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A blind source separation method is described to extract sources from data mixtures where the underlying sources are sparse and
correlated. The approach used is to detect and analyze segments of time where one source exists on its own. The method does not
assume independence of sources and probability density functions are not assumed for any of the sources. A comparison is made
between the proposed method and the Fast-ICA and Clusterwise PCA methods. It is shown that the proposed method works best
for cases where the underlying sources are strongly correlated because Fast-ICA assumes zero correlation between sources and
Clusterwise PCA can be sensitive to overlap between sources. However, for cases of sources that are sparse and weakly correlated
with each other, there is a tendency for Fast-ICA and Clusterwise PCA to have better performances than the proposed method, the
reason being that these methods appear to be more robust to changes in input parameters to the algorithms. In addition, because
of the deflationary nature of the proposed method, there is a tendency for estimates to be more affected by noise than Fast-ICA
when the number of sources increases. The paper concludes with a discussion concerning potential applications for the proposed
method.

1. Introduction

One general problem in signal processing is the extraction of
individual source signals {𝑠𝑗[𝑛]} from measurements {𝑧𝑖[𝑛]}

that are linear combinations of these sources:

𝑧𝑖 [𝑛] =

𝑁

∑
𝑗=1

𝐴 𝑖𝑗𝑠𝑗 [𝑛] (𝑖 = 1, 2, . . . , 𝑆) , (1)

where {𝐴 𝑖𝑗} are themixing coefficients, 𝑆 is the number of sets
of measurement data, and there are𝑁 underlying sources. In
the case where both the sources and mixing coefficients are
unknown, this problem comes under the heading of blind
source separation (BSS). There are many applications in this
area [1–8].

There are various approaches to extracting the underlying
sources {𝑠𝑖}. For example, in Independent Component Analy-
sis (ICA), the aim is to determine a transformation of the data
that maximizes the negentropy [9]. In the approach designed
in [10], the aim is to minimize the cross-cumulants.

Now in some applications, the underlying sources can be
approximated as sparse; that is, each source has nonzero val-
ues for a finite segment of time, with the other sources having
zero values. In practice, this definition can be approximated
by each source being dominant over other sources for at least
one segment of time. Various specialized BSS methods have
been derived for the case of sparse sources [11–18]. In one
approach [12], the sparsity of a signal {𝑥[𝑘]} is defined over
𝐾 data points by

𝑆 (𝑥) =
√𝐾√∑

𝐾
𝑘=1 (𝑥 [𝑘])

2

∑
𝐾
𝑘=1 |𝑥 [𝑘]|

. (2)

Assuming two sources, the aim is to find a transformation on
the data {𝑧1[𝑘], 𝑧2[𝑘]} such that the sparsity is maximized.
The extension to three or more sources is also discussed.
Another approach is based on the fact that regions of the
phase plot of the data {𝑧𝑖[𝑘]}, where one source exists on its
own, are represented by points that form a straight line.These
directions are found using clustering techniques on the phase
plot. In [11], Minor Component Analysis (MCA) is applied
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to the clusters to find elements of the separating matrix B
so that the sources can be directly estimated from the data
from

s = Bz. (3)

This method will be referred to as the Clusterwise PCA
method.

In [17] a method to separate out sparse sources from
signal mixtures was presented where the mixing coefficients
are unknown as well as the sources. This standard Blind
Source Separation (BSS) problem was addressed by analysis
of localized segments of the phase space trajectory where
one source dominates. The method was found to have a
comparable performance to the standard Fast-Independent
Component Analysis (Fast-ICA) [9] method for mixtures of
sparse sources. Another assumption made by the proposed
method was that the underlying sources are uncorrelated, an
assumption that is also made by the Fast-ICA method [9]
and some other, although not all, BSS methods. However,
as the method proposed in [17] analyzes local features of
phase space, it makes no assumption about the probability
distributions of the underlying sources unlike some BSS
methods which make such assumptions; hence if the under-
lying sources had Gaussian distributions this would be no
problem for the method in [17], whilst an approach such as
Fast-ICA may encounter difficulty in this situation. In this
paper, the method presented in [17] is extended to the case
where the underlying sources are sparse and correlated. It
will be shown that the “prewhitening” stage that is used by
many standard BSS and ICA methods is not required here
and that the proposed method can work better than the
Fast-ICA and Clusterwise PCA methods, for cases where
the underlying sources are sparse and strongly correlated.
The proposed method can be more sensitive to noise than
two other methods tested and can also be more sensitive to
changes in input parameters. In particular, for sources that
are weakly correlated or uncorrelated, the proposed method
offers no advantages compared with Clusterwise PCA and
Fast-ICA.

2. Theory

2.1. Minimum Heading Change (MHC) Method. To moti-
vate the approach used in this paper, an example will be
shown where the two sources before mixing are shown in
Figure 1.

It can be seen that source A is zero for sample numbers
larger than 19, whilst source B is zero for sample numbers less
than 8. Hence, these two sources can be considered as sparse.
Now suppose that the two sources are mixed linearly so that
the mixed data looks like Figure 2.

It can be seen that because of the sparsity of the two
underlying sources, there are segments of eachmixturewhich
depend on one source only; these segments are indicated in
Figure 2.

One can identify segments of data where 𝑠1 exists on
its own by plotting data input 2, 𝑧2 against data input 1, 𝑧1.
In Figure 3 this is done for the example in Figure 2; in the
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Figure 1: Two source signals.
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Figure 3: Plot of 𝑧2 against 𝑧1.

following discussion, we associate source B in Figure 1 with
𝑠1 and source A with 𝑠2.

In [17], the estimation of sparse sources from mix-
tures, looking for straight line segments in the phase plots,
was described. A summary of the method is described
here.
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Suppose that there are twomixtures of two sources.Then,
from (1),

𝑧1 = 𝐴11𝑠1 + 𝐴12𝑠2,

𝑧2 = 𝐴21𝑠1 + 𝐴22𝑠2,
(4)

where the explicit dependences of the measurements and the
sources on sample number have been dropped for notational
convenience. Source 𝑠1 is associated with the direction
(𝐴11, 𝐴21) in the phase plot with source 𝑠2 being associated
with the direction (𝐴12, 𝐴22). Now for the specific case of
mixtures of sources that are sparse, these directions are visible
in the phase plot; for example, AB in Figure 3 corresponds
to source A on its own in Figure 2, whilst CD (shown
dashed in Figure 3) corresponds to source B in Figure 2; this
information can be used to estimate the underlying sources.

Suppose that source 𝑠1 is sparse and that sources 𝑠1 and 𝑠2
can be associated with unit vectors in the phase plot R̂1 and
R̂2, respectively. One can think of the plot of 𝑧2 against 𝑧1 as
analogous to a radar plot and vectors R̂1 and R̂2 as “heading”
vectors. Any point in the phase plot can be associated with a
vector:

z = 𝑠1R1 + 𝑠2R2 =
2

∑
𝑖=1

𝑠𝑖𝑅𝑖R̂𝑖, (5)

where the vector magnitude 𝑅𝑖 (𝑖 = 1, 2) depends on the
mixing coefficients and R𝑖 = 𝑅𝑖R̂𝑖. Note that R̂1 and R̂2 are
not necessarily orthogonal.

