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The subspace segmentation problem is fundamental in many applications. The goal is to cluster data drawn from an unknown
union of subspaces. In this paper we state the problem and describe its connection to other areas of mathematics and engineering.
We then review the mathematical and algorithmic methods created to solve this problem and some of its particular cases. We also
describe the problem of motion tracking in videos and its connection to the subspace segmentation problem and compare the
various techniques for solving it.

1. Introduction

The subspace clustering problem is fundamental in many
engineering and mathematics applications [1–11]. It can be
described as follows: let U = ⋃

𝑀

𝑖=1
𝑆
𝑖
be the nonlinear set

consisting of a union of𝑀 subspaces {𝑆
𝑖
⊂H}
𝑀

𝑖=1
of a Hilbert

or a Banach space H. Let W = {𝑤
𝑗
∈H}
𝑁

𝑗=1
be a set of

data points drawn from U. The subspace segmentation (or
clustering) problem is then to determine U (equivalently
determine 𝑆

𝑖
for 𝑖 = 1, . . . ,𝑀), from the data W =

{𝑤
𝑗
∈H}
𝑁

𝑗=1
, that is, to

(1) determine the number of subspaces𝑀;
(2) find an orthonormal basis for each subspace 𝑆

𝑖
, 𝑖 =

1, . . . ,𝑀;
(3) group the data points belonging to the same subspace

into the same cluster.

The data W is often corrupted by noise; it may have outliers
or some of the data vectors 𝑤 ∈ W may have missing
entries. Therefore, any technique for solving the subspace
segmentation problem above must be robust and stable for
the aforementioned nonideal cases.

Depending on the application, the space H can be finite
or infinite dimensional. For example, the set of all two
dimensional images of a given face 𝑖, obtained under different

illuminations and facial positions, can be modeled as a set of
vectors belonging to a low dimensional subspace 𝑆

𝑖
living in a

higher dimensional spaceH = R𝐷 [12–14]. For this case, a set
of such images from𝑀 different faces is a unionU = ⋃

𝑀

𝑖∈1
𝑆
𝑖
.

Another application in which a union of subspaces provides a
goodmodel is the problem ofmotion tracking of rigid objects
in videos. For this situation (further developed below), a 4-
dimensional subspace is assigned to each moving object in a
spaceH = R2𝐹, where𝐹 is the number of frames in the video.
Examples where H is infinite dimensional arise in sampling
theory, and in learning theory [15–19]. For example, signals
with finite rate of innovations are modeled by a union of
subspaces that belongs to an infinite dimensional space such
as 𝐿2(R𝐷) [2, 3, 20, 21].

1.1. Known Number of Subspaces 𝑀 and Dimensions 𝑑
𝑖
. In

some subspace segmentation problems, the number 𝑀 of
subspaces or the dimensions of the subspaces {𝑑

𝑖
}

𝑀

𝑖=1
are

known or can be estimated [1, 8, 22, 23]. In these cases,
the subspace segmentation problem, for both the finite
and infinite dimensional space cases, can be formulated as
follows.

Let H be a Hilbert space, W = {𝑓
1
, . . . , 𝑓

𝑚
} a finite set

of vectors in H, C a family of closed subspaces of H, and
S the set of all sequences of elements in C of length 𝑀
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(i.e., S = S(𝑀) = {{𝑆
1
, . . . , 𝑆

𝑀
} : 𝑆

𝑖
∈ C, 1 ≤ 𝑖 ≤

𝑀}) . The subspace segmentation problem formulation as a
minimization problem is as follows.

Problem 1 (optimization formulation of the subspace segmen-
tation problem). (1) Given a finite set W ⊂ H, a number 𝑝
with 1 ≤ 𝑝 ≤ ∞, and a fixed integer𝑀 ≥ 1, find the infimum
of the expression

𝑒 (W, S) := ∑
𝑓∈W

min
1≤𝑗≤𝑀

𝑑

𝑝
(𝑓, 𝑆
𝑗
) , (1)

over S = {𝑆
1
, . . . , 𝑆

𝑀
} ∈ S, and 𝑑(𝑥, 𝑦) := ‖𝑥 − 𝑦‖H.

(2) Find a sequence of𝑀-subspaces S𝑜 = {𝑆𝑜
1
, . . . , 𝑆

𝑜

𝑀
} ∈

S (if it exists) such that

𝑒 (W, S𝑜) = inf {𝑒 (W, S) : S ∈ S} . (2)

An example in finite dimensions is when H = R𝐷 and
C is the family of all subspaces of R𝐷 of dimensions 𝑑 no
greater than 𝑟 ≤ 𝐷. For this case, when𝑀 = 1, and 𝑝 = 2,
this is a well-known least square problem that can be solved
using the singular value decomposition technique [24]. An
example in infinite dimensions is when H = 𝐿

2
(R𝐷) and

C is a family of closed, shift-invariant subspaces of 𝐿2(R𝐷)
that are generated by at most 𝑟 < ∞ generators [2]. Typical
shift-invariant spaces with one generator are for example the
space of bandlimited functions, generated by integer shifts of
the generator function sinc(𝑥) = sin(𝑥)/𝑥. Other important
shift invariant spaces are the spline spaces L

𝑛
generated by

the B-spline functions 𝛽𝑛 of degree 𝑛 [25, 26]. In these cases
the subspaces in C are also infinite dimensional subspaces
of 𝐿2. Thus, even in the case where𝑀 = 1 and 𝑝 = 2, this
(least squares) problem is much more difficult than its finite
dimensional counterpart. It should be noted thatwhen𝑀 > 1
and for any 0 < 𝑝 ≤ ∞ Problem 1 is neither linear nor convex
[27, 28]. In the presence of outliers, it has been proven that
the best value for 𝑝 is 𝑝 = 1 [27, 28], and a good choice for
light-tailed noise is 𝑝 = 2. There are more general versions of
Problem 1, for example, the Hilbert spaceH can be replaced
by a Banach spaceB; moreover, the familyC can be replaced
by the more general type of familyC

1
×C
2
, . . . ,C

𝑀
[22].

1.2. Applications and Connection to Other Areas. The sub-
space segmentation problemhas connections to several active
areas of research, including learning theory, compressed
sampling, and signal processing in general [2, 3, 17, 21,
29–32]. Moreover, it is relevant to several computer vision
applications including motion tracking of rigid objects in
videos and facial recognition [1, 4, 14, 33–38].

