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Identification of a signal component with the frequency exceeding the Nyquist limit is a challenging problem in signal theory as
well as in some specific applications areas like astronomy and biosciences. A consequence of the well-known sampling theorem
for a uniformly sampled signal is that the spectral component above the Nyquist limit is aliased into lower frequency range,
making a distinction between true and aliased components impossible. The nonuniform sampling, however, offers a possibility
to reduce aliased components and uncover information above the Nyquist limit. In this paper, we provide a theoretical analysis
of the aliased components reduction in the nonparametric periodogram for two sampling schemes: the random sampling pattern
and the sampling pattern generated by the integral pulse frequency modulation (IPFM), the latter widely accepted as the heart rate
timing model. A general formula that relates the variance of timing deviations from a regular scheme with the aliased component
suppression is proposed. The derived relation is illustrated by Lomb-Scargle periodograms applied on simulated data. Presented
experimental data consisting of the respiration signal derived from the electrocardiogram and the heart rate signal also support
possibility to detect frequencies above the Nyquist limit in the condition known as the cardiac aliasing.

1. Introduction

Aliasing is a well-known phenomenon in signal theory that
occurs if a continuous-time signal is sampled at a frequency
fs below twice the maximum frequency fm of the sampled
signal, that is, fs < 2 fm. The sampling frequency halved,
fN = fs/2, is referred to as the Nyquist frequency and can
be interpreted as the presumed maximum frequency of the
sampled signal provided that a sampling was performed at a
sufficiently high rate. If the frequency of the sampled signal
exceeds the Nyquist limit, this frequency appears at a wrong
position, in the range 0 − fs/2, unless an antialiasing filter
was applied. These rules are, however, not fully applicable in
nonuniformly sampled data.

Nonuniform sampling can be exploited intentionally in a
system design, or it can reflect specific restrictive conditions
in measurement and exploration of data in some scientific
fields, such as astronomy, seismology, genetics, biophysical
measurements, and cardiac physiology. Data cannot be
acquired at prescribed time instants, they are missing or
corrupted. In other situations, essentially irregular sampling

times are dictated by nature, such as it is in analysis of the
heart rate variability. Nonuniform sampling makes analysis
of a signal more complicated, because great majority of data
analysis and digital signal processing procedures have been
developed for uniformly sampled signals. On the other hand,
nonuniformly sampled signals are more informative and
components beyond the Nyquist limit can be detected.

Notion of the Nyquist frequency needs some clarification
when considering nonuniformly sampled signals. There is
no well-accepted definition if the sampling frequency is not
constant [1]. Some authors define the Nyquist frequency
in the nonuniform case as 1/(2tmin), where tmin is the
smallest time interval between data, while others infer the
Nyquist frequency from average sampling times tmean and
defines it as 1/(2tmean). A more general way of defining the
Nyquist frequency for nonuniform samples uses a concept
of the spectral window, that is, magnitude squared Fourier
transform (FT) of the sampling pattern. The spectral window
reaches its maximum at the zero frequency and a secondary
maximum close to the main maximum at the frequency that
is stated to be the Nyquist frequency doubled. In this paper,
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we will consider sampling times that deviates from regular
instants in a homogenous way, that is, without marked
clusters or long gaps. In such a situation, both average
sampling time and spectral window concepts give practically
identical results.

The spectral analysis of nonuniformly sampled data
has relatively old history due to a theoretical and practical
significance of this problem. Various approaches have been
proposed to deals with nonuniform samples. A compre-
hensive review of the state of the art can be found in
[1]. We will restrict our consideration to the methods
commonly used in the research of the heart rate data
which are used in this paper as demonstrative data to
illustrate analyzed phenomena. The simplest method to
deal with nonuniformly sampled data is to ignore sampling
irregularity, relocate the samples into a regular grid, and
treat them as a uniformly sampled signal. Such approach
results in a reduction of spectral amplitudes and sampling
irregularity is translated into a spectral noise. Components
above the Nyquist frequency cannot be distinguished from
aliased frequencies. Interpolation-based methods attenuate
higher frequencies making them unsuitable for analysis of
components above the Nyquist frequency. A widely used
method that does not assume a signal resampling is known
as the Lomb-Scargle periodogram, which is basically least-
squares fitting of measured data by sinusoids [2–6].