Now suppose that three consecutive points in the phase
plot are detected that are collinear corresponding to R̂1. One
can make an estimate of the component 𝑠1, 𝑠1, by resolving
the vector z in the direction of R̂1:

𝑠1 = z ⋅ R̂1 =
2

∑
𝑖=1

𝑠𝑖𝑅𝑖R̂𝑖 ⋅ R̂1 = 𝑠1𝑅1 + 𝑠2𝑅2R̂2 ⋅ R̂1. (6)

The second term in (6) is an error term as it depends on 𝑠2.
Now as source 𝑠1 is associated with a direction R̂1 in the

phase plot, this source can be represented in the plot as a
vector s̃1 given by

s̃1 = 𝑠1R̂1. (7)

This source is associatedwith a constant direction or heading.
As 𝑠1 varies with time, so does the magnitude of the vector s̃1.

Substituting for 𝑠1 from (6) into (7), this vector can be
written as

s̃1 = 𝑠1𝑅1R̂1 + 𝑠2𝑅2 (R̂1 ⋅ R̂2) R̂1. (8)

Now from (5), the vector representing the phase plot is given
by

z = 𝑠1𝑅1R̂1 + 𝑠2𝑅2R̂2. (9)

Comparing (8) and (9), it can be seen that the contribution
from 𝑠2 has been reduced in (8) because in general |R̂1 ⋅ R̂2| <

1. It can also be seen in (8) and (9) that the terms in 𝑠1 are
identical. Hence, one can subtract (8) from (9) as follows:

s̃2 = z − s̃1 = 𝑠2𝑅2 [R̂2 − (R̂1 ⋅ R̂2) R̂1] . (10)

and one nowhas an estimate of the vector representing source
𝑠2 in the phase plot. The magnitude of this vector is equal
to the underlying source 𝑠2 to that within a multiplicative
constant.

Referring again to the analogy with radar plots, one
is looking for data segments where the “heading” does
not change over three consecutive data points; in practice,
because of the effects of noise, one would be looking for a
minimum change in heading over these three points; in [17],
this method is referred to as the minimum heading change
(MHC)method andmore details regarding the algorithm for
this method can be found in this reference.

The MHC method is based on computing a “velocity”
vector v[𝑛], which is given by

v [𝑛] = z [𝑛] − z [𝑛 − 1] (11)

at each sample point 𝑛.
In [17] the algorithm used to detect the principal direc-

tions {R̂𝑖} is described in detail. Also in [17] an analysis was
presented for the general 𝑁 source case where it was shown
that the 𝑁 sources could be estimated as follows:

𝑠1 = 𝐶11𝑠1 +

𝑁

∑
𝑗=2

𝐶1𝑗𝑠𝑗, (12)

𝑠2 = 𝐶22𝑠2 +

𝑁

∑
𝑗=3

𝐶2𝑗𝑠𝑗,

...

(13)

𝑠𝑁−1 = 𝐶𝑁−1,𝑁−1𝑠𝑁−1 + 𝐶𝑁−1,𝑁𝑠𝑁, (14)

𝑠𝑁 = 𝐶𝑁𝑁𝑠𝑁, (15)

where 𝐶𝑖𝑗 is related to the cross-correlation coefficient
between source 𝑖, 𝑠𝑖, and source 𝑗, 𝑠𝑗. In fact, when sources
𝑖 and 𝑗 are uncorrelated and prewhitening of data has taken
place, it can be shown that𝐶𝑖𝑗 = 0 for all 𝑖 and𝑗 such that 𝑖 ̸= 𝑗;
in this particular case, it can be seen from (12) to (15) that

𝑠𝑖 = 𝐶𝑖𝑖𝑠𝑖, (16)

and each source is extracted to be within a multiplicative
constant.

In order to avoid the effects of spurious noise, let us write
the 𝑁 components of the velocity vector as

v [𝑛] = (𝑣1 [𝑛] , 𝑣2 [𝑛] , . . . , 𝑣𝑁 [𝑛]) . (17)

A velocity vector is accepted at sample point 𝑛 if

𝑉max [𝑛] ≥ 𝑣
th

⋅ 𝑣max, (18)
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where

𝑉max [𝑛]

= max {
󵄨󵄨󵄨󵄨𝑣1 [𝑛]

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑣2 [𝑛]

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑣𝑁 [𝑛]

󵄨󵄨󵄨󵄨} 0 < 𝑣
th

< 1,

(19)

𝑣max = max {|v [1]| , |v [2]| , . . . , |v [𝑀]|} (20)

is the maximum value of the magnitude of the velocity vector
over all 𝑀 sample points.

2.2. Extension to the MHC Method. In this paper, the algo-
rithm described in [17] is extended to extracting individual
sparse sources {𝑠1, 𝑠2, . . . , 𝑠𝑁−1} from (12) to (15) for the
general case where the sources are correlated. The sparsity of
these sources is used to achieve this.

2.2.1.Mixtures of Two Sources. First, wewill look at the case of
two mixtures of two sources. From (12) and (13) with 𝑁 = 2,
it can be seen that, after applying MHC, the two estimated
sources are given by

𝑠1 = 𝐶11𝑠1 + 𝐶12𝑠2, (21)

𝑠2 = 𝐶22𝑠2. (22)

Now, if 𝑠2 is plotted against 𝑠1, the following vector in two-
dimensional phase space results:

z = (𝑠1, 𝑠2) . (23)

Substituting for 𝑠1 from (21) and 𝑠2 from (22) into (23),

z = (𝐶11𝑠1 + 𝐶12𝑠2, 𝐶22𝑠2)

= (𝐶11, 0) 𝑠1 + (𝐶12, 𝐶22) 𝑠2.
(24)

Hence,

z = 𝑠1R1 + 𝑠2R2, (25)

where the vectorsR1 andR2, corresponding to the underlying
sources 1 and 2, respectively, are given by

R1 = (𝐶11, 0) , R2 = (𝐶12, 𝐶22) . (26)

Equation (25) can be rewritten as

z = 𝑠1𝑅1R̂1 + 𝑠2𝑅2R̂2, (27)

where R̂1 and R̂2 are unit vectors in the directions of R1 and
R2, respectively.

The question now to be asked is whether one can use the
fact that 𝑠2 is proportional to 𝑠2 only to somehow subtract the
contribution from this source to 𝑠1. Now 𝑠2 is assumed sparse,
so that 𝑠1 will exist on its own for a segment of timewhichwill
manifest itself in the phase plot as a straight line over at least
3 points. If one assumes that 𝑠1 is also sparse, then there will
be a straight line segment corresponding to 𝑠2 as well.

To illustrate this approach, the MHC has been applied to
the data mixture in Figure 2.
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Figure 4: Phase plot of 𝑠2 against 𝑠1.

The phase plot for 𝑠2 against 𝑠1 for the estimated sources
is given in Figure 4.

Two sets of line segments can be seenwhere the “heading”
is constant over three or more data points: between A and B
this segment corresponds to vector R1 in (26) corresponding
to samples between 20 and 27 in Figure 1 where estimated
source 𝑠1 (corresponding to Source B in Figure 1) exists on
its own; this straight line has a zero slope in phase space as
estimated source 𝑠2, corresponding to source A in Figure 1,
is zero in this data segment. The trajectory between C and D
in Figure 4 corresponds to samples 0 to 7 in Figure 1, where
source 𝑠2 (corresponding to sourceA in Figure 1) is on its own
(R2 in (26)); from (21) and (22), this source contributes to
both 𝑠1 and 𝑠2 so this line has a slope in phase space that is
nonzero and of finite value.

Suppose that the MHC method is applied with the data
inputs, this time being 𝑠1 and 𝑠2. Let us assume that the
direction CD is detected at a certain sample point say at 𝑛 =

𝑀; this direction can be associated with the unit vector R̂2 in
(26).