1.2.1. Connection to Compressed Sampling. In compressed
sampling, the goal is to find an unknown vector 𝑥 ∈ R𝐷

from a small set of linear measurements {𝑦
𝑖
= 𝑎

𝑇

𝑖
𝑥}

𝑚

𝑖=1
,

𝑚 ≪ 𝐷, where 𝑎
𝑖
are known sampling vectors. Clearly,

this problem has a solution only if some extra information
is known about 𝑥 and if the sampling vectors 𝑎

𝑖
s are well

chosen. In compressed sampling, the assumption is that, in
a suitable basis, or frame, the unknown vector 𝑥 is 𝑠-sparse

or nearly 𝑠-sparse (compressible), with 𝑠 ≪ 𝐷 [30, 39–44].
This means that in a suitable basis or frame the vector 𝑥
has at most 𝑠 nonzero components, or, in the compressible
assumption, that 𝑥 has at most 𝑠 large components. This
sparsity assumption (or compressibility assumptions) implies
that the vector 𝑥must belong (or must be close to) a union of
subspaces of dimensions at most 𝑠. Thus, finding the sparse
model for a class of signals can be obtained by solving the
subspace segmentation problem in the special case where
H = 𝑅

𝐷, and where the C is the class of subspaces of R𝐷
of dimensions at most 𝑠, and𝑀 = 𝐷(𝐷

𝑠
) [45, 46].

1.2.2. Connection to Learning Theory and Data Mining. In
many learning theory problems, a class of data may form a
complex structure embedded in a high dimensional space
R𝐷 [47–53]. In the neighborhood of each data point, the
structuremay bemodeled by a local tangent space, or a union
of tangent spaces whose dimensions are much smaller than
the dimension of the ambient spaceR𝐷 [16].The global shape
of the data model can then be obtained from the observed
data points by solving Problem 1.

1.2.3. Connection to Signal Processing. In signal processing,
signals are often modeled by an infinite dimensional shift-
invariant subspace of 𝐿2(R𝑑) [15, 54–61]. For example, the
classical shift-invariant space is the space of bandlimited
functions PW

1/2
, also known as the Paley-Wiener space [62–

67]. This is the space generated by the function sinc =

sin(𝜋𝑥)/𝜋𝑥 and its integer shifts.Multiresolution andwavelet
spaces are also shift-invariant spaces that are often used in
signal processing applications. Choosing themodel for a class
of signals can be cast in terms of finding the solution of 1 from
observed data. Unlike the compressed sampling or learning
theory discussed earlier, in this situation the classC consists
of infinite dimensional subspaces of H = 𝐿

2 and therefore
are more difficult to deal with even for a single shift-invariant
subspace model (𝑀 = 1) [68]. The case in which a signal
model is not a single subspace but a union of several of such
subspaces is natural as in the case of signals with finite rate of
innovation [69–73].

1.2.4. Application to Motion Tracking in Video. The problem
of tracking rigid moving objects in a video can be formulated
as a subspace segmentation problem [33, 35, 74–77]. Let
𝑥
𝑗
(𝑝), 𝑦

𝑗
(𝑝) be the Cartesian coordinates of a point 𝑝 of a

moving object 𝑂 in frame 𝑗 of a video. By concatenating all
the coordinates of 𝑝 into a single vector

𝑤
𝑝
= (𝑥
1
(𝑝) , 𝑦

1
(𝑝) , 𝑥

2
(𝑝) , 𝑦

2
(𝑝) , . . . , 𝑥

𝐹
(𝑝) , 𝑦

𝐹
(𝑝))

𝑡
,

(3)

we obtain the so-called trajectory vector of 𝑝 whose length is
𝐷 = 2𝐹 where 𝐹 is the number of frames in the video. It can
be shown that, for rigid bodies, the trajectories of any point
of object 𝑂 belong to a subspace 𝑆

𝑂
of R𝐷 of dimensions no

greater than 4. Thus, ifW = {𝑤
1
, . . . , 𝑤

𝑁
} is a set of trajectory

vectors from a set video of 𝑀 moving objects (background
is one such objects), then the setW belongs to a union of𝑀
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subspaces of dimensions atmost 4.Thus, solving the subspace
segmentation problem in this situation consists in using the
data W to find the subspaces, and then grouping together
the trajectory vectors 𝑤

𝑖
that belong to the same objects

according to the subspace they belong to. It can also be shown
that human facial motion and other nonrigid motions can be
approximated by linear subspaces [78].

1.2.5. Application to Face Recognition. It has been shown
that the set of all two-dimensional images of a given face 𝑖,
obtained under different illuminations and facial positions,
can be modeled as a set of vectors belonging to a low
dimensional subspace, 𝑆

𝑖
, living in a higher dimensional

space R𝐷 [14]. A set of such images from different faces are
then a union {𝑆

𝑖
⊂H}
𝑀

𝑖=1
, where each face is associated with

a give face.

1.3. Dimensionality Reduction. Since the data W may live in
a very high dimensional space R𝐷, but U = ⋃

𝑀

𝑖=1
𝑆
𝑖
may

consist of spaces 𝑆
𝑖
with dimension 𝑑

𝑖
≪ 𝐷 and 𝑀 ≪ 𝐷,

the subspace clustering problem can be solved in a smaller
dimensional space 𝐷

𝑒
, the effective dimension. Specifically,

if ∑𝑀
𝑖=1
𝑑
𝑖
≪ 𝐷, then the data W can be projected on a

space of dimension 𝐷
𝑒
= ∑

𝑀

𝑖=1
𝑑
𝑖
, where the projection is not

necessarily an orthogonal projection, but any “good” linear
process that maps the data to another (low dimensional)
space, for example, random projection [79–82]. As a result
of projecting U = ⋃

𝑀

𝑖=1
𝑆
𝑖
⊂ R𝐷 and the data W, we get the

set ̃U = ⋃

𝑀

𝑖=1
̃
𝑆
𝑖
⊂ R𝐷𝑒 and the data ̃W ⊂ R𝐷𝑒 . It is now

possible to solve the subspace segmentation problem with
data ̃W ⊂ R𝐷𝑒 instead of W and use the segmentation in
the low dimensional space to solve the original problem.This
dimensionality reduction technique can be very effective and
is often used in conjunction with the subspace segmentation
problem [12, 83].

2. Algebraic Methods for Finite
Dimensional Noise Free Case

The general subspace segmentation problem described in
Section 1 does not yet have a good approach for solving it.
In the ideal case where no noise is present, there are several
algebraic methods that can solve this problem as will be
described below. However, in realistic situations when noise,
outliers, and corrupted data are present, there are no satis-
factory algorithms for finding the solution, even in the finite
dimensional casewhenH = R𝐷.Thedifficulties are both the-
oretical as well as computational, as will be further described
below.

In the ideal case, when H = R𝐷, and the data W =

{𝑤
1
, . . . , 𝑤

𝑁
} is drawn from a finite union of subspaces

{𝑆
𝑖
⊂H}
𝑀

𝑖=1
, the general problem can be solved using alge-

braic methods. Obviously, there must be enough data points.
In particular, it is necessary that for each subspace 𝑆

𝑖
there

is a subset of data points of W that form a basis for 𝑆
𝑖
.

However, this is not sufficient. Consider for example the very
simple case in which the data is drawn from a union of two

subspaces 𝑆
1
∪ 𝑆
2
of R3 such that dim 𝑆

1
= dim 𝑆

2
= 1. If

we are supplied with two points, one from each line 𝑆
1
, 𝑆
2
,

we will not be able to decide whether the data is drawn from
a single subspace 𝑆 = 𝑆

1
+ 𝑆
2
or from the union 𝑆

1
∪ 𝑆
2
.