The Lomb-Scargle periodogram (LS) [2] is a method
especially designed for nonuniformly acquired samples.
This method was originally proposed for the analysis of
astronomic time series and also found successful application
in the analysis of cardiovascular data, such as those in
the analyses of the heart rate variability [7, 8], circadian
rhythms [9], and gene sequence analysis. Results of LP are
in many situations almost identical to the classical (Schuster)
periodogram generalized to nonuniform samples [10] and
thus they can be inferred from the FT of nonuniformly
sampled data. Such an approach is used in [6] where several
properties of the nonuniformly sampled FT are presented,
although they are referred imprecisely as properties of the
Lomb power spectral density.

Unlike our paper, the analyses [6] have been performed
without a special attention to quantify an effect of the
aliasing, that is, ability to uncover components above the
Nyquist limit. This paper studies the utility of nonuniform
sampling for both reducing aliased components and reveal-
ing components above the Nyquist rate. We will provide
theoretical analysis of a model situation, when a sinusoidal
signal is sampled according to a prespecified nonuniform
sampling pattern. A general formula that relates the variance
of timing deviations from a regular scheme with the aliased
component suppression is proposed. A theoretically proven
observability of components beyond the Nyquist limit is
illustrated by simulation examples and cardio-respiratory
data obtained from an experiment especially arranged for
this purpose.

Outline of the paper is as follows. Section 2 summarizes
definitions of periodograms used in the spectral analysis of
nonuniform data. Subsequent sections present theoretical
spectral analysis of the sinusoid sampled with two sampling

schemes. In Section 3 of the paper, we will derive the for-
mulas for power spectral densities (PSDs) of nonuniformly
sampled sinusoidal signals provided that the sampling times
obey a random model. Section 4 provides a treatment of
sinusoid spectrum when the sampling pattern was gener-
ated by the integral pulse frequency modulation (IPFM).
A quantitative formula describing an aliased component
reduction is derived in Section 5. Demonstrative analyses of
simulated data are presented in Section 6. Spectral analyses
of experimental data—electrocardiogram- (ECG-) derived
respiration and the heart rate variability (HRV) signals—
illustrate performance of the LS method in the case of so-
called cardiac aliasing, when components above the Nyquist
frequency were elicited by the respiratory sinus arrhythmia.

2. Periodograms for Nonuniformly
Sampled Signals

The conventional periodogram based on the magnitude
squared Fourier transform can be generalized also for
nonuniformly sampled signals in the form [4]:

P(ω) = 1
N
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where x(tn) are data samples taken at the time instants tn.
Notice that roots of a Fourier-type analysis with complex
exponentials reside in a least-squares fitting of data to
the complex sinusoid e jωt. Lomb [2] formulated the peri-
odogram by means of the least-squares fitting of observed
real-valued data to the model of the form:

A cos(ω(ti − τ)) + B sin(ω(ti − τ)). (2)

The redundant time delay variable τ, computed as

tan(2ωτ) =
∑N−1

n=0 sin(2ωtn)
∑N−1

n=0 cos(2ωtn)
, (3)

was introduced into the model (2) in order to orthogonalize
sine and cosine terms, which arise in a formulation of the
normal equations of the fitting problem. The LS PSD is then
computed as [4]
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(4)

Provided that the summed sine and cosine squared terms
in (4) are both equal and approach to N/2, and x is shifted
by τ, the LS (4) approaches to the classical periodogram
(1). Generally, (1) and (4) are not equivalent. The LS is
preferred due to statistical properties useful for significance
testing of spectral peaks [4, 11]. On the other hand, (1) is
mathematically more tractable.
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3. Random Sampling Pattern