If one takes the scalar product of the vector z in (27) and
R̂2 we obtain an “estimate” of the underlying source 𝑠2 from

𝑠
(1)
2 = z ⋅ R̂2, (28)

where, from (26),

R̂2 =
1

𝑅2
(𝐶12, 𝐶22) . (29)

Substituting for z from (27) into (28),

𝑠
(1)
2 = 𝑠1𝑅1 (R̂1 ⋅ R̂2) + 𝑠2𝑅2. (30)

𝑠
(1)
2 is not an exact estimate of 𝑠2; this is obtained from (22),
but 𝑠(1)2 will later be used to estimate source 𝑠1.

Now the estimate of source 1 is given by (21):

𝑠1 = 𝐶11𝑠1 + 𝐶12𝑠2. (31)
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Comparing (30) with (31), an improved estimate of source 𝑠1
can be obtained from

𝑠
(1)
1 = 𝑠1 −

𝐶12

𝑅2
𝑠
(1)
2 = 𝐶

󸀠
𝑠1, (32)

where

𝐶
󸀠
= (𝐶11 −

𝐶12

𝑅2
(𝑅1R̂1 ⋅ R̂2)) . (33)

Note that the subtraction in (32) can be carried out as we
already know the components of R2 = (𝐶12, 𝐶22) from the
detection step and 𝑅2 = √𝐶212 + 𝐶222; prior knowledge of the
coefficient𝐶11 is not required. Anotherway of expressing (32)
is to note that, from (29), 𝐶12 is the first component of R̂2:

𝐶12 = 𝑅̂
(1)
2 . (34)

Using (28) and (34), (32) can be rewritten:

𝑠
(1)
1 = 𝑠1 − (z ⋅ R̂2) 𝑅̂

(1)
2 . (35)

From (32), it can be seen that source 𝑠1 has now been
estimated to be within a scaling constant.

This procedure is like operating the MHC in “reverse”
starting from the last estimated source, 𝑠2, and then obtaining
an improved estimate 𝑠

(1)
1 of source 𝑠1 so this processing step

is referred to as “reverse iteration.” The first processing step
described in Section 2.1 and [17] will be referred to as the
“forward iteration.”

In the Reverse processing step, it is necessary to detect
segment CD in Figure 4; to avoid detecting segment AB,
an additional test is carried out. The change in heading
is calculated as described in [17], and, in addition, the
correlation coefficient between 𝑠1 and 𝑠2 over 𝑃 data points
is computed. In order to guard against detecting segments
like AB where a source exists in one component only, the
minimum heading change is accepted only if the magnitude
of the correlation coefficient is no smaller than a minimum
threshold value Corrmin. Once the point where this occurs
is found, the heading vector is used in (35) to subtract off
the contribution from 𝑠2 to the overall phase plot. However,
to avoid chance correlations by noise, the correlation is only
calculated if the velocity components in phase space have a
magnitude that is larger than a minimum threshold, 𝑇min,
given by

𝑇min = 𝜆
th
𝑣max, (36)

where 𝑣max is the maximum velocity component, defined in
(20), for vector z in the reverse iteration, and 𝜆

th is a chosen
threshold. Condition (36) is used instead of (18) in the reverse
iteration. The following expression is used to calculate the
correlation function:

Corr (𝑥, 𝑦) =
∑
𝑃
𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)

√∑
𝑃
𝑖=1 (𝑥𝑖 − 𝑥)

2√∑
𝑃
𝑗=1 (𝑦𝑗 − 𝑦)

2
, (37)

where 𝑥 and 𝑦 are the mean values of 𝑥 and 𝑦 defined by

𝑥 =
1

𝑃

𝑃

∑
𝑖=1

𝑥𝑖, 𝑦 =
1

𝑃

𝑃

∑
𝑖=1

𝑦𝑖. (38)

It has been confirmed in simulations that if this correlation
test is not carried out, then the method breaks down as the
wrong source can be detected in the reverse iteration. No
subtraction takes place if condition (36) is not satisfied.

It should be noted that, in many BSS methods, the first
step is whitening. In this case, uncorrelated sources have
characteristic directions in phase space that are orthogonal.
In the MHC method, if whitening is used, uncorrelated
components are extracted exactly in forward iteration only as
𝐶𝑖𝑗 = 0 for all 𝑖 and 𝑗 such that 𝑖 ̸= 𝑗 in (12) to (15); in this case,
there is no need for the reverse iteration to be carried out; in
[17], the Gram-Schmidt method was applied to perform the
whitening. However, such a procedure, whilst useful, is not
necessary for the MHC with reverse iteration, as whitening
is not a required preprocessing procedure for this method.
In particular, the MHC does not make any assumptions as
to how many sources, if any, are correlated. In addition,
centring, that is the subtraction of DC components from the
data is also not necessary and can lead to undesirable effects
where previously uncorrelated sources are assumed to be
correlated. However, the problem with nonwhitening is that
uncorrelated components cannot be individually estimated in
the forward iteration. In this case, one is relying on the reverse
iteration to achieve this and this could lead to incomplete
separation in the reverse direction for inappropriate choice
of input parameters. However, for sources that are correlated
strongly enough, there is not much point in prewhitening. In
subsequent implementation of theMHCmethodwith reverse
iteration, the data will not be whitened initially.

2.2.2. Extension to𝑁 Sources. Thereverse processing step can
be generalized to the 𝑁-source case, assuming that one has
𝑁 data inputs. In particular, it can be shown that individual
sources can be extracted even if there is correlation between
pairs of sources. A partial analysis for the 𝑁-source case is
given in Appendix A, with a pseudocode for the complete
algorithm being given in Appendix B.

3. Results

3.1. Two Sources, Low Sparsity. The application of this proce-
dure to the extraction of sources from the mixed signals in
Figure 2 is now described; this is an example of two sources
which are sparse over relatively few samples. The outputs
from the “forward” iteration, 𝑠1 and 𝑠2, are taken and the
reverse iteration of the MHC is applied to extract estimates
𝑠
(1)
1 and 𝑠

(1)
2 of the underlying sources 𝑠1 and 𝑠2, respectively.

In this simulation, 𝑣th = 0.2 (18), 𝜆th
= 10
−5 (36), and the

minimum allowed value of Corr(𝑥, 𝑦) in (37) is Corrmin =

0.9, with 𝑃 = 3 in (37); all these parameters were chosen by
trial and error.

The figure of merit used is to correlate each estimate with
each underlying source and make the association that has
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the largest correlation value—the CORRCOEF function in
MATLAB is used to compute this parameter. The correlation
coefficients, over the whole signals, between the estimated
and actual sources for each methods are shown in Table 1.
For comparison, the corresponding calculations are carried
out using (i) the MHC method implementing just forward
iteration with the Gram-Schmidt whitening [17], (ii) the Fast-
ICA software Version 2.5 using the deflation method with
the Gaussian nonlinearity [19] and (iii) the Clusterwise PCA
method [11]. The MHC, with reverse iteration, has estimated
both sources to be within a scaling constant. Exact estimation
of the underlying sources has not taken place with the Fast-
ICA and Clusterwise PCA methods. It should be noted that
the cross-correlation between the actual sources in Figure 1
is 0.361 and is not negligible, which explains why the Fast-
ICA method cannot extract any of the sources exactly for
this example. The Clusterwise PCA method does not extract
the sources exactly because the sources are sparse for only a
few data points, so do not form obvious clusters of points. As
predicted using (10), when using the MHC with just forward
iteration [17], only one of the sources can be estimated exactly.

The robustness to noise for the MHC method is now
investigated for the mixed data shown in Figure 2. The noise,
which ismodeled as Gaussian, is added to the samples of each
data input after the mixing has taken place.