However, if we are supplied with enough points belonging to
𝑆
1
and enough belonging to 𝑆

2
, the structure 𝑆

1
∪ 𝑆
2
becomes

apparent.

2.1. Reduced Row Echelon Form Method. One of the recent
algebraic methods for solving the noise free subspace seg-
mentation problem under the independent subspace restric-
tion is the reduced row echelon form (RREF) method [22].
This method is a generalization of the method of Gear
who observed that, for four dimensional subspaces, the
reduced echelon form can be used to segment motions
in videos [84]. It turns out that in the noise free case
the reduced row echelon form method can completely
solve the subspace segmentation in almost its most general
version.

The RREF is based on the familiar Gauss elimination
techniques for solving linear systems of equation. However,
for this method to work, certain assumptions on the data and
the subspaces are needed. Specifically, there must be enough
data to cover all the dimensions of the union of subspacesU =
⋃
𝑖∈𝐼
𝑆
𝑖
fromwhich the data is drawn.Moreover, the susbpaces

{𝑆
𝑖
}

𝑀

𝑖=1
must be independent. To make these assumptions

precise, we make the following definitions.

Definition 1 (generic data). Let 𝑆 be a linear subspace of R𝐷
with dimension 𝑑. A set of dataW drawn from 𝑆 ⊂ R𝐷 with
dimension 𝑑 are said to be generic, if (i) |W| > 𝑑, and (ii)
every 𝑑 vector fromW forms a basis for 𝑆.

Definition 2 (independent subspaces). Subspaces {𝑆
𝑖
⊂

R𝐷}
𝑛

𝑖=1
are called independent if dim(𝑆

1
+⋅ ⋅ ⋅+𝑆

𝑛
) = dim(𝑆

1
)+

⋅ ⋅ ⋅ + dim(𝑆
𝑛
).

Independent subspaces have the property that 𝑆
𝑖
∩ 𝑆
𝑗
=

{0} for 𝑖 ̸= 𝑗.The converse, however, is false, for example, three
subspaces 𝑆

1
, 𝑆
2
, 𝑆
3
in R2 with dim 𝑆

𝑖
= 1, 𝑖 = 1, 2, 3 can

never be independent. More generally, if {𝑆
𝑖
⊂ R𝐷}

𝑛

𝑖=1
are

independent, then ∑𝑛
𝑖=1

dim(𝑆
𝑖
) ≤ 𝐷 and 𝑆

𝑖
∩ 𝑆
𝑗
= {0} for

𝑖 ̸= 𝑗.
If we knew the subspaces 𝑆

𝑖
, it would be easy to partition

the data W into the partition 𝑃(W) = {W
1
, . . . ,W

𝑀
} such

that W
𝑖
⊂ 𝑆
𝑖
. Conversely, if we knew a partition 𝑃(W) =

{W
1
, . . . ,W

𝑀
} of the dataW such that the setW

𝑖
comes from

the same subspace 𝑆
𝑖
, thenwewould set 𝑆

𝑖
= spanW

𝑖
and our

problem subspace segmentation would be solved.
However, all we are given is the data W, and we do

not know the partition 𝑃(W). Thus, solving the subspace
segmentation problem amounts to finding the partition
𝑃(W) = {W

1
, . . . ,W

𝑀
} of W. To do this, we construct a

matrixW = [𝑤
1
, . . . , 𝑤

𝑁
]whose columns are the data vectors

𝑤
𝑖
∈ R𝐷. The matrix W is a 𝐷 × 𝑁 matrix, where 𝐷 may

be large, while the rank of W is often much smaller (noise
free case). Using the three elementary row operation used
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in Gaussian elimination, we transformW to its reduced row
echelon form rref(W)

rref (W) = [𝑅
0

] , (4)

where 𝑅 is an 𝑟 × 𝑁 matrix and where 𝑟 is the rank of W.
By setting to the value 1 all nonzero coefficients in rref(W)
we obtain the so-called binary reduced echelon form of W
denoted by Brref(W). The Binary reduced row echelon form
ofW has a structure that allows us to easily find the partition
𝑃(W) = {W

1
, . . . ,W

𝑀
} and thereby solve the subspace

segmentation problem asTheorem 3 below suggests [22].

Theorem 3. Let {𝑆
𝑖
}

𝑀

𝑖=1
be a set of nontrivial linearly indepen-

dent subspaces of R𝐷. Let W = [𝑤
1
, . . . , 𝑤

𝑁
] ∈ R𝐷×𝑁 be

a matrix whose columns are drawn from ⋃𝑀
𝑖=1
𝑆
𝑖
. Assume the

data is drawn from each subspace and that it is generic. Let
Brref(W) be the binary reduced row echelon form ofW. Then

(1) the inner product ⟨𝑒
𝑖
, 𝑏
𝑗
⟩ of a pivot column 𝑒

𝑖
and a

nonpivot column 𝑏
𝑗
in Brref(W) is one, if and only if

the corresponding column vectors {𝑤
𝑖
, 𝑤
𝑗
} inW belong

to the same subspace 𝑆
𝑙
for some 𝑙 = 1, . . . ,𝑀;

(2) moreover, dim(𝑆
𝑙
) = ‖𝑏

𝑗
‖
1
, where ‖𝑏

𝑗
‖
1
is the 𝑙

1
-norm

of 𝑏
𝑗
;

(3) finally, 𝑤
𝑝
∈ 𝑆
𝑙
if and only if 𝑏

𝑝
= 𝑏
𝑗
or ⟨𝑏
𝑝
, 𝑏
𝑗
⟩ = 1.

This theorem suggests a very simple yet effective approach
to clustering the data points (Algorithm 1) and solves the
subspace segmentation problem. This is done by finding a
partition {W

1
, . . . ,W

𝑀
} of the data W into𝑀 clusters such

that span W
𝑙
= 𝑆
𝑙
, 𝑖 = 1, . . . ,𝑀. The clusters can be formed

as follows: pick a nonpivot element 𝑏
𝑗
in Brref(W), and group

together all columns 𝑏
𝑝
in Brref(W) such that ⟨𝑏

𝑗
, 𝑏
𝑝
⟩ > 0.

Repeat the process with a different nonpivot column until all
columns are exhausted.This is detailed in Algorithm 1 below.

Note that, we do not need to know the number of
subspaces𝑀 nor do we need to know the dimensions of the
subspaces 𝑆

𝑖
for solving the subspace segmentation problem

in this case. 𝑀 and dim(𝑆
𝑖
) are an output of the algorithm.

The only assumption is that there are enough data points and
that they are well distributed (they are generic), and that the
subspaces 𝑆

𝑖
are independent.

For noisy data, the reduced row echelon form method
does not work, and a thresholding must be applied. However,
the effect of the noise on the reduced echelon form method
depends on the noise level and the relative positions of the
subspaces. This dependence has been analyzed in [22].