The analyzed signal will take a form of the complex sinusoid
with the amplitude C, frequency ω0, sampled at the time
instants tn:

x(tn) = Cejω0tn . (5)

The sampling instants are supposed to be the random
numbers obeying the following model:

tn = nT0 + ξn, (6)

where T0 is the mean sampling period, n = 0, . . . ,N − 1,
and ξn is a sequence of independent identically distributed
random variables. Average behavior of (1), approximately
valid also for the LS spectrum, can be deduced by applying
the expectation on the Fourier transform of (5):

−
X(ω) = E[X(ω)] = E

⎡

⎣

N−1
∑

n=0

x(tn)e− jωtn

⎤

⎦. (7)

After substitution (5), (6) into (7) and rearrangement, we
obtain

E[X(ω)] = C
N−1
∑

n=0

e− j(ω−ω0)nT0E
[

e− j(ω−ω0)ξn
]

. (8)

In (8), we can recognize FT of a uniformly sampled sinusoid
expressible by the periodic Dirichlet kernel:

NDN ((ω − ω0)T0), (9)

where the kernel is

DN (x) = 1
N

sin(Nx/2)
sin(x/2)

. (10)

The mean FT (8) can be rewritten in terms of the character-
istic function shifted by the frequency ω0:

−
X(ω) = CNDN ((ω − ω0)T0)T(ω − ω0), (11)

where the characteristic function T of the timing irregularity
ξ, characterized by the probability density function pξ , is
defined as

T(ω) = E
[

e− jωξ
]

=
∫∞

−∞
pξ(ξ)e− jωξdξ. (12)

Therefore, the characteristic function attenuates periodic
peaks—aliases or spectral images in (11), while it retains the
true peak at the frequency ω0.

The resultant expectation of the FT (11) does not account
thoroughly for a random effect of the sampling irregularity.
Therefore, the expectation of a magnitude squared FT, that
is, PSD by its definition, is evaluated to have a more complete
though on the spectrum of an irregularly sampled signal:
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The summation term in (13) after substitution (5) is

C2
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e jω0(n−k)T0e− jω(n−k)T0e− j(ω−ω0)ξne j(ω−ω0)ξk . (14)

For n /= k, we have due to the presumed independence:

E
[

e jωξne− jωξk
]

= T(−ω)T(ω) = T2(ω), (15)

where we have assumed a symmetrical probability function
in (12) and thus a real-valued characteristic function.

In the specific case, n = k, expectation (15) is 1 and it can
be formally expanded as

E
[

e j0
]

= T2(ω − ω0) +
[

1− T2(ω− ω0)
]

. (16)

After substitution m = n− k in (14) and taking into account
(15), (16), the summation (14) simplifies to

−
P(ω) = C2[1− T2(ω − ω0)

]

+ C2T2(ω − ω0)
N−1
∑

m=−N+1

(

1− |m|
N

)

e jω0mT0e− jωmT0 .

(17)

The summation term in (17) can be recognized as the FT of
a uniformly sampled sinusoid multiplied by the triangular
window. In order to facilitate the formula readability, this FT
will be denoted as

SN (ω − ω0) = ND2
N ((ω − ω0)T0). (18)

The final formula then becomes

−
P(ω) = T2(ω − ω0)C2SN (ω− ω0) + C2[1− T2(ω − ω0)

]

.
(19)

Unlike (11), the PSD expression (19), besides the sinusoid-
related peaks, includes a smooth spectrum portion related to
the randomness of the timing instants. Since T(0) = 1, this
smooth portion exhibits a valley near the true frequency of
the complex sinusoid. Composition of PSD from the terms
present in (19) is clarified in Figure 1.

