-band [1, 2, 12, 13]. In addition to this, clutter



models based upon an alpha-stable distribution have been
proposed [14—16], which have a Pareto-like tail. However, the
KK-Distribution still has an important role in radar, due to
the fact that it provides a tighter fit in the upper tail region
of the empirical distribution functions, as pointed out in
(12,13].

Recently, coherent multilook detection for targets
embedded within a compound Gaussian model, whose
marginal amplitude distributions are KK-Distributed, has
been examined in [4]. In the latter, both the optimal
Neyman-Pearson detector, and the generalised likelihood
ratio test suboptimal decision rules, have been derived.
These detectors have complex dependence on the modified
Bessel function of the second kind. This paper uses a
Bessel function identity to produce computationally simpler
suboptimal detection schemes. The motivation for this is
twofold. Firstly, an active radar must process a huge number
of returns sequentially. Hence, it is important to reduce the
computation time for each processed return, even if it is by
a small amount. Secondly, for the implementation of a radar
detection scheme in practice, it will be necessary to set the
detection threshold for a given false-alarm probability. Thus,
it is important to have an analytical relationship that is as
simple as possible, to facilitate the determination of such
thresholds.

The new detector’s performance is examined relative to a
clutter model whose parameters are estimated from real X-
band high-resolution radar clutter returns. Thus, it will be
assumed that the clutter parameters are completely known
to the radar system.

The paper is arranged as follows. Section 2 outlines the
coherent multilook detection problem, including the optimal
Neyman-Pearson detector and generalised likelihood ratio
test detector. Section 3 derives suboptimal detectors using
Bessel function approximation. The performance of these
suboptimal detectors is then analysed in Section 4.

2. Coherent Multilook Detection

It is necessary to first specify the clutter model used
in the construction of the Neyman-Pearson optimal and
suboptimal detectors. The following is based very closely on
the problem formulation in [4], and is included for com-
pleteness. The clutter is modelled as a spherically invariant
random process (SIRP) [17], which requires the specification
of an appropriate characteristic function. Modelling clutter
by such a process has been justified experimentally with real-
radar clutter returns [18]. The appropriate SIRP, for the KK-
clutter model, has N-dimensional complex clutter vector
¢y = §4, where the nonnegative univariate random variable
S has density given by

fs(s) = (1 = k) fs, (s) + kfs, (s), (3)
where
2v
fs;(s) = ZZVfJIT(V) e, (4)

for each j € {1,2} [4]. The N-dimensional process § is
complex Gaussian with zero mean vector and covariance
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matrix X, which is assumed to be positive definite. This
enables a whitening approach to be used to simplify the
densities under each hypothesis in the Neyman-Pearson
Lemma [4]. Central to the SIRP approach is the characteristic
function, which is an integral component of densities used in
the Neyman-Pearson Lemma. The function
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has been shown to be the characteristic function of an SIRP
that generates KK-Distributed marginal distributions, with
shape parameter v, scale parameters ¢; and ¢;, and mixing
coefficient k.

The coherent multilook detection problem is specified
through the statistical test

Hy:z=c¢, against H :z=Rp+cy, (7)

where all complex vectors are N X 1. The vector z is the radar
return. Hy is the null hypothesis (return is pure clutter),
while H; is the alternative hypothesis (return consists of
a mixture of signal and clutter). The vector p is the
Doppler steering vector, which is assumed to be completely
known, with components given by p(j) = e/?"o, for j €
{1,2,...,N}, where fp € [-0.5,0.5] is the target normalised
Doppler frequency. The complex random variable R is the
target model and |R| is the target amplitude. Since we are
assuming that ¥ is positive definite, it is convenient to apply
a whitening process to the test (7). The validity of this is
discussed in [4]. This means there exists a Cholesky factor
matrix A such that 2! = AMA. Consequently, we can
redefine r = Az, n = Acy, and u = Ap. The result is that
the test (7) can be recast in the form

Hp:r=n against H :r=Ru+n (8)

The Neyman-Pearson optimal detector is the ratio of the
densities under H, and Hj in (8), respectively [19]. For the
case where the target variable R is fixed, it is shown in [4]
that the likelihood ratio is given by

e hy (Il = Rul|?)
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with the optimal decision rule as follows
H,
L(r) 2T, (10)

Hy
where 7 is the detection threshold. In (10), the notation

H
X 2] Y means that we reject the null hypothesis Hy if and
Hy
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only if X > Y. Given a radar return r, the likelihood L(r) is
compared to the threshold 7 in order to make a decision on
whether a target signature is present in the return.