2.2. The Generalized Principle Component Analysis GPCA.
Another algebraic method for solving the subspace segmen-
tation problem is the so-called generalized principle compo-
nent analysis (GPCA) [12, 85]. Although the most general
form of this method solves the subspace segmentation prob-
lem in its entire generality for finite dimensions, we will only
describe the idea behind the GPCAmethod in the simplified
case where the number of subspaces𝑀 is known and when
the subspaces are hyperplanes inR𝐷, that is, their dimensions

is𝐷−1. For this case, each subspace 𝑆
𝑖
can be described by its

normal vector 𝑏
𝑖
= (𝑏
𝑖1
, . . . , 𝑏

𝑖𝐷
)

𝑇, and every data point 𝑥 ∈ 𝑆
𝑖

satisfies the linear equation 𝑏𝑇
𝑖
𝑥 = 0where 𝑥 = (𝑥

1
, . . . , 𝑥

𝐷
)

𝑇.
Thus, a data point 𝑥 ∈W drawn from the union of subspaces
U = ⋃

𝑀

𝑖=1
𝑆
𝑖
must satisfy the polynomial equations

𝑀

∏

𝑘=1

(𝑏

𝑇

𝑘
𝑥) = 0. (5)

The product∏𝑀
𝑘=1
(𝑏

𝑇

𝑘
𝑥) is in fact a homogeneous polynomial

𝑝 (𝑥) = ∑

𝛼

𝑐
𝛼
𝑖

𝑥

𝛼
1

1
𝑥

𝛼
2

2
, . . . , 𝑥

𝛼
𝐷

𝐷 (6)

of degree𝑀, where 𝛼 = (𝛼
1
, . . . 𝛼
𝐷
),∑
𝑘
𝛼
𝑘
= 𝑀 (𝛼

𝑘
integers).

Thus, if 𝑥 ∈ U it must satisfy the equation 𝑝(𝑥) = 0. Hence,
in order to solve the subspace segmentation problem for this
case, we must

(1) find the polynomial 𝑝 by finding the values of its
coefficients 𝑐

𝛼
. This is done by creating a system of𝑁

linear equations in the unkown {𝑐
𝛼
} by setting𝑝(𝑤

𝑖
) =

0, 𝑖 = 1, . . . , 𝑁 for each data𝑤
𝑖
∈W. If the number of

data points is generic, then the solution of the system
of equations determines the polynomial 𝑝;

(2) once the polynomial 𝑝 is determined, it must be
factored into its product 𝑝(𝑥) = ∏

𝑀

𝑘=1
(𝑏

𝑇

𝑘
𝑥). The

vectors 𝑏
𝑘
can then be found by identification. The

subspaces 𝑆
𝑘
in the unionsU are thus determined.

A modification of the GPCA method described in the
previous sectionworks for the general subspace segmentation
in which neither the dimensions of the subspace nor their
number is described [12, 85]. However, as in the case of RREF
method, this method cannot work directly when noise is
present and some modification is needed in the presence of
noise and outliers as described in [12, 85].

3. Optimization Methods and Subspace
Segmentation in the Presence of Noise

The algebraic methods discussed in the previous section
do not work without modification for the case in which
the data is corrupted by noise or outliers. Even with some
of the adjustments to take care of noisy environment, the
algebraic algorithms do not perform well when the noise
is not small. Algorithms rated according to their simplicity,
computational speed, and their performance in nonideal
situations. Thus, algebraic methods or their modifications
may be the algorithms of choice if the noise is small and
computational speed is the main requirement. However,
when noise is relatively large and accuracy is important, other
methods are needed. In this sectionwe discuss othermethods
that are robust to noise and other inaccuracies in the data.

One of the methods for the subspace segmentation
problem when noise is present is typified by Problem 1.
Minimizing the functional described in Problem 1 amounts
to finding the union of subspaces that is nearest to the data.
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Require: 𝐷 ×𝑁 data matrixW.
1: Find rref (W) of W.
2: Find Brref (W) of W by setting all non-zero entries of rref (W) to 1.
3: for all 𝑗 from 1 to𝑁 do
4: Pick the 𝑗th column 𝑏

𝑗
of Brref (W).

5: if 𝑏
𝑗
is pivot then

6: continue
7: end if
8: for all 𝑖 from 1 to 𝑗−1 do
9: if 𝑏

𝑖
is non-pivot and ⟨𝑏

𝑖
, 𝑏
𝑗
⟩ > 0 then

10: Place {𝑏
𝑖
, 𝑏
𝑗
} in the same cluster 𝐶

𝑖
.

11: break
12: end if
13: end for
14: end for
15: for all 𝐶

𝑖
do

16: Pick any 𝑏 ∈ 𝐶
𝑖
.

17: Separate 𝑏 into unit vectors 𝑢1
𝑖
, . . . , 𝑢

𝑑
𝑖

𝑖
. {These vectors form a basis for a subspace

𝑆
𝑖
with dimension 𝑑

𝑖
.}

18: for all 𝑘 from 1 to𝑁 do
19: if 𝑏

𝑘
∈ {𝑢

1

𝑖
, . . . , 𝑢

𝑑
𝑖

𝑖
} then

20: Place 𝑏
𝑘
in the same cluster 𝐶

𝑖
. {This is for handling pivot columns.}

21: end if
22: end for
23: Place the corresponding columns in W into the same clusterW

𝑖
.

24: end for
25: Renumber indices 𝑖’s of 𝑆

𝑖
starting from 1.

Algorithm 1: Subspace segmentation—row echelon form approach—no noise.

However, some a priori knowledge of the number of sub-
spaces 𝑀 and the dimensions of the subspaces 𝑆

𝑖
may be

necessary. The cost function can be modified to incorporate
a cost that depends on the number of subspaces 𝑀 and
their dimensions, if these quantities are unknown. But before
getting into algorithms for solving Problem 1, the existence
of a minimizer is a theoretical question of interest. Thus, we
start by some of the results pertaining to this issue.

3.1. Existence of aMinimizer to Problem 1. Given a familyC of
closed subspaces ofH, a solution to Problem 1 may not exist
even in the linear case when 𝑀 = 1. For example, assume
that H = 𝑅

2 and C is the set of all lines through the origin
except the line 𝑥 = 0. For this case, a minimizer may exist
for certain distribution of data points but not for others. The
existence of a solution here means that a minimizer exists for
any distribution of any finite number of data points. We will
describe the existence results whenH is a Hilbert space. The
case when H is not a Hilbert space is very difficult and only
partial results are known.

It turns out that the existence of aminimizing sequence of
subspaces S𝑜 = {𝑆𝑜

1
, . . . , 𝑆

𝑜

𝑙
} that solves Problem 1 is equivalent

to the existence of a solution to the same problem but for𝑀 =
1 [2].

Theorem 4. Problem 1 has a minimizing set of subspaces for
all finite sets of data and for any𝑀 ≥ 1 if and only if it has a
minimizing subspace for all finite sets of data and for𝑀 = 1.

Therefore, the following definition is useful.