4. IPFM Model-Generated Sampling Pattern

The integral pulse frequency modulation (IPFM) model
is widely accepted as the sinoatrial node timing model in
modeling the heart rate variability. It is an integrate-and-fire
model, also used to describe a neuronal activity. The IPFM
model assumes that a modulating signal is integrated and
a beat trigger pulse is generated when the integrated signal
reaches a threshold (Figure 2). The beat occurrence times
(representing sampling times) tk generated by the IPFM
model can be defined as [12]

k =
∫ tk

t0

1 + m(t)
T0

dt, (20)
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Figure 1: Components of the nonuniformly sampled PSD—the
random sampling pattern.

where k is an integer, t0 = 0, T0 is the mean heart period, and
m(t) is a dimensionless modulating signal interpreted as the
fractional change of the instantaneous heart rate relative to
1/T0.

The sampling pattern can be written as a sequence of the
Dirac pulses:

spc(t) =
∞
∑

k=−∞
δ(t − tk). (21)

The Fourier transform of (21) is referred to as the spectrum
of counts (SPC) [12]:

SPC(ω) =
∞
∑

k=−∞
e− jωtk . (22)

The spectrum of a sampled signal Xs(ω) is related to the true
spectrum X(ω) by the frequency-domain convolution:

Xs(ω) = 1
2π

X(ω)∗ SPC(ω). (23)

The spectrum of counts has been extensively analyzed in
several works [12–14]. We will summarize here facts required
to assess the effect of the spectral aliasing. The SPC defined
by (22) can be rewritten in terms of the modulating signal as

SPC(ω) = 1
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(24)

Interestingly, the spectrum of the modulating signal M(ω) is
directly included in (24). Beside the Dirac pulse located at the
frequency origin, infinite numbers of frequency modulated
(FM) terms convolved with M(ω) are present. The carriers
of these FM modulated terms producing peaks in (24) are
located at multiples of the mean sampling frequency, which
explain an origin of the aliased components in the spectrum
(23). For the sinusoidal modulating signal:

m(t) =M1 cos(ωmt), (25)

Reset

+

+
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1

m(t) ∑ ∫
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Figure 2: IPFM model for generating the beat occurrence times.

where ωm is the modulating frequency, the spectrum (24)
can be expanded using the Bessel functions of the first kind
[15]. Spectral amplitudes of the carriers follow the 0th-order
Bessel function J0, the argument of which is given by the
gradually increased index of the frequency modulation:

β = n0ωsM1

ωm
, (26)

where ωs is the mean sampling frequency corresponding to
the first carrier (n0 = 1).

5. Aliasing Reduction Index

For quantification of the aliased components amplitudes,
we will restrict our considerations to the situation when
the input frequency is in the range fs/2 to fs. Unlike the
derivation presented in Section 3, a real-valued sinusoid,
comprising of positive and negative frequencies, will be
considered in this treatment. It is well known that the
spectrum of such a uniformly sampled signal is mirrored
around the Nyquist frequency. If the frequency of the
sampled real-valued signal exceeds the Nyquist limit, this
frequency is folded over the Nyquist frequency and appears at
a wrong position, in the range 0− fs/2. Specifically, if an input
signal has frequency fi, fN < fi < fs, the aliased component
appears at the frequency fa = fs − fi. If the spectrum is
plotted in a range above fs/2, both the spectral peaks, fi
and fa, have equal amplitudes and there is no possibility
to distinguish them. For nonuniformly sampled signal, this
statement does not hold, and differences can be observed.
A component with higher amplitude is considered to be the
true component and other component at mirrored frequency
as its alias. We introduce a quantity to describe the observed
difference between the true and aliased components and
name this quantity as the aliasing reduction index (ARI):

ARI = Ai − Aa

Ai
, (27)

where Ai is the spectral amplitude at the true (input)
frequency fi, Aa is the spectral amplitude at the corre-
sponding aliased frequency fa. Next, we will be dealing
with an evaluation of the proposed ARI for both considered
sampling models—the random sampling pattern and the
IPFM-generated sampling pattern.

