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We present a computationally tractable approach to dynamically measure statistical dependencies in multivariate non-Gaussian
signals. The approach makes use of extensions of independent component analysis to calculate information coupling, as a proxy
measure for mutual information, between multiple signals and can be used to estimate uncertainty associated with the information
coupling measure in a straightforward way. We empirically validate relative accuracy of the information coupling measure using a
set of synthetic data examples and showcase practical utility of using the measure when analysing multivariate financial time series.

1. Introduction

The task of accurately inferring the statistical dependency
structure (association) in multivariate systems has been an
area of active research for many years, with a wide range of
practical applications [1]. Many of these applications require
real-time sequential analysis of dependencies in multivariate
data streams with dynamically changing properties. However,
most existing measures of dependence have some serious
limitations; in terms of the type of data sets they are suitable
for or in their computational complexities. If the data being
analysed is generated using a known stable process, with
known marginal and multivariate distributions, the degree of
dependence can be estimated relatively easily. However, most
real-world data sets have dynamically changing properties to
which a single distribution cannot be assigned. Multivariate
data generated in global financial markets is an example
of such complex data sets. Financial data exhibits rapidly
changing dynamics and is non-Gaussian in nature; this is
especially true for financial data recorded at high frequencies
[2]. In fact, as the scale over which financial returns are calcu-
lated decreases, their distribution becomes increasingly non-
Gaussian, a feature referred to as aggregational Gaussianity.
The recent explosive growth in availability and use of financial

data sampled at high frequencies therefore requires the use
of computationally efficient algorithms which are suitable for
dynamically analysing dependencies in non-Gaussian data
streams.

The most commonly used measure of statistical depen-
dence is linear correlation. However, practical use of the lin-
ear correlation measure has three main limitations; that is, it
cannot accurately model dependencies between signals with
non-Gaussian distributions [3]; it is restricted to measuring
linear statistical dependencies and is very sensitive to outliers
[4]. Rank correlation is another frequently used measure of
association. However, it is only valid for monotonic functions
and is not suitable for large data sets, as assigning ranks to a
large number of observations is computationally demanding.
Financial returns often have a large fraction of zero values,
which result in tied ranks [5]. Rank correlation measures
cannot accurately deal with the presence of tied ranks and
hence the results obtained can be misleading [6]. Another
widely used method for multivariate dependence analysis
in the financial sector is the use of copulas [7]. However,
copula-based methods also suffer from major limitations
in practice; for example, computation of copula functions
involves calculating multiple moments as well as integra-
tion of joint distributions, which require use of numerical



methods and hence become computationally complex [8].
Copula-based methods suffer from other major limitations
as well, namely, the difficulties in accurate estimation of the
copula functions, the empirical choice of the type of copulas,
and problems in the design and use of time-dependent
copulas [9]. Mutual information, the canonical measure of
statistical dependence, is also used in practice. However,
accurate computation of mutual information using finite
data sets can be computationally complex (as we discuss
later). In this paper, we present a computationally efficient
independent component analysis (ICA) based approach to
dynamically measure information coupling in multivariate
non-Gaussian data streams as a proxy measure for mutual
information.

The paper is organised as follows. We first discuss the
need for developing an ICA-based information coupling
measure and present the theoretical framework underly-
ing the development of our approach. We then present a
brief introduction to the principles of ICA and discuss our
method of choice for accurately and efficiently inferring
the ICA unmixing matrix in a dynamic environment. We
then proceed to present the ICA-based information coupling
metric and describe its properties. Finally, we present a set
of synthetic and financial data examples which make use of
the information coupling measure to estimate dependencies
in non-Gaussian signals.

2. Measuring Dependencies Using ICA:
A Conceptual Overview

Mutual information is the canonical measure of statistical
dependence in multivariate systems [10]. It is a quantitative
measurement of how much information the observation
of one variable gives us regarding another variable. Whilst
the computation of mutual information is conceptually
straightforward when the full probability density functions
(pdf) of the variables under consideration are available, it
is often difficult to accurately estimate mutual information
directly using finite data sets. This is especially true in
high-dimensional spaces, in which computation of mutual
information requires the estimation of multivariate joint
distributions, a process which is unreliable (being exquisitely
sensitive to the joint pdf over the variables of interest) as
well as computationally expensive [11]. Existing approaches to
compute mutual information include methods that are based
on ranking of variables, kernel density estimation, k-nearest
neighbours, and the Edgeworth approximation of differential
entropy [12, 13]. However, for most finite data sets, none of
these techniques, all of which impose a trade-oft between
computational complexity and accuracy, outperforms the
other methods and all these approaches can be extremely
sensitive to the presence of noise [12]. The accuracy of these
approaches is also highly sensitive to the choice of the model
parameters, such as the number of kernels or neighbours.
Therefore, in most practical cases, the direct use of mutual
information is not feasible. However, as we discuss below, it
is possible to make use of information encoded in the ICA
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unmixing matrix to calculate information coupling as a proxy
measure for mutual information.