Definition 5. A set of closed subspaces C of a separable
Hilbert spaceH have the minimum subspace approximation
property (MSAP) if for every finite subsetW ⊂H there exists
an element 𝑆 ∈ C that minimizes the expression

𝑒 (W, 𝑆) = ∑
𝑓∈W
𝑑

2
(𝑓, 𝑆) , 𝑆 ∈ C. (7)

Using this terminology, Problem 1 has a minimizing
sequence of subspaces if and only if C satisfies the MSAP.
If H = C𝐷 and C = {𝑆 ⊂ C𝐷 : dim 𝑆 ≤ 𝑠}, then C
satisfies MSAP.This fact is easy to prove directly and is in fact
a consequence of the Eckart-Young theorem [24]. Another
situation is when H = 𝐿

2
(R𝑑) and C = L

𝑛
= {𝑆 : 𝑆 =

span{𝜑
1
(𝑥 − 𝑘), . . . , 𝜑

𝑛
(𝑥 − 𝑘) : 𝑘 ∈ Z𝑑}} is the set of all shift-

invariant spaces of length at most 𝑛. For this last case, a result
in [68] implies thatC =L

𝑛
satisfies the MSAP.

In order to understand the general case, we identify each
subspace 𝑆 ∈ C with the orthogonal projector 𝑄 = 𝑄

𝑆

whose kernel is exactly 𝑆 (i.e., 𝑄 = 𝐼 − 𝑃
𝑆
, where 𝑃

𝑆
is the

orthogonal projector on 𝑆). Now we can think of C as a
set of projection operators and endow it with the induced
weak operator topology. This setting allows us to give the
necessary and sufficient conditions for a class C to have the
MSAP property for the case when 𝑝 = 2 in (1). Note that
it is sufficient that C is closed in order for C to have the
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MSAP. However, this condition is too strong as the following
example shows: letH = R3 and consider the setC = C

1
∪C
2

which is the union of the planeC
1
= span{𝑒

1
, 𝑒
2
} and the set

of linesC
2
= ∪
𝑣
{span{𝑣} : 𝑣 = 𝑒

3
+𝑐𝑒
2
, for some 𝑐 ∈ R}.Then

C (identified with a set of projectors as described earlier) is
not closed (since 𝑄span{𝑒

2
}
∉ C). However, it is easy to show

that this set satisfies the MSAP, since if the infimum in (1)
is achieved by the missing line given by span{𝑒

2
}, it is also

achieved by the planeC
1
.

For finite dimensions, the weak operator and strong
operator topologies are the same and the characterization
of the MSAP can be obtained in terms of the convex hull
of the family C+ consisting of C together with the positive
semidefinite operators added to it. Recall that the convex hull
co(𝐴) of a set𝐴 is the smallest convex set containing𝐴, that is,
co(𝐴) is the intersection of all convex sets containing 𝐴. For
finite dimensions, the following theorem give the necessary
and sufficient conditions for the MSAP property and hence
the necessary and sufficient conditions for the existence of a
solution to Problem 1, when 𝑝 = 2 in (1).

Theorem 6. Suppose H has dimension 𝑑 < ∞. Then the
following are equivalent

(i) C satisfies MSAP;
(ii) C+ is closed;
(iii) 𝑐𝑜(C+) = 𝑐𝑜(C+).

Thenecessary and sufficient conditions in infinite dimen-
sions for the existence of solutions when 𝑝 = 2 can be found
in [20], but are much more complicated. However, no such
results are known for the existence of solution to Problem 1
when 𝑝 ̸= 2.

3.2. Search Algorithms for Problem 1. Searching for a solution
to Problem 1 is easier when 𝑀 = 1 since this problem is
then a linear problem. Using an algorithmA

1
for solving this

simpler problem, themore difficult problemwhen𝑀 > 1 can
be solved by usingA

1
multiple times in an iterative algorithm

as follows.
Let P(W) be the set of all partitions of the data W, that

is, 𝑃 ∈ P(W) if 𝑃
0
= {W
1
, . . . ,W

𝑀
} is such thatW

𝑖
∩W
𝑗
= 0

when 𝑖 ̸= 𝑗, ∪𝑀
𝑘=1

W
𝑘
=W.

(1) Let 𝑃 = {W
1
, . . . ,W

𝑀
} be a partition of the data

W. For each 𝑖 = 1, . . . ,𝑀, use Algorithm A
1

to find the subspace 𝑆𝑜
𝑖
(𝑃) ∈ 𝐶 that is nearest

to 𝐹
𝑖
in the sense that it minimizes 𝑒(W

𝑖
, 𝑆) =

∑
𝑤∈W

𝑖

𝑑

𝑝
(𝑤, 𝑆). We obtain a sequence of subspaces

S = {𝑆𝑜
1
(𝑃), . . . , 𝑆

𝑜

𝑀
(𝑃)}.

(2) Construct a new partition 𝑄(S) by reassigning each
data point 𝑤 ∈ W to its nearest subspace from
{𝑆

𝑜

1
, . . . , 𝑆

𝑜

𝑀
} and by grouping together those points

that are assigned to the same subspace.
(3) Iterate between the two steps as described in

Algorithm 2.
It can be shown that this algorithm always converges. How-
ever, the convergence may be a local minima instead of

the global one. For this reason, a good initial partition is
important. This initial partition can be supplied by some
modified version of the algebraic methods described in the
previous section, for example.

There are many iterative algorithms for finding a solution
to the subspace segmentation problem or some of its special
cases (see, e.g., [86, 87]). Most of them iterate between
partitioning the data and finding the union of subspaces
that is consistent with the partition. The general algorithm
described below solves the subspace segmentation problem
by searching for the minimizer of Problem 1.

Note that the cost functions 𝑒(W
𝑖
, 𝑆

𝑜

𝑖
(𝑃)) and 𝑒(W, S𝑜(𝑃))

in the while loop of Algorithm 2 are the one defined by (1) in
Problem 1, but correspond to 𝑒(W

𝑖
, 𝑆

𝑜

𝑖
(𝑃)) for𝑀 = 1.

Step 2 inAlgorithm 2 is problemdependent. For example,
in the situation whereH = R𝐷 andC is the set of subspaces
of dimensions no greater than 𝑛, Step 2 can be solved using
the singular value decomposition (SVD). A similar algorithm
works in a much more general context as described in [2].

4. Motion Segmentation

The problem of motion segmentation has been described
in Section 1.2.4. This problem is a special case of subspace
segmentation in which H = R𝐷 and C is the family of
subspaces of dimensions no bigger than 4. There are many
algorithms that have been developed to solve this problem,
such as the methods based on sparsity [10, 88–90], the
algebraic methods, [1, 12, 91], the statistical methods [76, 92–
95], and the iterative methods [22, 86]. The most successful
methods however are all based on the spectral clustering or
some related method [22, 34, 36, 96, 97]. The main idea is
that a similarity matrix Ξ is used to describe the “connection”
between the points. Once this similarity matrix is obtained a
classical clustering technique (such as the 𝑘-means) is applied
to a projection of the similaritymatrixΞ on a lowdimensional
space (here projection is used loosely and is not necessarily an
orthogonal projection). These methods are often tested and
compared to the state-of-the-art methods on the Hopkins 155
Dataset [8], which serves as benchmark database to evaluate
motion segmentation algorithms. It contains two and three
motion sequences. Cornerness features that are extracted
and tracked across the frames are provided along with the
dataset. The ground truth segmentations are also provided
for comparison. Figure 1 shows two samples from the dataset
with the extracted features.