At the 𝑞th Monte Carlo run, the absolute value of the
correlation coefficient is calculated between each source
and estimate, over the whole data segment. An association
between source and estimate is found by looking for the
estimate that has highest correlation with that source.

Calculations are carried out for 2000 Monte Carlo runs
and a noise standard deviation of 0.005 is used; this value
corresponds to 1% of the peak value of z1 in Figure 2 and 0.5%
of themagnitude of the peak value of z2.The absolute value of
the correlation coefficients between the estimated and actual
sources, averaged over all Monte Carlo runs, is found to be
0.991 and 0.817 for sourcesA andB, respectively,meaning that
there is a tendency for the estimates of sourceA to be superior
to those for source B. This can be explained as being due to
the deflationary nature of the algorithm, where the various
sources are estimated and subtracted one by one. For this
particular set of simulations, it is found that source B tends
to be detected first in the forward iteration. For those Monte
Carlo runs where source B is detected first in the forward
iteration, we can identify 𝑠1 with source B and 𝑠2 with source
A, and so, neglecting noise, the estimates are given from (21)
and (22) by

𝑠B = 𝐶11𝑠B + 𝐶12sA, (39)

𝑠A = 𝐶22𝑠A, (40)

where the subscripts “A” and “B” correspond to sources
A and B, respectively. It can be seen from (40) that 𝑠A,
corresponding to source A, is estimated to be within a scaling
constant. From (32), (39), and (40), source 𝑠B is estimated in
the reverse iteration according to

𝑠
(1)
B = 𝑠B −

𝐶12

𝑅A
𝑠
(1)
A , (41)

Table 1: Correlation coefficients between estimated and actual
sources.

Method Source A Source B
Clusterwise PCA [11] 0.9994 0.6310
Fast-ICA [19] 0.9961 0.8970
MHC (Forward) [17] 1 0.9854
MHC (Reverse) 1 1

where

RA = (𝐶12, 𝐶22) . (42)

From (39), (40), and (41), it can be seen that the reverse
iteration step requires an estimate of the heading vectorRA in
(42) corresponding to source A; this estimate will be affected
by noise. The estimate 𝑠

(1)
B in (41) will depend on this noisy

estimate of RA as well as on the estimates 𝑠A and 𝑠B in the
forward iteration, which will both also be affected by noise;
thus these combined errors will cause the estimate, 𝑠(1)B , of
source B in the reverse iteration to be more affected by noise
than the estimate of source A, 𝑠A, in the forward iteration.
This sensitivity to noise will limit the number of underlying
sources that could be extractedwith thismethod because, due
to the deflationary nature of the method, the later a source
is detected in the reverse iteration, then the more it will be
affected by noise.

3.2. Simulations for Two Sources: High Sparsity. In Section 2,
the proposed method was tested on mixtures of sources,
where each source exists on its own for a relatively short
segment of time compared with the whole data interval. In
this section, the case where the underlying sources are sparser
than the sources in Figure 1 are shown. A comparison ismade
between the performance of the MHC with reverse iteration
and both the Clusterwise PCA and Fast-ICA methods. There
are two datasets, each dataset consisting of a mixture of
two periodic signals and each period consisting of Gaussian
functions given as follows:

𝑠𝑖 (𝑡) = 𝑎𝑖 exp[
−(𝑡 − 𝑡0𝑖)

2

2𝜎𝑖
2

] , (43)

where 𝑎𝑖 is the amplitude, 𝜎𝑖 is the standard deviation, and 𝑡0𝑖
is the time shift of the first period. This model was used in
[17].

This Gaussian is repeated with a period 𝑇𝑖. 10 seconds of
data are analyzed. The sampling frequency is set at 250Hz.

The parameters used for the two source signals are as
follows.
Source 1:

𝑎1 various values,
𝑡01 = 0.1 s,
𝜎1 = 12.5ms,
𝑇1 = 1 s.
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Figure 5: Simulated mixed signals.

Source 2:
𝑎2 = various values,
𝑡02 = 0.22 s,
𝜎2 = 6.25ms,
𝑇2 = 0.688 s.

We now look at the case for two signals each composed
of a mixture of sources 1 and 2 above with the following
amplitudes:

measurement set 1: 𝑎1 = 6.5, 𝑎2 = 1,
measurement set 2: 𝑎1 = 3, 𝑎2 = 1,
𝑁 = 2 in (1).

The two mixed signals are shown in Figure 5.
These signals could represent, for example, a simplified

model of the ECGmeasurements taken from the abdomen of
an expectant mother, where source 1 represents a contribu-
tion from thematernal ECG and source 2 a contribution from
the fetal ECG. In this paper, this dataset is separated into two
segments: segment 1 where there is no coincidence between
the two sources, between 0.5 s and 2.5 s in Figure 5, and
segment 2 where coincidence between the sources occurs,
between 7 s and 9 s in Figure 5—this could, for example,
represent the maternal/fetal coincidence in abdominal ECG
data.

The following parameters in the MHC are chosen after
some experimentation: Corrmin = 0.999, 𝜆th

= 10
−5 and

𝑣
th

= 0.5. Also, in the reverse iteration, it is found that best
results are obtained by using 𝑃 = 5 in (37).

The Fast-ICA method is run using the deflation method
with the Gaussian nonlinearity. The parameters used in the
Clusterwise PCA method are the same as listed in [11].

The various methods are assessed by computing the
correlation coefficient between the estimated and actual
sources using the same methodology used for the analysis in
Table 1.

The results of applying the Clusterwise PCA, Fast-ICA,
and MHC (reverse) methods to segments 1 and 2 are shown
in Table 2.

Table 2: Correlation between estimate and source for (a) Segment 1
and (b) Segment 2.

(a)

Method Source 1 Source 2
MHC (Reverse) 1 1
Clusterwise PCA 1 1
Fast-ICA 1 0.9993

(b)

Method Source 1 Source 2
MHC (Reverse) 1 1
Clusterwise PCA 0.6492 0.9993
Fast-ICA 0.9479 0.9997

In Table 2, it can be seen that for segment 1, both the
Clusterwise PCA and MHC reverse iteration methods are
able to extract the sources exactly. The Fast-ICA method
subtracts the average from the original data and this intro-
duces correlation between the assumed sources and so the
correlation coefficients between estimated and actual sources
are less than 1 for one of the sources. For segment 2,
only the MHC method with reverse iteration manages to
extract the two sources to be within a scaling constant. The
Fast-ICA cannot extract the sources exactly because there
is now significant correlation between the two underlying
sources due to the coincidence occurring between the two
sources. The Clusterwise PCA method also breaks down
when estimating source 1 because of the overlap between
sources 1 and 2; to see this further, in Figure 6, the phase
plot of the data for segment 2 is shown: 1 and 2 refer to
the contributions to the phase plot for sources 1 and 2,
respectively. “12” is the contribution to the phase plot from
the overlapping of sources 1 and 2 that occurs in segment 2;
this feature is of significant size compared with the features
representing source 1 only and source 2 only.The Clusterwise
PCA method attempts to group the plot into two “clusters.”
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label “12” refers to coincidence between the two sources.

The contribution 12 is clustered with 1, which degrades the
estimate of this source. However, this contribution has less
of an effect on the cluster corresponding to source 2, and
hence this source is estimated much better, as observed in
Table 2.

The robustness to the noise of the proposed method is
now looked for segment 1 where there are no coincidences
between the two underlying sources.The amplitude of source
2 for each set of data is equal to 1; the Gaussian noise
is added with standard deviations varying from 0 to 30%
of the amplitude of source 2. 2000 Monte Carlo runs are
used.