In a real application, the target is unknown and hence
R must be estimated. If we assume R is unknown but
constant from scan to scan, the generalised likelihood ratio
test (GLRT) is used to first estimate this parameter, and then
apply the estimate to the test (10). The methodology of GLRT
is described in detail in [4]. As explained in the latter, the
GLRT uses the approximation

2
o

in (9), to eliminate dependence on R, permitting the
determination of (10) without target knowledge. In cases
where the clutter parameters are also unknown, maxiumum
likelihood estimates of these are also used in (9).

There is a large number of examples in the literature
where approximations are applied to simplify (9) and (10);
see [20] and references contained therein. The approach
explored here is based upon a simple Bessel-function iden-
tity.

2 2
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3. A Suboptimal Detector

The motivation for the development of a suboptimal version
of (9) is that the Bessel function adds computational
complexity to implemented detection schemes. As stressed
earlier, a radar system will be processing a significantly
large number of returns sequentially. Hence any reduction
in computational cost will improve performance. A large
number of such improvements, regardless of how small, will
accumulate into an overall system performance saving.

A further motivation for this approach is to facilitate
the construction of simple false-alarm probability/threshold
relationships. It will also result in system savings if there is a
simpler relationship to work with, between these two param-
eters. It was hence of interest to see whether any of the well-
known Bessel identities could produce a suboptimal decision
rule without incurring a significant detection loss. Bessel-
function approximations have been addressed in a number
of publications [21, 22]. A fixed-order approximation to
the Bessel function was selected, in an attempt to keep the
approximation as simple as possible. The following identity
is the key to developing our suboptimal detector.

Lemma 1. The modified Bessel function of the second kind,
with order v = 0.5, is given by

Kose) = [Te=2 7, (12)

This can be found in [23] (equation 4.12.5, page 223).

In addition, the Lemma is exploited in [21] for similar
purposes.

In view of (9), in cases where N — v = 0.5, this simplifies
the optimal and GLRT detectors considerably. In terms of

where z > 0.

implementing a radar detection scheme, we can select an
appropriate number of looks N so that the difference N — v
is as close as possible to 0.5.

If we assume N —v = 0.5, and define an auxiliary function

H(uscr, e, v, k) = (1 - k)c%”e_““ + kc%"e‘”” (13)

then the function (6) reduces to

{(usc1, 2,7, N, k) = \/gu’mn(u; c1, 2,7, k) (14)

with an application of (12). Using this result, the optimal
detector specified by (9) and (10) simplifies to

llrll  #%(lr — Rull;c1, c2, v, k) Hi

> T 15
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In cases where N — v# 0.5, the decision rule (15) can be
applied as a suboptimal detector. The expression (11) can
also be applied to (15) to produce a corresponding GLRT
version of (15). When it can be applied, the detector (15)
is a computationally cheaper solution than that provided by
(10).

To illustrate this, the two functions (6) and (14) are
compared, in terms of their computation times. Consider
the case where the clutter has parameters v = 8.315,
1 = 25, and ¢, = 26.5 with k = 0.01. Figure 1 shows
computation times (in a logarithmic scale) for the function
(6) and its approximation by (14), for two number of
looks (N = 5 and 8). This shows (14) can introduce
a small saving computationally. Although this is a small
reduction in time, millions of such computations will result
in an overall improvement in performance. Varying N does
not significantly alter the computation times from the two
examples illustrated in Figure 1.