4.1. Nearness to Local Subspace Algorithm. Since most spec-
tral clustering algorithms use similar overall structure, we
describe the Nearness to Local Subspace (NLS) algorithm,
which is the most performant of the spectral clustering type
methods as applied to theHopkins 155Dataset.Other spectral
clustering based algorithms will be discussed in Section 4.2.

The NLS method works whenever the dimensions of the
subspaces are equal and known. First, a local subspace is
estimated for each data point (vector). Then, the distances
between the local subspaces and points are computed and a
distance matrix is generated.This is followed by construction
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1: Pick any partition 𝑃 ∈ P (W)
2: For each subsetW

𝑖
in the partition 𝑃 find the subspace 𝑆𝑜

𝑖
(𝑃) ∈ C

that minimizes the expression 𝑒(W
𝑖
, 𝑆) = ∑

𝑤∈W
𝑖

𝑑

𝑝
(𝑤, 𝑆)

3: while ∑𝑀
𝑖=1
𝑒(W
𝑖
, 𝑆

𝑜

𝑖
(𝑃)) > 𝑒(W, S𝑜(𝑃)) do

4: for all i from 1 to𝑀 do
5: UpdateW

𝑖
= {𝑤 ∈W : 𝑑 (𝑤, 𝑆

𝑜

𝑖
(𝑃)) ≤ 𝑑 (𝑤, 𝑆

𝑜

𝑘
(𝑃)) , 𝑘 = 1, . . . ,𝑀}

6: Update 𝑆𝑜
𝑖
(P) =argmin

𝑆∈C 𝑒(W𝑖, 𝑆)
7: end for
8: Update 𝑃 = {W

1
, . . . ,W

𝑀
}

9: end while
10: S𝑜 = {𝑆𝑜

1
(𝑃), . . . , 𝑆𝑜

𝑀
(𝑃)}

Algorithm 2: Optimal solution S𝑜.

Figure 1: Samples from the Hopkins 155 Dataset.

of a binary similarity matrix Ξ constructed by applying a
data-driven threshold to the distance matrix. Finally, the
segmentation problem is converted to a one-dimensional
data clustering problem.

The algorithm for subspace segmentation is given in
Algorithm 3. It assumes that the subspaces have dimension 𝑑
(for motion segmentation, 𝑑 = 4). The details of the various
steps are as follows.

Dimensionality Reduction and Normalization. A dimension-
ality reduction step is typical in any algorithm, including
those using spectral clustering. Let 𝑊 be a 𝐷 × 𝑁 data
matrix whose columns are drawn from a union of subspaces,
where each subspace has dimensions at most 𝑑. The data
𝑊 is possibly perturbed by noise and may have other
imperfections. One way to reduce the dimensionality of the
problem is to use SVD. Specifically, compute the SVD of𝑊

𝑊 = 𝑈Σ𝑉

𝑡
, (8)

where 𝑈 = [𝑢
1
𝑢
2
⋅ ⋅ ⋅ 𝑢

𝐷
] is an 𝑚 × 𝐷 matrix, 𝑉 =

[𝑣
1
𝑣
2
⋅ ⋅ ⋅ 𝑣
𝑁
] is an𝑁×𝑁matrix, andΣ is a𝐷×𝑁 diagonal

matrix with diagonal entries 𝜎
1
, . . . , 𝜎

𝑙
, where 𝑙 = min{𝑚,𝑁}.

If the rank of the data𝑊 is not known, one can use the
modal selection algorithm [34] to estimate its rank 𝑟 by

𝑟 = argmin
𝑟

𝜎

2

𝑟+1

∑

𝑟

𝑖=1
𝜎

2

𝑖

+ 𝜅𝑟, (9)

where 𝜎
𝑗
is the 𝑗th singular value and 𝜅 is a suitable constant.

Another possible model selection algorithm can be found
in [98]. 𝑈

𝑟
Σ
𝑟
(𝑉
𝑟
)

𝑡 is the best rank-𝑟 approximation of 𝑊 =

𝑈Σ𝑉

𝑡, where𝑈
𝑟
refers to a matrix that has the first 𝑟 columns

of 𝑈 as its columns and 𝑉
𝑟
refers to the first 𝑟 rows of 𝑉𝑡. In

the case of motion segmentation, if there are 𝑚 independent
motions across the frames captured by a moving camera, the
rank of𝑊 is between 2(𝑚 + 1) and 4(𝑚 + 1).

To reduce the dimensionality of the data, replace the data
matrix𝑊with thematrix (𝑉

𝑟
)

𝑡 that consists of the first 𝑟 rows
of 𝑉𝑡. This step is justified by the following proposition in
[22].

Proposition 7. Let 𝐴 and 𝐵 be𝑚 × 𝑛 and 𝑛 × 𝑘matrices. Let
𝐶 = 𝐴𝐵. Assume 𝐽 ⊂ {1, 2, . . . , 𝑘}.

(i) If 𝑏
𝑖
∈ span{𝑏

𝑗
: 𝑗 ∈ 𝐽} then 𝑐

𝑖
∈ span{𝑐

𝑗
: 𝑗 ∈ 𝐽}.

(ii) If 𝐴 is full rank and 𝑚 ≥ 𝑛 then 𝑏
𝑖
∈ span{𝑏

𝑗
: 𝑗 ∈

𝐽} ⇔ 𝑐
𝑖
∈ span{𝑐

𝑗
: 𝑗 ∈ 𝐽}.

It should also be noted that this step reduces additive
noise as well, especially in the case of light-tailed noise, for
example, Gaussian noise. The number of subspaces corre-
sponds to the number of moving objects. Dimensionality
reduction corresponds to Steps 1, 2, and 3 in Algorithm 3.

Another type of data reduction is normalization. Specifi-
cally, the columns of (𝑉

𝑟
)

𝑡 are normalized to lie on the unit
sphere S𝑟−1. This is because by projecting the subspace on
the unit sphere we effectively reduce the dimensionality of
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Require: The𝐷 ×𝑁 data matrix𝑊 whose columns are drawn from subspaces of dimension 𝑑
Ensure: Clustering of the feature points.
1: Compute the SVD of 𝑊 as in (8).
2: Estimate the rank of𝑊 (denoted by 𝑟) if it is not known. For example, using (9) or any other appropriate choice.
3: Compute (𝑉

𝑟
)

𝑡 consisting of the first 𝑟 rows of 𝑉𝑡.
4: Normalize the columns of (𝑉

𝑟
)

𝑡.
5: Replace the data matrix𝑊 with (𝑉

𝑟
)

𝑡.
6: Find the angle between the column vectors of𝑊 and represent it as a matrix.
{i.e., arccos (𝑊𝑡𝑊).}

7: Sort the angles and find the closest neighbors of column vector.
8: for all Column vector 𝑥

𝑖
of𝑊 do

9: Find the local subspace for the set consisting of 𝑥
𝑖
and 𝑘 neighbors (see (10)).