The absolute value of the correlation coefficient between
each source and closest estimate is averaged over all Monte
Carlo runs. A comparison is made between the performances
of the proposed method, the Fast-ICA and the Cluster-
wise PCA methods. In Figure 7(a), the mean correlation
is plotted as a function of the standard deviation of noise
for source 1, and in Figure 7(b) the corresponding plot is
shown for source 2. Note that the range of noise standard
deviations used in the plots are different as the extrac-
tion of the smaller source 2 breaks down at smaller noise
levels.

In Figure 7(a), it can be seen that MHC and Fast-ICA
have comparable performances when estimating source 1,
with the latter method having slightly more robustness to
noise. The Clusterwise PCA method is more sensitive to
noise, particularly for noise standard deviation larger than
0.2; the problem here is that if the noise is too large, then
points in phase space will be associated with the wrong
cluster. All themethods give a comparable performancewhen
estimating source 1 for noise standard deviations up to 0.05,
corresponding to 5% of the amplitude of source 2 in each set
of data.

In Figure 7(b), when estimating source 2, Fast-ICA and
Clusterwise PCA have indistinguishable performances for
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Figure 7: Mean correlation coefficient as a function of noise
standard deviation: (a) source 1 (b) and source 2. Full line: Fast-ICA,
dashed line, Clusterwise PCA; dotted line: MHC (reverse).

the range of standard deviations of noise used (0 to 5% of the
amplitude of source 2). MHC is more sensitive to noise than
the other two methods for noise standard deviations greater
than about 1% of the amplitude of source 2. The reason for
this is that Fast-ICA and Clusterwise PCA process the data
globally, whilst MHC does this locally, so is more susceptible
to noise.

Now it is of interest to ask whether, when using theMHC,
the reverse iterationmethod is more susceptible to noise than
if the forward estimation only is used. In Figure 8, the mean
correlation coefficient between estimate and source for the
forward MHC with no whitening is compared with MHC
with the reverse iteration for source 2.We can see that reverse
iteration does not contribute significantly more errors to the
estimation of source 2. Hence most of the errors occurring
in the MHC reverse method are occurring in the forward
iteration.

For this particular simulation, the mixing matrix is given
by𝐴1 = ( 6.5 13 1 ) and the phase space plot for themixed signals
is shown in Figure 6.The directions corresponding to sources
1 and 2 are very clear in the directions (6.5, 3) and (1, 1).
However, a much stricter test for the reverse MHCmethod is
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Figure 8: Extraction of source 2: full line: MHC with reverse
iteration, dashed line: MHC with forward iteration only.

when these two directions are much closer. Simulations have
also been carried out for the following mixing matrices:

𝐴2 = (
3.2 1

3 1
) ,

𝐴3 = (
3.02 1

3 1
)

(44)

for segments of time 0.5 to 2.5 seconds (no coincidence of
sources 1 and 2) and 7 s to 9 s where there is coincidence.
For 0.5 to 2.5 seconds, it is found that all three methods
tested have a similar performance as when using 𝐴1, namely
that Clusterwise PCA and MHC reverse extracts the sources
exactly, and Fast-ICA extracts the sources with correlation
coefficients 0.999 for source 1 and 1 for source 2. A stricter
test of the performance of these methods when using mixing
matrices 𝐴2 and 𝐴3 is to look at the segment of data, where
there is coincidence of sources between 7 s and 9 s. The
performances of these methods for this data segment are
shown in Tables 3 and 4.

The MHC (reverse) method still gives perfect extraction
of sources to be within a scaling constant and has the best
performance of the three methods tested for this particular
dataset.

3.3. Two Sources, Varying Sparsity. It is of interest to investi-
gate the performance of the proposed algorithm when pro-
cessing mixtures of sparse sources with different “sparsity.”
At one extreme, one has sources that completely overlap and
where there are no segments where one source exists on its
own. At the other extreme, one could have sources that do
not overlap. An intermediate situation is where there is partial
overlap between sources.

In the next set of simulations, twomixtures of two sources
are shown, where each source is generated from a uniform
random number generator with values between −1 and +1;
each source consists of 100 samples.

Table 3: Correlation between estimate and source for mixture
matrix 𝐴2.

Method Source 1 Source 2
MHC (Reverse) 1 1
Clusterwise PCA 0.7970 0.9894
Fast-ICA 0.9480 0.9997

Table 4: Correlation between estimate and source for mixture
matrix 𝐴3.

Method Source 1 Source 2
MHC (Reverse) 1 1
Clusterwise PCA 0.7133 0.9992
Fast-ICA 0.9480 0.9997

The two sources are mixed using the randomly selected
mixing matrix:

𝐴 = (
0.574580785 0.166294188

−0.668082703 −0.933171682
) . (45)

Next, the second source is shifted by 𝐿 samples with respect
to the first source and the mixing matrix (45) applied to the
two sources to produce mixtures with 100 + 𝐿 samples. For
each value of 𝐿, the MHC algorithm with reverse iteration
is applied; the following parameters are found empirically to
work for this data: 𝑣th = 0.1 (18), 𝜆th

= 10
−5 (36), and the

minimum allowed value of Corr(𝑥, 𝑦) in (37) is Corrmin =

0.9, with 𝑃 = 3 in (37).
In Figure 9, the correlation coefficient between estimated

sources and closest actual sources, for sources 1 and 2, is
plotted as a function of 𝐿 for the Fast ICA, Clusterwise PCA,
and MHC reverse methods.

The following observations can be made.

(i) Clusterwise PCA extracts both sources with correla-
tion coefficients larger than 0.98 for 𝐿 ≥ 70.

(ii) Fast-ICA should be expected to work best for 𝐿 = 0

and 𝐿 around 100 because in these two extremes the
sources are uncorrelated. At some intermediate values
of𝐿,where there is some correlation, it is expected that
Fast-ICA should notwork sowell, and this is observed
in this example for 𝐿 between 30 and 50 for source 1.
However, the estimates for source 2 have correlation
coefficients larger than 0.98 for all values of 𝐿.

(iii) Fast-ICA has the best overall performance for all
values of 𝐿. However, if 𝐿 ≥ 3, then MHC (reverse)
has the best performance as this method requires
only three samples to work; Clusterwise PCA requires
larger values of 𝐿 to work because it performs a global
clustering of the data.

(iv) The Fast-ICA algorithm is based on iteratively updat-
ing weights applied to the data. The initial values of
these weights are chosen randomly; hence, one can
obtain different results by rerunning the Fast-ICA
algorithm and it is found that reinitializing two or
more times can lead to better results for some values
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Figure 9: Mean correlation coefficient as a function of shift, 𝐿,
between sources: (a) source 1 and (b) source 2. Full line: Fast-ICA;
dashed line, Clusterwise PCA; dotted line: MHC (reverse).

of 𝐿.When using Fast ICA, the symmetric approach is
found to work better than deflation for these signals.
Changing the nonlinearity from gauss to pow 3 and
sometimes changing the step size in the iteration of
weights can lead to better results; in Figure 9, the best
estimates, changing the input parameters, are used to
construct the performance curves for Fast ICA. So,
for this mixture of sources, the estimation using Fast-
ICA can be very sensitive to the approaches used and
to input parameters; however, for MHC (reverse), the
same set of parameters works for all values of 𝐿 ≥ 3.

3.4. 4-Lead ECGData. In order to compare the performances
on actual data, of the Fast-ICA, MHC, and Clusterwise PCA
methods, data taken from the Daisy Database [20] will be
analyzed. These data consists of ECG signals taken from an
expectant mother. The data consists of 8 leads, 1 to 5 being
abdominal and 6 to 8 thoracic.There are 2500 samples of data;
there is some uncertainty about the sampling frequency, also
pointed out in [10], but it is probably 250Hz.