The reduction of an aliased component in the situation
with the random sampling according to (6) is deduced
directly from (11). For a true component, the argument in
(11) is ω = +ωi = ω0, while the component aliased into
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0− fs/2 is originated from the negative input frequency −ωi,
shifted by value ωs, that is, −ωi = ω0 and ω = −ωi + ωs.
The ARI can be then written in terms of the characteristic
function as

ARIRND = T(0)− T(ωs)
T(0)

. (28)

The result (28) depends on a particular probability
distribution function which describes the random sampling
jitter. For small-to-moderate values of ARI, a more general
version of (28) can be derived using power series expansion
of the characteristic function. Taking into account the
presumed symmetry of the probability density function
and neglecting the high-order terms in the expansion, the
approximated characteristic function is expressed by the
variance of the timing deviations:

T(ω) ≈ 1 +
1
2!
T′′(0)ω2 = 1− 1

2
σ2ω2. (29)

Using ωs = 2π/T0 in (29), T(0) = 1 in (28), we obtain
an approximate formula for the ARI in term of the relative
timing standard deviation σ/T0:

ARIRND ≈ 2π2
(
σ

T0

)2

, (30)

which is independent of a particular probability distribution
type.

The proposed index can be evaluated also for the IPFM-
generated sampling pattern. The spectrum (23) of a real-
valued sinusoid, nonuniformly sampled in IPFM-generated
time instants, is composed from SPC shifted in the frequency
direction by +ωi and by −ωi. A dominant aliased term is
associated with the 1st FM carrier, that appears, after −ωi

shifting by ωs, at the frequency ωa = ωs−ωi. Its amplitude is
determined by the 0th-order Bessel function of the first kind
for β given by (26), n0 = 1. The resulting formula for the ARI
estimation, analogical to (28), becomes

ARIIPFM = J0(0)− J0
(

β
)

J0(0)
. (31)

Since J0(0) = 1, and using expansion of J0:

J0(x) =
∞
∑

k=0

(−1)k

(k!)2

(
1
4
x2
)k

≈ 1− 1
4
x2, (32)

ARI can be approximated by

ARIIPFM ≈ 1
4
β2. (33)

In order to facilitate a comparison of the obtained formula
(33) with the ARI derived for the random sampling model,
we will rewrite (33) by using the standard deviation of the
timing instants. Integration of the IPFM model formula (20)
gives

tk − kT0 = −M1

ωm
sin(ωmtk). (34)

The deviations of the sampling times from a regular scheme
is thus sinusoidal, with amplitude M1/ωm, and the standard
deviation estimated as the RMS value of a continuous-time
sinusoid is

σ = 1√
2
M1

ωm
. (35)

Combining (33) with (35) and (26) results in the formula:

ARIIPFM ≈ 2π2
(
σ

T0

)2

. (36)

Surprisingly, (36) has exactly the same form as (30), despite
the essentially different sampling pattern.

6. Simulation Example

In order to illustrate a mechanism of the aliasing in nonuni-
formly sampled signal and show an extent to which an aliased
component reduction can be achieved, we have performed
a spectral analysis of sequences synthesized according to
both described sampling models. Since this work is inspired
by analysis of the cardiac aliasing effect, we have arranged
the signal parameters—duration, frequency—as to fit the
experimental data presented in subsequent section. Each of
the simulated signals consists of 120 samples of real-valued,
unit-amplitude sinusoid. The frequencies are expressed as
the fractions of the mean sampling rate fs. The mean
sampling rate is considered as the reciprocal value of the
mean sampling interval. An input frequency exceeding the
Nyquist limit was set to 0.65 fs which is aliased to the
frequency 0.35 fs. Conversely, an input frequency 0.35 fs
below the Nyquist limit 0.5 fs will be imaged to 0.65 fs and
an informationless peak in the spectrum can be observed
when a periodogram is plotted above the Nyquist limit.
Both spectral peaks appear as identical when the sampling
is uniform. The nonuniform sampling, however, introduces
differences between the true component and the unwanted—
aliased or imaged components. This effect can be observed
in the spectra plotted in the range 0 − fs instead of a
conventionally used range 0− fs/2.