{Theoretically, 𝑘 is at least 𝑑 − 1. We can use the least square approximation for the subspace
(see the section Local Subspace Estimation). Let 𝐴

𝑖
denote the matrix whose columns form

an orthonormal bases for the local subspace associated with 𝑥
𝑖
.}

10: end for
11: for 𝑖 = 1 to𝑁 do
12: for𝑗 = 1 to𝑁 do
13: define𝐻 = (𝑑

𝑖𝑗
) = (

󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑗
− 𝐴

𝑡

𝑖
𝑥
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
+

󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑖
− 𝐴

𝑡

𝑗
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩𝑝
) /2

14: end for
15: end for {Build the distance matrix}
16: Sort the entries of the𝑁 ×𝑁matrix𝐻 from smallest to highest values into the vector ℎ and set the threshold 𝜂 to

the value of the 𝑇th entry of the sorted and normalized vector ℎ, where 𝑇 is such that
󵄩
󵄩
󵄩
󵄩

𝜒
[𝑇,𝑁
2
]
− ℎ

󵄩
󵄩
󵄩
󵄩2

is minimized, and where 𝜒
[𝑇,𝑁
2
]
is the characteristic function of the discrete set [𝑇,𝑁2].

17: Construct a similarity matrix Ξ by setting all entries of𝐻 less than threshold 𝜂 to 1 and by setting all
other entries to 0. {Build the binary similarity matrix}

18: Normalize the rows of Ξ using 𝑙
1
-norm.

19: Perform SVD Ξ𝑡 = 𝑈
𝑛
Σ
𝑛
(𝑉
𝑛
)

𝑡.
20: Cluster the columns of Σ

𝑛
(𝑉
𝑛
)

𝑡 using k-means. Σ
𝑛
(𝑉
𝑛
)

𝑡 is the projection on to the span of 𝑈
𝑛
.

Algorithm 3: Subspace segmentation.

the data by one. Moreover, the normalization gives equal
contribution of the data matrix columns to the description
of the subspaces. Note that the normalization can be done by
using 𝑙

𝑝
norms of the columns of (𝑉

𝑟
)

𝑡. This normalization
procedure corresponds to Steps 4 and 5 in Algorithm 3.

Local Subspace Estimation. The data points (i.e., each column
vector of (𝑉

𝑟
)

𝑡) that are close to each other are likely to belong
to the same subspace. For this reason, a local subspace is
estimated for each data point using its closest neighbors.This
can be done by generating a distance matrix (𝑎

𝑖𝑗
) = (||𝑥

𝑖
−

𝑥
𝑗
||
𝑝
) and then sorting each column of the distance matrix to

find the neighbors of each 𝑥
𝑖
, which is the 𝑖th column of (𝑉

𝑟
)

𝑡.
Once the distancematrix between the points is generated,

one can find, for each point 𝑥
𝑖
, a set of 𝑘 + 1 ≥ 𝑑 points

{𝑥
𝑖
, 𝑥
𝑖
1

, ..., 𝑥
𝑖
𝑘

} consisting of 𝑥
𝑖
and its 𝑘 closest neighbors.

Then a 𝑑-dimensional subspace that is nearest (in the least
square sense) to the data {𝑥

𝑖
, 𝑥
𝑖
1

, ..., 𝑥
𝑖
𝑘

} is generated. This is
accomplished using SVD

𝑋 = [𝑥
𝑖
, 𝑥
𝑖
1

, . . . , 𝑥
𝑖
𝑘

] = 𝐴Σ𝐵

𝑡
. (10)

Let𝐴
𝑖
denote thematrix of the first𝑑 columns of𝐴 associated

with 𝑥
𝑖
. Then, the column space 𝐶(𝐴

𝑖
) is the 𝑑-dimensional

subspace nearest to {𝑥
𝑖
, 𝑥
𝑖
1

, . . . , 𝑥
𝑖
𝑘

}. Local subspace estima-
tion corresponds to Steps 6 to 10 in Algorithm 3.

Construction of Binary Similarity Matrix. So far, we have
associated a local subspace 𝑆

𝑖
to each point 𝑥

𝑖
. Ideally, the

points and only those points that belong to the same subspace
as 𝑥
𝑖
should have zero distance from 𝑆

𝑖
. This suggests

computing the distance of each point 𝑥
𝑗
to the local subspace

𝑆
𝑖
and forming a distance matrix𝐻.
The distance matrix𝐻 is generated as𝐻 = (𝑑

𝑖𝑗
) = (||𝑥

𝑗
−

𝐴

𝑡

𝑖
𝑥
𝑗
||
𝑝
+||𝑥
𝑖
−𝐴

𝑡

𝑗
𝑥
𝑖
||
𝑝
)/2. A convenient choice of 𝑝 is 2. Note

that as 𝑑
𝑖𝑗
decreases, the probability of having 𝑥

𝑗
on the same

subspace as 𝑥
𝑖
increases. Moreover, for 𝑝 = 2, ||𝑥

𝑗
−𝐴

𝑡

𝑖
𝑥
𝑗
||
2
is

the Euclidean distance of 𝑥
𝑗
to the subspace associated with

𝑥
𝑖
.
Since we are not in the ideal case, a point 𝑥

𝑗
that belongs

to the same subspace as 𝑥
𝑖
may have nonzero distance to 𝑆

𝑖
.

However, this distance is likely to be small compared to the
distance between 𝑥

𝑗
and 𝑆

𝑘
if 𝑥
𝑗
and 𝑥

𝑘
do not belong to

the same subspace.This suggests that we compute a threshold
that will distinguish between these two cases and transform
the distancematrix into a binarymatrix in which a zero in the
(𝑖, 𝑗) entry means 𝑥

𝑖
and 𝑥

𝑗
are likely to belong to the same

subspace, whereas (𝑖, 𝑗) entry of one means 𝑥
𝑖
and 𝑥

𝑗
are not

likely to belong to the same subspace.
To do this, we convert the distance matrix𝐻 = (𝑑

𝑖𝑗
)
𝑁×𝑁

into a binary similarity matrix Ξ = (𝑠
𝑖𝑗
). This is done by

applying a data-driven thresholding as follows.
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Table 1: Percentage of classification errors for sequences with two motions.