As a second example, the case where v = 4.684, ¢; = 10,
¢, = 57.70, with k = 0.01 is examined. Figure 2 shows the
computational times for N = 3 and N = 5 looks. Again
we observe that (14) has periods where it can introduce a
computation saving. A somewhat unsurprising result is that
when N — v = 0.5, similar plots show that (14) has a smaller
computation time on average than (6).

Hence, there is computational validity in using (14)
to approximate (6). It is now necessary to investigate the
detection loss in using this approximation.

4, Performance of the Suboptimal Detector

4.1. Preliminaries. The critical question now is whether
detectors based upon (15), using (12) as an approximation,
can provide a small enough detection loss to merit the
computational gain in using a simpler decision rule. This
issue is examined here using detection performance curves,
which plot the probability of detection as a function of signal
to-clutter ratio (SCR).

A Gaussian or Swerling 1 target model is used in the
numerical analysis to follow, as in [4]. In this case, the SCR is
given by

2 2
SCR = o |lull

= 1
2NY[(1 = k)/c? + k/c3]’ (16)
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FiGure 1: Examples of computation time for the expression (6) and its approximation (14).
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FIGURE 2: Further examples of the computational time of expression (6) compared to its approximation (14).

where in the context of the target model formulated in
Section 2, E|R|? = 202 for some ¢ > 0.

For each example considered, the clutter parameter set
{c1, 62, v} is based upon DSTO’s high-resolution radar clutter
sets generated by the Ingara radar operating in a trial in
2004. The Ingara radar is an X-Band fully polarised radar,
which operated in a circular spotlight mode during the
clutter gathering exercise. The trial was conducted in the
Southern Ocean, roughly 100 km south of Port Lincoln in
South Australia. Full details of this trial, the Ingara radar, and

data analysis of the clutter returns obtained can be found
in [9, 10, 24, 25]. Some key points, taken from [4], are
reiterated. The radar viewed the same patch of sea surface
at different azimuth angles. It used a centre frequency of
10.1 GHz, with 20 us pulse width. Additionally, the radar
operated at an altitude of 2314 m for a nominal incidence
angle of 50°, and at 1353 m for 70° incidence angle. The trial
collected data at incidence angles varying from 40° to 80°, on
8 different days over an 18 day period. As in [10], we focus on
data from two particular flight-test runs. These correspond
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Coherent multilook detection performance, N = 2
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Coherent multilook detection performance, N = 10
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FIGURE 3: Detector performance curves based upon run 34690, azimuth angle 45°, vertical polarisation. Shown is the performance of the
optimal detector (denoted OPT), the GLRT (with same label), the suboptimal approximation of the optimal detector (OPT-APP), and the

suboptimal approximation of the GLRT (GLRT-APP).

to run 34683 and run 34690, which were collected on 16
August 2004 between 10:52 am and 11:27 am local time
[10]. Dataset run 34683 was obtained at an incidence angle
of 51.5°, while run 34690 was at 67.2°. Each of these datasets
were also processed in blocks to cover azimuth angle spans of
5° over the full 360° range. Roughly 900 pulses were used,
and 1024 range compressed samples for each pulse were
produced, at a range resolution of 0.75 m. In [10] parameter
estimates for the datasets run 34683 and run 34690 are
given, enabling the fitting of the K- and KK-Distributions
to this data. This will be employed in the numerical analysis

to follow. Further details on the clutter model fitting can
be found in [10]. As reported in the latter, the radar is
facing upwind at approximately 227° azimuth, which is the
point of strongest clutter. Downwind is at approximately
47°, which is the point where the clutter is weakest.
Crosswind directions are encountered at 137° and 317°
approximately.