These data were analysed in [17], where the MHC with
forward iteration was applied to the data. Successful extrac-
tions of the fetal and maternal signals were achieved.

In this paper, the MHC with reverse iteration is also
applied. 4 leads are chosen for analysis: leads 1, 2, 3, and
4—this is a more challenging problem in extracting the fetal
signal thanwhen using 8 leads. In [17], all the data samples are
analyzed; in this paper, data used is between sample numbers
1451 to 1751 where there is an overlap between a maternal and
fetal complex as shown in Figure 10(a) where the maternal
and fetal R-waves are marked by “M” and “F,” respectively.

A comparison is made between the Fast-ICA (deflation,
Gaussian), MHC forward iteration (with the Gram-Schmidt
initialization),MHCwith reverse iteration with nowhitening
of data, and Clusterwise PCA. The input parameters for the
MHC calculations were 𝑣

th
= 0.5 in (18), Corrmin = 0.999,

𝑃 = 5 in (37), and 𝜆
th

= 10
−5 in (36).

For each method applied, the output that is closest to
the expected fetal signal is chosen. The results for the Fast-
ICA, MHC (forward), MHC (reverse), and Clusterwise PCA
methods are shown in Figures 10(b), 10(c), 10(d), and 10(e),
respectively.

It can be seen that all four methods give comparable
results for the extraction of the fetal sources.

Comparing Figures 10(c) and 10(d), it is observed that
the MHC with forward iteration gives similar results for
the fetal source as the MHC with reverse iteration. This is
due to the fact that despite the maternal/fetal coincidence in
the data, there is still low correlation between the maternal
and fetal sources. Hence when whitening is carried out, the
vectors representing the maternal and fetal sources in the
resulting phase plot are almost perpendicular and, from (16),
this means that the extracted sources in the forward iteration
are approximately a scaled version of the actual sources. The
MHCwith reverse iteration does not whiten the data initially
but is still able to extract the fetal source with comparable
quality to the other three methods applied to this data. It is
interesting to note that noise is not having a deleterious effect
on the quality of the estimated fetal sources in Figures 10(b),
10(c), 10(d), and 10(e); for this particular set of data, the anti-
aliasing filter has already filtered off a significant amount of
noise.

4. Discussion and Conclusions

The MHC method looks locally for three consecutive points
that are the most linear of all points in phase space; hence
just one direction corresponding to one source is estimated
at any given time. Conventional clustering methods estimate
either the mixing or the separating matrices and some
algorithms can be extended to the underdetermined case,
which cannot be done at presentwith theMHC.TheMHC is a
more straightforward method to implement with no iterative
clustering techniques; however this technique requires the
sources to be strictly sparse whilst clustering techniques can
deal with sources that are approximately sparse where one
looks for clustering of points in phase space around a straight
line [11]. As the MHC analyzes data in phase space locally,
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Figure 10: Abdominal and thoracic ECG data [20]. (a) Lead 1, (b) extraction of fetal ECG using Fast-ICA, (c) extraction of fetal ECG using
MHC (forward iteration, Gram-Schmidt’s initialization), (d) Extraction of fetal ECG using MHC (Reverse iteration), (e) Clusterwise PCA.

it would be more sensitive to the effects of noise than the
clustering techniques. For the MHC to work, the underlying
sources need to be sparse for only a few (down to three data
points) which can be seen as an advantage of thismethod over
methods that look for the clustering of data points along a
line in phase space, where it is assumed that the underlying
sources are sparse over several segments of the mixed data.

The MHC reverse iteration method can be sensitive to
the choice of input parameters 𝑣

th in (18), 𝜆
th in (36),

Corrmin, and 𝑃 in (37). On the other hand, both the Fast-
ICA and Clusterwise PCA algorithms have been found to be
relatively insensitive to the choice of the input parameters.
This sensitivity to input parameters implies that, in its present
form, the reverse MHC method should be used to analyse
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signals offline, rather than online, where the parameters can
be varied to obtain optimal estimation of the underlying
sources.

It should be noted that MHC relies on all sources being
sparse. The more the number of sources, the less likely
this assumption will be obeyed. In addition, as discussed in
Section 3.1, the sensitivity to the noise of the method limits
the number of sources that could be extracted. One potential
application of the MHC method is the analysis of electron
paramagnetic resonance (EPR) data [5] to detect the presence
of free radicals in chemical and biological samples where
there are two mixtures of two sources to be analyzed. In
[5] Fast-ICA is applied to two sets of measured spectra to
extract the spectra corresponding to the individual radicals.
The results found by authors are promising. However, the
underlying source spectra (e.g., for OH and O2) consist
of overlapping peaks, and hence there is some correlation
between the underlying sources. In addition, the underlying
spectra can be modeled as sparse as there are distinct peaks
in the data. It would be of interest to investigate whether
the MHC method could also be used in this application and
whether it would give any improved results compared with
using Fast-ICA.

There are BSS methods existing in the literature that
derive methods to estimate the underlying sources where
the underlying sources are assumed to be correlated. For
example, in [21], a method based on using precoders is
described; the algorithm to estimate the sources is more
complicated than the method proposed in this paper, but the
former method does not assume that the underlying sources
are sparse. In [22] it is assumed that the underlying sources
are nonnegative, and, as for [21], the sources are not assumed
to be sparse. It would be of interest to compare the method
proposed in this paper with the algorithms in [21, 22] for
mixtures of sparse, correlated sources.

Appendices

A. Reverse Processing for 𝑁-Sources

From (15), the last estimated source is equal to the actual
source to within a multiplicative constant:

𝑠𝑁 ∝ 𝑠𝑁, (A.1)

which can be rewritten as

𝑠𝑁 = 𝐷𝑁𝑠𝑁, (A.2)

where for notational convenience we have put 𝐷𝑁 = 𝐶𝑁𝑁
with 𝐶𝑁𝑁 given in (15).

Hence (12) to (15) can be rewritten as

𝑠1 = 𝐶11𝑠1 +

𝑁

∑
𝑗=2

𝐶1𝑗𝑠𝑗, (A.3)

𝑠2 = 𝐶22𝑠2 +

𝑁

∑
𝑗=3

𝐶2𝑗𝑠𝑗,

...

(A.4)

𝑠𝑁−1 = 𝐶𝑁−1,𝑁−1𝑠𝑁−1 + 𝐶𝑁−1,𝑁𝑠𝑁, (A.5)

𝑠𝑁 = 𝐷𝑁𝑠𝑁. (A.6)

Note that 𝑠𝑁−1 depends on the actual sources 𝑠𝑁−1 and 𝑠𝑁
whilst 𝑠𝑁 depends on 𝑠𝑁 only. Hence the reverse processing
step can be applied using the pair of estimated sources
𝑠𝑁−1 and 𝑠𝑁 as the inputs. From the theory described in
Section 2.2.1, after subtracting off the contribution from 𝑠𝑁
to 𝑠𝑁−1, an improved estimate, 𝑠(1)𝑁−1 of 𝑠𝑁−1 is obtained that
depends on 𝑠𝑁−1 only; that is, one can write:

𝑠
(1)
𝑁−1 = 𝐷𝑁−1𝑠𝑁−1. (A.7)

The application of the reverse processing iteration with 𝑠𝑁−1
and 𝑠𝑁 as the inputs and with 𝑠

(1)
𝑁−1 as the output is written

using the following notation:

𝑠
(1)
𝑁−1 = 𝑅 (𝑠𝑁−1, 𝑠𝑁) (A.8)

with “𝑅” representing the operation of reverse processing.
Hence, replacing 𝑠𝑁−1 in (A.5) by 𝑠

(1)
𝑁−1 in (A.8), (A.3) to

(A.6) can be replaced by the following set of equations:

𝑠1 = 𝐶11𝑠1 +

𝑁

∑
𝑗=2

𝐶1𝑗𝑠𝑗, (A.9)

𝑠2 = 𝐶22𝑠2 +

𝑁

∑
𝑗=3

𝐶2𝑗𝑠𝑗,

...