Figures 3 and 4 show LS periodograms for both scenarios
(below and above Nyquist limit) for the sampling times
randomly deviated from regular positions. Spectral ampli-
tudes are plotted as the square roots of the LS periodograms
and scaled to directly reflect amplitudes of the generated
sinusoids. The sampling irregularity follows the Gaussian
distribution with the variance set according to a required
irregularity level. Three levels were used in simulation:
low, medium, high. The low irregularity is represented by
sampling jitter with the standard deviation 5% of the mean
sampling time (σ = 0.05T0). Such a degree of the sampling
nonuniformity caused only a minor spectral amplitude
difference (about 5%). The medium level is represented by
two-fold reduction of alias power (3 dB), that is, ARI= 0.707.
The formula derived in Section 5 allowed to estimate σ
required in simulation as 0.122T0. A maximum deviation
of a sampling instant is theoretically unlimited; therefore,
we incorporate a practical limit as the irregularity level
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Figure 3: Spectral amplitudes of the LS spectra—nonuniformly sampled signal with the random sampling pattern. The input frequency
0.35 fs lies below the Nyquist limit. Different levels of sampling irregularity: (a) low, (b) medium, (c) high.

which ensures a monotonic increase of the sampling times.
This practical maximum is used as the high level of the
irregularity. Since Gaussian variables are not confident to
finite interval, determination of the high level deviations
must be made in probabilistic sense. The choice σ = 0.3T0

ensures that randomly chosen proximate sampling times
tk−1, tk, fulfill the monotonicity condition tk−1 < tk with
probability 0.99. Presented figures show a gradual destruc-
tion of the aliased component (Figure 4) and spectral images
(Figure 3) as the sampling irregularity level increases. In the
high-level irregularity, the aliasing is effectively destroyed—
the aliased peak is buried in a noise caused by sampling
irregularity. Notice that a noise-like spectrum increase is
evident as the sampling irregularity increases. A valley near
the true frequency in noise PSD, which may be expected by
examination of (19), is not evident, because it is overlapped
by the smooth noise spectrum coming from the negative
frequency.

A similar set of simulations (Figures 5 and 6) was
performed for the sinusoid sampled by the pattern generated
by the IPFM model driven by a sinusoidal modulating
signal. The sampling time instants were obtained by means
of numerical solution of the IPFM equation (34) using
MATLAB function fzero. The frequency of the sampled
sinusoid was set equal to the frequency of the modulating
signal, a condition occurred in heart rate modulation by the
respiration signal. The low and medium irregularity levels
were established in the same way as in the random sampling
pattern. The maximum irregularity level is considered when
the normalized modulation signal amplitude M1 reaches the
value 1. Due to this restriction, the achieved attenuation
cannot be as high as in the random sampling pattern
scenarios. Notice that numbers of spurious peaks can be
found in the spectrum which are explained by a complex
structure of the SPC (24).

7. Cardiorespiratory Data Analysis

Beat-to-beat variations of consecutive heart periods or the
instantaneous heart rate, known as the heart rate variability
(HRV), become intensively studied over the last decades.
Analysis of the HRV provides a noninvasive insight into
the cardiovascular neural control and a spectral analysis of

HRV signals is a widely used method for assessment of the
autonomous nervous system. Generally, the power spectra
of HRV can be divided into the high-frequency (HF, 0.15–
0.4 Hz), low-frequency (LF, 0.04–0.15 Hz), and very-low-
frequency range (VLF, 0.003–0.04 Hz). The LF power is mod-
ulated by both sympathetic and parasympathetic controls,
while the HF power mainly reflects the parasympathetic
influence linked to the respiration. Therefore, a concurrent
measurement of the respiration signal is helpful for HRV
interpretation. To obtain the respiration activity signal, an
additional specialized instrument is not necessary because
the respiration can be estimated from modulation of an
electrocardiogram amplitude. Such a procedure is referred
to as ECG-derived respiration [16–18]. Notice that a raw
ECG signal itself includes spectral components related to
heart rate oscillations and respiration [19], but they are
mixed in the spectrum in a complex way [20], and thus,
appropriate signals must be derived from measured ECG.
Both the HRV as well as the respiration signal derivation
incorporate heart beat detection, and the beat occurrence
times define sampling instants, irregularly spaced by nature.
Although a heart rate (HR) is essentially a discrete-time
signal, computed from beat-to-beat occurrence times, it
can be considered as a hypothetically continuous signal
representing the autonomous nervous system activity which
continually modulates the heart rate. Unlike an artificially
designed system, a physiological system does not include
antialiasing filter. For example, 0.4 Hz frequency considered
as the highest limit of the standardized HF range requires
sampling at a mean heart rate 0.8 Hz, and thus, the mean
heart rate of at least 48 bpm is required for reliable spectral
analysis. Therefore, a bradycardia or an extended HF range
caused by the elevated respiration rate can lead to the alias-
ing. For this kind of “physiological aliasing,” the term cardiac
aliasing has been naturalized. High frequency components
modulating the heart rate have been actually observed in
neonates, transplanted heart patients, and animals [21, 22].
Improper signal processing or ignoring rarely occurred
conditions can then result in incorrect interpretation of a
spectral analysis.