The clutter covariance matrix is chosen to have a Toeplitz
structure. This means we assume the matrix X has (i, j)th
element given by 2(i, j) = «/"=/!, for i and j taking values
from 1 to the maximum number of looks. The Toeplitz factor
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FIGURE 4: Performance of the new suboptimal detectors relative to the optimal and GLRT detectors. This example has been based upon
clutter parameters estimated from dataset run 34683, azimuth angle 190°, with horizontal polarisation.

x is between 0 and 1. Throughout it has been set to 0.8,
to reflect strong clutter returns. In addition, the false alarm
probability has been set to 107°. The normalised Doppler
frequency is fp = 0.5 in all examples. The KK-mixing
coefficient has been set to k = 0.01, as reflected by the clutter
parameter fits in [10].

All detection performance curves have been produced
using Monte Carlo simulation, with each data point esti-
mated using at least 10° runs.

4.2. Example 1. The first example considered has been based
upon the DSTO dataset run 34690, which was obtained at

an azimuth angle of 45°, with vertical polarisation. This
is only 2° from the downwind direction. The fitted KK-
Distribution parameters are v = 8.315, ¢; = 25, and ¢; =
26.5. Figure 3 shows four detection performance curves for
this case, where the number of looks N is varied. The top left
subplot is for N = 2, the top right subplot corresponds to
N = 4, the bottom left subplot has N = 8, while the bottom
right subplot is for N = 10. Shown in all subplots is the
performance of the optimal detector (10), the GLRT ((10)
using (11)), as well as suboptimal approximations based
upon (15). The Figure shows the latter applied to the optimal
detector directly (denoted OPT APP), as well as to the GLRT
(denoted GLRT APP). What is evident from Figure 3 is that
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FIGURE 5: Detector performance in an almost upwind scenario, based upon dataset run 34683, azimuth angle 225°, with horizontal
polarisation. The detection loss by using the new suboptimal detectors is not as significant as the example investigated in Figure 4.

the new suboptimal detector performs very well, with an
almost negligible detection loss in all cases illustrated.

4.3. Example 2. The second example is for the case where the
KK shape parameter is v = 4.684, and the scale parameters
are ¢; = 10 and ¢, = 57.70, respectively. These are based
upon the dataset run 34683, at an azimuth angle of 190°, with
horizontal polarisation. In Figure 4, the number of looks is
varied from N = 2 (top left subplot), N = 4 (top right
subplot), N = 5 (bottom left subplot), and N = 10 (bottom
right subplot). For the case where N = 2, we observe there
is a significant detection loss between the optimal detector/

GLRT and their suboptimal versions. For a fast scanning
radar, where only a few pulses may be received, this means we
would incur a significant detection loss in using (15). As the
number of looks is increased, the performance of detectors
based upon (15) improves as shown.

4.4. Example 3. The final example, illustrated in Figure 5,
is also for horizontal polarisation. Clutter parameters have
been estimated from dataset run 34683 as previously, but
with an azimuth angle of 225°. This is only 2° from the
upwind direction. Clutter parameter estimates, based upon
[10], are v = 4.158 (shape parameter) and ¢; = 5.5,



c; = 17.985 (scale parameters). The number of looks is
cycled through N = 2, 4, 8, and 10 as illustrated in Figure 5.
The performance shown in Figure 5 is similar to that in
Figure 4, except that the detection loss at small number of
looks is not as significant as that in Figure 4.

5. Conclusions and Further Research

Using a Bessel-function approximation, two new suboptimal
detectors were produced, and their performance was gauged
against the Neyman-Pearson optimal detector, as well as the
generalised likelihood ratio test detector. It was shown that
the function (14) introduced a minor computational saving
over (6), which would result in overall system performance
improvement when a huge number of radar returns are
sequentially processed. The validity of this approximation
was explored using detection performance curves, with
clutter parameters estimated from DSTO’s Ingara data, with
a Gaussian target model. It was shown small detection losses
are possible in a number of cases. In particular, the number
of looks can be chosen so that the difference between it and
the KK-shape parameter is as close as possible to 0.5. For a
large number of looks, as in the case where the radar’s scan
rate is slow to medium, the new suboptimal approximations
can be used without a large detection loss.

Further work will be spent trying to determine the
probability of false alarm and threshold relationship, through
an analytic expression, which is vital for the real-time
implementation of these detection schemes.
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