(A.10)

𝑠𝑁−2 = 𝐶𝑁−2,𝑁−2𝑠𝑁−2 + 𝐶𝑁−2,𝑁−1𝑠𝑁−1 + 𝐶𝑁−2,𝑁𝑠𝑁, (A.11)

𝑠
(1)
𝑁−1 = 𝐷𝑁−1𝑠𝑁−1, (A.12)

𝑠𝑁 = 𝐷𝑁𝑠𝑁. (A.13)

Equations (A.11), (A.12), and (A.13) are used to estimate
𝑠𝑁−2. First a decision needs to be made as to which of 𝑠(1)𝑁−1
(A.12) and 𝑠𝑁 (A.13) to subtract off the corresponding sources
from 𝑠𝑁−2 in (A.11). The procedure is as follows. First the
MHC procedure in reverse is applied to 𝑠

(1)
𝑁−1, and 𝑠𝑁−2 and

the magnitude of the minimum heading change, 𝜀𝑁−1,𝑁−2 is
found subject to the correlation coefficient over the 𝑃 data
points being at least Corrmin, (37). In principle, the minimum
heading change should occur when 𝑠𝑁−1 exists on its own and
ideally 𝜀𝑁−1,𝑁−2 = 0. However, a situation could occur that
𝑠𝑁−1 is somehow “hidden” by the other two sources in that it
does not reveal itself as a straight line of the phase plot of the
original data. Subsequently, the MHC procedure in reverse is
applied to 𝑠𝑁 and 𝑠𝑁−2 and the magnitude of the minimum
heading change, 𝜀𝑁,𝑁−2, is found for this pair of sources. The
source estimate that is subtracted is determined from the
minimum of 𝜀𝑁−1,𝑁−2 and 𝜀𝑁,𝑁−2. Suppose it is found that
𝜀𝑁,𝑁−2 < 𝜀𝑁−1,𝑁−2. In this case, one performs a subtraction
procedure on 𝑠𝑁 and 𝑠𝑁−2 as follows:

𝑠
(1)
𝑁−2 = 𝑅 (𝑠𝑁−2, 𝑠𝑁) . (A.14)



ISRN Signal Processing 13

Step 1
({𝑠1} , {𝑠2}, . . . , {𝑠𝑁}) = MHCForward({z}, 𝑣th) Section 2.1
Step 2
for 𝑚 = 1 : 𝑀

𝑠
(0)
𝑁 [𝑚] = 𝑠𝑁[𝑚] (A.6)

end
[{𝑠
(1)
𝑁−1} , Δ𝐻,NoSub] = MHCReverse ({𝑠𝑁−1} , {𝑠𝑁} , 𝜆

th
,Corrmin, 𝑃) (A.8)

for 𝑖 = 2 : 𝑁 − 1

for 𝑗 = 1 : 𝑁

flagsub(𝑗) = 0

end
𝑘 = 0

for 𝑚 = 1 : 𝑀

{𝑠
(0)
𝑁−𝑖 [𝑚]} = {𝑠𝑁−𝑖 [𝑚]}

end
while 𝑘 ≤ 𝑖

𝑘 = 𝑘 + 1

for 𝑗 = 0 : 𝑖 − 1

Δ𝐻(𝑗) = 1𝑒10

end
for 𝑗 = 0 : 𝑖 − 1

if flagsub(𝑗) = 0
[{𝑡
(𝑗)

𝑁−𝑖 } , Δ𝐻 (𝑗) ,NoSub (𝑗)] =

MHCReverse ({𝑠(𝑘−1)𝑁−𝑖 } , {𝑠
(𝑗)

𝑁−𝑗} , 𝜆
th
,Corrmin, 𝑃)

end
end

Step 3
if min(NoSub(𝑗)) > 0

𝑗min = value of 𝑗 : Δ𝐻(𝑗) is a minimum
for 𝑚 = 1 : 𝑀

𝑠
(𝑘)
𝑁−𝑖 [𝑚] = 𝑡

(𝑗min)
𝑁−𝑖 [𝑚]

end
flagsub(𝑗min) = 1

else
𝑘 = 𝑖

for 𝑚 = 1 : 𝑀

𝑠
(𝑖)
𝑁−𝑖 [𝑚] = 𝑠𝑁−𝑖[𝑚]

end
end

end
end

Pseudocode 1

One can then write 𝑠
(1)
𝑁−2:

𝑠
(1)
𝑁−2 = 𝐶

󸀠
𝑁−2,𝑁−2𝑠𝑁−2 + 𝐶

󸀠
𝑁−2,𝑁−1𝑠𝑁−1. (A.15)

Next 𝑠
(1)
𝑁−2 in (A.15) and 𝑠

(1)
𝑁−1 in (A.12) are processed together

to subtract off the contribution of 𝑠𝑁−1 to 𝑠
(1)
𝑁−2:

𝑠
(2)
𝑁−2 = 𝑅 (𝑠

(1)
𝑁−2, 𝑠
(1)
𝑁−1) . (A.16)

In theory, 𝑠(2)𝑁−2 will now depend on 𝑠𝑁−2 only and one can
then write that

𝑠
(2)
𝑁−2 = 𝐷𝑁−2𝑠𝑁−2. (A.17)

This process is iterated, next calculating an estimate, 𝑠
(3)
𝑁−3

until one has estimated all the sources {𝑠
(𝑝)

𝑁−𝑝} which should,
in theory, be scaled versions of the actual sources.

B. Pseudocode for Algorithm

Notes:

(1) For a scalar quantity, the notation {𝑎} is used to
indicate the set of samples from 𝑚 = 1 to 𝑀:

{𝑎} = {𝑎 [1] , 𝑎 [2] , . . . , 𝑎 [𝑀]} . (B.1)
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function[({𝑠1}, {𝑠2}, . . . , {𝑠𝑁})] = MHCForward({z}, 𝑣th)
Step 1
for 𝑘 = 1 : 𝑁

for 𝑚 = 2 : 𝑀

v[𝑚] = z[𝑚] − z[𝑚 − 1]

v̂[𝑚] = v[𝑚]/ |v[𝑚]|

end
Step 2

for 𝑚 = 2 : 𝑀

𝑉max [𝑚] = max (
󵄨󵄨󵄨󵄨𝑣1 [𝑚]

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑣2 [𝑚]

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑣𝑁 [𝑚]

󵄨󵄨󵄨󵄨) (19)
end
𝑣max = max {|v [1]| , |v [2]| , . . . , |v [𝑀]|} (20)

Step3
for 𝑖 = 1 : 𝑀 − 1

𝑗 = 𝑖 + 1;
if 𝑉max [𝑗] > 𝑣

th
𝑣max

d− [𝑗] = v̂ [𝑖] − v̂ [𝑗]

d+ [𝑗] = v̂ [𝑖] + v̂ [𝑗]

Δ [𝑗] = min (
󵄨󵄨󵄨󵄨d
−
[𝑗]

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨d
+
[𝑗]

󵄨󵄨󵄨󵄨)

end
end
𝑗min = value of 𝑗 where Δ [𝑗] is a minimum
R̂𝑘 = v̂ [𝑗min]

Step 4
for 𝑚 = 1 : 𝑀

𝑠𝑘 [𝑚] = z [𝑚] ⋅ R̂𝑘 (6)
s̃𝑘 [𝑚] = 𝑠𝑘 [𝑚] R̂𝑘 (7)
z [𝑚] ← z [𝑚] − s̃𝑘 [𝑚] (10)

end
end

Pseudocode 2

(2) For a vector quantity, the notation {a} is used to
indicate the set of samples from 𝑚 = 1 to 𝑀 of this
vector quantity:

{a} = {a [1] , a [2] , . . . , a [𝑀]} . (B.2)

(3) There are three listings: the main program and two
functions; for each listing, the processing steps are
described first and then the listing is given with the
step numbers indicated at the appropriate places.