To test an ability of different methods to detect frequen-
cies beyond the Nyquist rate in a real-world measured data,
we have performed an experiment exploiting respiratory
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Figure 4: Spectral amplitudes of the LS spectra—nonuniformly sampled signal with the random sampling pattern. The input frequency
0.65 fs exceeds the Nyquist limit. Different levels of sampling irregularity: (a) low, (b) medium, (c) high.
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Figure 5: Spectral amplitudes of periodograms—nonuniformly sampled signal with IPFM generated sampling pattern. Input frequency
0.35 fs lies below the Nyquist limit. Different levels of sampling irregularity: (a) low, (b) medium, (c) high.

sinus arrhythmia. The measured subject was asked to breathe
at an elevated rate in synchrony with a moving pattern
displayed on the computer screen at the frequency of
0.8 Hz. An electrocardiogram (ECG) was recorded and two
signals were extracted: the respiration and the instantaneous
heart rate (HR). The respiration signal was obtained as the
amplitude in bandpass-filtered ECG curve taken at maxima
of QRS complexes [23]. The HR was computed from beat-
to-beat time distances of the QRS maxima. Both signals are
thus sampled at a variable rate dictated by the heart rate. The
mean heart rate of 74 bpm (1.23 Hz) was sufficiently low to
observe an aliasing.

In Figure 7(a), the respiration signal is analyzed as a
sequence of values equidistantly spaced at multiples of the
mean heart period. A meaningful spectral range is thus
up to 0.615 Hz provided that the mean heart rate was
1.23 Hz. The respiration frequency 0.8 Hz is aliased near
0.4 Hz and spreads over a wider spectral range due to
wandering of the mean heart rate. The respiration sequence
was then interpolated to 4 Hz sampling frequency by means
of the cubic spline interpolation. A small peak at the
true respiratory frequency can be detected but the aliased
component near 0.4 Hz largely exceeds the true peak in
its amplitude—Figure 7(b). The Lomb-Scargle periodogram
manifests a clearly visible peak at 0.8 Hz, Figure 7(c), albeit
the components at aliased frequency region do not disappear
completely.

The results of application of different methods for
HRV spectrum computation are summarized in Figure 8.
Repositioning of unevenly spaced samples, similarly as it
was observed in Figure 7(a), yields a symmetrical spectrum
that is unable to detect components above the mean
heart rate halved. The cubic spline interpolation, although
frequently used in HRV analysis, noticeably attenuates high-
frequency components above the mean Nyquist frequency.
The simplest interpolation type, nearest neighbor method,
gives surprisingly better outcome, comparable to the Berger
resampling method [24]. As in the case of the respiration
signal analysis, only the last two methods presented, the
Lomb-Scargle periodogram and the SPC, are capable to show
a higher amplitude at the true position 0.8 Hz than near the
aliased frequency (about 0.4 Hz). The apparent increase of
the amplitudes at higher frequencies in Figure 8(f) can be
explained by low-pass filtering effect of the integrator in the
IPFM model that does not affect the spectrum of counts. In
the low frequency range, all methods give similar results.