Checker (78) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 6.09% 2.57% 6.52% 4.46% 1.55% 0.83% 1.12% 0.23%
Median 1.03% 0.27% 1.75% 0.00% 0.29% 0.00% 0.00% 0.00%
Traffic (31)
Average 1.41% 5.43% 2.55% 2.23% 1.59% 0.23% 0.02% 1.40%
Median 0.00% 1.48% 0.21% 0.00% 1.17% 0.00% 0.00% 0.00%
Articulated (11)
Average 2.88% 4.10% 7.25% 7.23% 10.70% 1.63% 0.62% 1.77%
Median 0.00% 1.22% 2.64% 0.00% 0.95% 0.00% 0.00% 0.88%
All (120 seq)
Average 4.59% 3.45% 5.56% 4.14% 2.40% 0.75% 0.82% 0.57%
Median 0.38% 0.59% 1.18% 0.00% 0.43% 0.00% 0.00% 0.00%

(1) Create a vector ℎ that contains the sorted entries of
𝐻
𝑁×𝑁

from the smallest to the highest values. Scale ℎ
so that its smallest value is zero and its largest value is
one.

(2) Set the threshold 𝜂 to the value of the 𝑇th entry of
the sorted vector ℎ, where 𝑇 is such that ‖𝜒

[𝑇,𝑁
2
]
−ℎ‖
2

is minimized, and where 𝜒
[𝑇,𝑁
2
]
is the characteristic

function of the discrete set [𝑇,𝑁2]. If the number
of points in each subspace is approximately equal,
then we would expect 𝑁/𝑛 points in each subspace,
and we would expect 𝑁2/𝑛2 small entries (zero
entries ideally). However, this may not be the case
in general. For this reason, we compute the data-
driven threshold 𝜂 that distinguishes the small entries
from the large entries. The data-driven threshold 𝜂 is
chosen according to the method described in [1].

(3) Create a similarity matrix Ξ from 𝐻 such that all
entries of𝐻 less than the threshold 𝜂 are set to 1 and
the others are set to 0.

Segmentation.The last step is to use the similarity matrix Ξ to
segment the data. To do this, we first normalize the rows of Ξ
using 𝑙

1
-norm, that is, ̃Ξ = 𝐷−1Ξ, where𝐷 is a diagonalmatrix

(𝑑
𝑖𝑗
) = ∑

𝑁

𝑗=1
𝑠
𝑖𝑗
. ̃Ξ is related to the random walk Laplacian

𝐿
𝑟
(
̃
Ξ = 𝐼 − 𝐿

𝑟
) [66]. Although other 𝑙

𝑝
normalizations

are possible for 𝑝 ≥ 1, however, because of the geometry
of the 𝑙

1
ball, 𝑙

1
-normalization brings outliers closer to the

cluster clouds (distances of outliers decrease monotonically
as 𝑝 decreases to 1). Since SVD (which will be used next)
is associated with 𝑙

2
minimization, it is sensitive to outliers.

Therefore 𝑙
1
normalization works best when SVD is used.

Observe that the initial data segmentation problem has
now been converted to segmentation of 𝑛 1-dimensional
subspaces from the rows of ̃Ξ. This is because, in the ideal
case, from the construction of ̃Ξ, if 𝑥

𝑖
and 𝑥

𝑗
are in the same

subspace, the 𝑖th and 𝑗th rows of ̃Ξ are equal. Since there are
𝑛 subspaces, then there will be 𝑛 1-dimensional subspaces.

Now, the problem is again a subspace segmentation
problem, but this time the data matrix is ̃Ξ with each row as

a data point. Also, each subspace is 1-dimensional and there
are 𝑛 subspaces.Therefore, we can apply SVD again to obtain

̃
Ξ

𝑡
= 𝑈
𝑛
Σ
𝑛
(𝑉
𝑛
)

𝑡
. (11)

Using Proposition 7, it can be shown that Σ
𝑛
(𝑉
𝑛
)

𝑡 can replace
̃
Ξ

𝑡 and we cluster the columns of Σ
𝑛
(𝑉
𝑛
)

𝑡, which is the
projection of ̃Ξ onto the span of 𝑈

𝑛
. Since the problem is

only segmentation of subspaces of dimension 1, we can use
any traditional segmentation algorithm such as 𝑘-means to
cluster the data points. The segmentation corresponds to
Steps 18 to 20 in Algorithm 3.

4.2. Other Spectral Clustering Methods. Other subspace clus-
tering methods use essentially the same general algorithm
as above, but the main difference is the construction of
the similarity Ξ. For example, Yan and Pollefeys’ method
estimates a subspace 𝑆

𝑖
for each point 𝑤

𝑖
and then uses the

cordal distance between the local subspaces to construct a
similaritymatrixΞ.The algorithmof Elhamifar andVidal [88,
89] uses the sparsity method to compute a similarity matrix
based on sparse representations of the data W. The sparse
representations are found using the standard ℓ

1
minimization

techniques in compressed sampling. We have tested these
algorithms using ℓ

2
minimizations and found that both cases

produce essentially the same results.Thus, it is our conclusion
that it is the spectral clustering performed on the similarity
matrix Ξ that is the main reason for the good performance of
this and other related algorithms.

4.3. Comparison of Motion Segmentation Algorithms. Tables
1, 2, and 3 display some of the experimental results for the
Hopkins 155 Dataset. Seven approaches are compared for the
motion detection algorithms: (1) GPCA [12], (2) RANSAC
[99], (3) local subspace affinity (LSA) [34], (4) MLS [93],
(5) agglomerative lossy compression (ALC) [100], (6) sparse
subspace clustering (SSC) [88], and (7)NLS. An evaluation of
those algorithms is presented in [88] with aminor error in the
tabulated results for articulated three-motion analysis of SSC-
N. SSC-B and SSC-N correspond to Bernoulli and normal
random projections, respectively [88]. Table 1 displays the
misclassification rates for the two motions video sequences.
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Table 2: Percentage of classification errors for sequences with three motions.

Checker (26) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 31.95% 5.80% 25.78% 10.38% 5.20% 4.49% 2.97% 0.87%
Traffic (7)
Average 19.83% 25.07% 12.83% 1.80% 7.75% 0.61% 0.58% 1.86%
Median 19.55% 23.79% 11.45% 0.00% 0.49% 0.00% 0.00% 1.53%
Articulated (2)
Average 16.85% 7.25% 21.38% 2.71% 21.08% 1.60% 1.60% 5.12%
Median 16.85% 7.25% 21.38% 2.71% 21.08% 1.60% 1.60% 5.12%
All (35 seq)
Average 28.66% 9.73% 22.94% 8.23% 6.69% 3.55% 2.45% 1.31%
Median 28.26% 2.33% 22.03% 1.76% 0.67% 0.25% 0.20% 0.45%

Table 3: Percentage of classification errors for all sequences.

All (155 seq) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS
Average 10.34% 4.94% 9.76% 5.03% 3.56% 1.45% 1.24% 0.76%
Median 2.54% 0.90% 3.21% 0.00% 0.50% 0.00% 0.00% 0.20%

Table 2 shows the misclassification rates for the three motion
sequences, and Table 3 presents the misclassification rates
for all of the video sequences. It can be seen that the NLS
algorithm outperforms all of the algorithms.
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