Inputs. We have the following Inputs:

𝑣
th (18),

𝜆
th (36),

Corrmin (37),

𝑃 (37),

{z}=(z[1], z[2], . . . , z[𝑀]) where𝑀 = number of data
points.

Outputs. Estimated sources {𝑠(𝑝)𝑁−𝑝}, 𝑝 = 0, 1, 2, . . . , 𝑁 − 1 (see
Appendix A).

Main Program (see Pseudocode 1)

Steps

Step 1. Estimated sources from the forward iteration using
MHC.

Step 2. Estimated sources from the reverse iteration.
NoSub = 1 if a subtraction has taken place in the reverse

iteration, NoSub = 0 if not; this is passed to the main routine.
𝑖 is index number for source estimate from forward
iteration.
𝑗 is index number for source estimate from reverse
iteration.

For subtraction from source from forward iteration.
𝑡
(𝑗)

𝑁−𝑖 is the estimated source in the reverse iteration
when the inputs are 𝑠

(𝑘−1)
𝑁−𝑖 and 𝑠

(𝑗)

𝑁−𝑗 with Δ𝐻(𝑗) being
the associated minimum heading change.
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function[{𝑠(1)A } , Δ𝐻,NoSub] = MHCReverse({𝑠A} , {𝑠B} , 𝜆
th
,Corrmin, 𝑃)

Step 1
for 𝑚 = 1 : 𝑀

z [𝑚] = (𝑠A [𝑚] , 𝑠B[𝑚])

end
for 𝑚 = 2 : 𝑀

v [𝑚] = z [𝑚] − z [𝑚 − 1] Compute velocity vector, (11)
end
Step 2
for 𝑚 = 2 : 𝑀

𝑉max [𝑚] = max (
󵄨󵄨󵄨󵄨𝑣1 [𝑚]

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑣2 [𝑚]

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑣𝑁 [𝑚]

󵄨󵄨󵄨󵄨) (19)
end
𝑣max = max {|v [1]| , |v [2]| , . . . , |v [𝑀]|} (20)
Step 3
for 𝑖 = 𝑃 : 𝑀

for 𝑗 = 1 : 𝑃

zlocal [𝑗] = z[𝑖 − 𝑃 + 𝑗]

end
𝐶[𝑖] = corrcoef(𝑧local1 , 𝑧

local
2 )

end
Step 4
for 𝑖 = 𝑃 : 𝑀 − 1

𝑗 = 𝑖 + 1;
if 󵄨󵄨󵄨󵄨𝑣1 [𝑖]

󵄨󵄨󵄨󵄨 > 𝜆
th
𝑣max &

󵄨󵄨󵄨󵄨𝑣2 [𝑖]
󵄨󵄨󵄨󵄨 > 𝜆

th
𝑣max &

󵄨󵄨󵄨󵄨𝑣1 [𝑗]
󵄨󵄨󵄨󵄨 > 𝜆

th
𝑣max &

󵄨󵄨󵄨󵄨𝑣2 [𝑗]
󵄨󵄨󵄨󵄨 > 𝜆

th
𝑣max

& |𝐶 [𝑖]| > Corrmin

Flag = 1
d− [𝑗] = v̂ [𝑖] − v̂ [𝑗]

d+ [𝑗] = v̂ [𝑖] + v̂ [𝑗]

Δ [𝑗] = min (
󵄨󵄨󵄨󵄨d
−
[𝑗]

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨d
+
[𝑗]

󵄨󵄨󵄨󵄨)

else
Flag = 0

end
end
if Flag = 1

Δ𝐻 = min (Δ [𝑗])

𝑗min = value of 𝑗 where Δ[𝑗] is a minimum
R̂B = v̂ [𝑗min]

end
Step 5
if Flag = 1

NoSub = 1
for 𝑚 = 1 : 𝑀

𝑠
(1)
A [𝑚] = 𝑠A[𝑚] − (z [𝑚] ⋅ R̂B)𝑅̂

(1)
B (35)

end
else

NoSub = 0
for 𝑚 = 1 : 𝑀

𝑠
(1)
A [𝑚] = 𝑠A[𝑚]

end
end

Pseudocode 3
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Step 3. If the min(NoSub(𝑗)) > 0 for some 𝑗, then at
least one of the estimated source 𝑠

(𝑗)

𝑁−𝑗 can be considered for
subtraction. Choose source 𝑡

(𝑗min)
𝑁−𝑖 , where the heading change

is a minimum then put flagsub(𝑗min) = 1 to indicate that 𝑠(𝑗)𝑁−𝑗
should no longer be used in the subtraction process for this
iteration. Otherwise put reverse estimate = forward estimate
and exit loop by putting 𝑘 = 𝑖.

End of Main Program.

Function to Carry out Forward Iteration (see Pseudocode 2)

Step 1. Loop over number of data inputs, 𝑁, and number
of data points 𝑀 to compute normalized headings from the
velocity vector, (11).

Step 2. Determine maximum velocity to eliminate velocity
vectors that have all components below a certain threshold.

Step 3. ApplyMHC to look forminimumdifferences between
adjacent headings. d− and d+, are used to do this; d+
which is the sum of adjacent normalized velocity vectors
takes into account headings that double back on themselves,
corresponding to a peak in the data.

Step 4. Compute estimated 𝑘th source, (6) and vector in phase
space representing estimated source, (7); subtract this vector
from the measurement vector, (10).

End of function MHCForward.

Function to Carry out Reverse Iteration (see Pseudocode 3).
The input signals are {𝑠A} and {𝑠B}. The output is {𝑠(1)A } which
is an enhanced estimate of {𝑠A} with the contribution from
{𝑠B} removed.

Steps

Step 1. Compute velocity vector, (11).

Step 2. Determine maximum velocity to eliminate velocity
vectors that have all components below a certain threshold.

Step 3. Loop over data points and compute the cross-
correlation coefficient over a moving data window of P
samples.

Step 4. ApplyMHC to look forminimumdifferences between
adjacent headings. d− and d+ are used to do this; d+ which
is the sum of adjacent normalized velocity vectors takes
into account headings that double back on themselves,
corresponding to a peak in the data. If the components of the
velocity vectors are larger than a threshold and the correlation
over 𝑃 data points is larger than a preset initial value, then
indicate this by Flag = 1; otherwise put Flag = 0. If Flag = 1,
Δ𝐻 is the minimum heading change occurring at 𝑗 = 𝑗min.
R̂B is the heading vector at 𝑗 = 𝑗min.

Step 5. If a turning point is found (Flag = 1), then perform the
subtraction in (35) using R̂B else do not subtract (Flag = 0).

NoSub = Flag is passed to the main routine to indicate
whether this subtraction has taken place or not.

End of function MHCReverse.
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