8. Conclusion

The fact that a spectrum of nonuniformly sampled signal
conveys useful information above the Nyquist limit has been
pointed out in several works [25, 26]. In this work, we
have presented a theoretical treatment which quantitatively
explains this phenomenon. The analyses of simulated and
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Figure 6: Spectral amplitudes of periodograms—nonuniformly sampled signal with IPFM generated sampling pattern. Input frequency
0.65 fs exceeds the Nyquist limit. Different levels of sampling irregularity: (a) low, (b) medium, (c) high.

0 0.2 0.4 0.6 0.8 1
0

0.03

0.06

0.09

A
(m

V
)

f (Hz)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.03

0.06

0.09

A
(m

V
)

f (Hz)

(b)

0 0.2 0.4 0.6 0.8 1
0

0.03

0.06

0.09

A
(m

V
)

f (Hz)

(c)
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Figure 8: HRV spectra obtained by means of different methods: (a) equidistantly repositioned HR samples with frequency axis scaled
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experimental data illustrate a possibility to identify compo-
nents beyond the Nyquist limit in real-world problems.

Although the spectrum of a nonuinformly sampled sig-
nal is not alias free, unlike a uniform sampling situation, the
aliased spectral amplitudes are attenuated when compared to
the true components amplitudes. Analogically, components
below the Nyquist limit can be observed also as images
above this limit. The analytic treatment of these unwanted
components constitutes a key contribution of this paper. We
have studied the aliasing effect in two sampling schemes:
random deviations from regular times and sampling times
generated by the IPFM model. The former was chosen as
a basic model which allowed to explain a mechanism of
aliasing suppression. The later is inspired by a model used
to describe generation of events in biological systems, such
as the sinus node or the neuronal firing.

The two essentially distinctive sampling models required
different way of analysis. The random model analysis relies
on terms common in probability/statistics. We have shown
that the characteristic function of timing jitter plays a key role
in composition of the resulting spectrum. The characteristic
function modulates amplitudes of aliased or imaged spectral
lines. Besides the line portion of the spectrum, a smooth
noise portion shaped by a term of characteristic function
is present due to a random nature of the sampling process,
despite the sampled signal is deterministic. The IPFM sam-
pling scheme uses concepts originated in communication
systems theory and presented analysis is purely deterministic.
Consequently, the smooth spectrum is not present; on the
other hand, spurious peaks frequently occur due to a com-
plex nature of the spectrum of the modulated signal. In the
both situations, the relative reduction of aliased components
was evaluated by a quantity named in this paper as the
aliasing reduction index. Interestingly, the derived formula
approximating this index for small-to-moderate sampling
irregularity is identical for the both sampling models. The
formula which we have found seems to be quite universal
and relates a decrease of unwanted aliased components with
the standard deviation of timing irregularity measured as
the fraction of the mean sampling period. Validity of the
formula in more general sampling schemes, such as those
with dependent sampling irregularities and additive random
sampling, is intended to be studied in a future work.

Mitigation of the aliasing effect by means of nonuniform
sampling not only attracts scientific interest but also has
practical implications. We have demonstrated the possibility
to detect frequencies above the Nyquist limit in the ECG-
derived respiration signal and the heart rate signal. The
condition of aliasing, so-called cardiac aliasing, was elicited
by increasing the respiration rate, and signals derived from
recorded electrocardiogram were analyzed by different meth-
ods. Conventionally used interpolation/resampling methods
were found to be unsuitable in the condition of cardiac alias-
ing. The Lomb-Scarglre method, the classical periodogram
used for nonuniform samples and the spectrum of counts
are all capable to uncover components above the Nyquist
frequency. Since real-world measurements are usually con-
taminated by noise, a signal to be detected needs not to be a
pure sinusoid, or it can be random and even nonstationary,

development of a universal method able to resolve between
true and aliased spectral components, with properly assigned
significance measure, is another challenging task intended
for future work.
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