Let us first take a look at the conceptual basis on which
we can use ICA as a tool for measuring statistical dependen-
cies. According to its classical definition, ICA estimates an
unmixing matrix such that the mutual information between
the independent source signals is minimised [14]. Hence, we
can consider the unmixing matrix to contain information
about the degree of mutual information between the observed
signals. Although the direct computation of mutual informa-
tion can be very expensive, alternative efficient approaches
to ICA, which do not involve direct computation of mutual
information, exist. Hence, it is possible to indirectly obtain
an estimate for mutual information by using the ICA-based
information coupling measure as a proxy. Now let us consider
some properties of financial returns which make them well-
suited to be analysed using ICA (as this paper is focused
on financial applications, therefore we consider the case of
measuring dependencies in financial data; however, similar
ideas can be applied to most real-world systems which give
rise to non-Gaussian data). Financial markets are influenced
by many independent factors, all of which have some finite
effect on any specific financial time series. These factors
can include, among others, news releases, price trends,
macroeconomic indicators, and order flows. We hypothesise
that the observed multivariate financial data may hence be
generated as a result of linear combination of some hidden
(latent) variables [15, 16]. This process can be quantitatively
described by using a linear generative model, such as prin-
cipal component analysis (PCA), factor analysis (FA), or
ICA. As financial returns have non-Gaussian distributions
with heavy tails, therefore PCA and FA are not suitable for
modelling multivariate financial data, as both these second-
order approaches are based on the assumption of Gaussianity
[17]. ICA, in contrast, takes into account non-Gaussian
nature of the data being analysed by making use of higher-
order statistics. ICA has proven applicability for multivariate
financial data analysis; some interesting applications are
presented in [15, 16, 18]. These, and other similar studies,
make use of ICA primarily to extract the underlying latent
source signals. However, all relevant information about the
source mixing process is contained in the ICA unmixing
matrix, which hence encodes dependencies. Therefore, in our
analysis we only make use of the ICA unmixing matrix (with-
out extracting the independent components) to measure
information coupling. The ICA-based information coupling
model we present in this paper can be used to directly
measure statistical dependencies in high-dimensional spaces.
This makes it particularly attractive for a range of practical
applications in which relying solely on pair-wise analysis of
dependencies is not feasible (there is surprisingly little work
done towards addressing the important issue of estimating
the dependency structure in high-dimensional multivariate
systems, although there has been interest in this field for
a long time [19]. High-dimensional analysis of information
coupling has various important applications in the financial
sector, including active portfolio management, multivariate
financial risk analysis, statistical arbitrage, and pricing and
hedging of various instruments [9]).
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3. Independent Components, Unmixing and
Non-Gaussianity

Mixing two or more unique signals, to a set of mixed
observations, results in an increase in the dependency of the
pdfs of the mixed signals. The marginal pdfs of the observed
mixed signals become more Gaussian due to the central limit
theorem [20]. The mixing process also results in a reduction
in the independence of the mixed signal distribution and
hence increase in mutual information associated with it.
Moreover, there is a rise in the stationarity of the mixed
signals, which have flatter spectra as compared to the original
sources [21]. Consider a set of N observed signals x(¢f) =
[x, (), %,(t), ..., x(t)]" at the time instant ¢, which are a
mixture of M source signals s(t) = [s,(f), s,(t),... ssu®O17,
mixed linearly using a mixing matrix A, with observation
noise n(t), as per

x(t) =As(t) +n(t). 1)

Independent component analysis (ICA) attempts to find an
unmixing matrix W, such that the M recovered source signals
b(t) = [b;(t), by(t), ..., by ()] " are given by

b(t) = W(x () -n(t)). )

For the case where observation noise n(t) is assumed to be
normally distributed with a mean of zero, the least squares
expected value of the recovered source signals is given by:

b(1) = Wx (1), (3)
where W is the pseudo-inverse of A; that is,
W=A"=(ATA) A" (4)

In the case of square mixing, W = A™".

Most ICA approaches make implicit or explicit assump-
tions regarding the parametric model of the pdfs of the
independent sources [21]; for example, Gaussian mixture
distributions are used as source models in [22, 23], while [24]
makes use of a flexible source density model given by the
generalised exponential distribution. In our analysis, we use
a reciprocal cosh source model as a canonical heavy-tailed
distribution; namely [21],

p(s;)

1
~ Z,cosh (s;)’ ®)

where s; is the ith source and Z is a normalising constant.
This analytical fixed source model has no adjustable parame-
ters; therefore, it has considerable computational advantages
over alternative source models. Also, as this source model
is heavier in the tails, it is able to accurately model heavy-
tailed unimodal non-Gaussian distributions, such as financial
returns.

3.1. Inference. For our analysis, we make use of the icadec
algorithm [21, 24] to infer the unmixing matrix. This algo-
rithm constrains the unmixing matrix to the manifold of

decorrelating matrices, thus offering rapid computation. The
algorithm also gives accurate results compared to other
related ICA approaches [24] and allows us to obtain a con-
fidence measure for the unmixing matrix. Here we present a
brief overview of this algorithm; an in-depth description is
presented in [24].

The independent source signals obtained using ICA, b(t),
must be at least linearly decorrelated for them to be classed
as independent. The icadec algorithm makes use of this
property of the independent components to efficiently infer
the unmixing matrix. For a set of observed signals, X, where
X = [x(t)]ij; the set of recovered independent components,
B = [b(t)]le, is given by B = WZX. The independent
components are linearly decorrelated if

BB' = WXX'W' = D%, (6)

where D is a diagonal matrix of scaling factors. The singular
value decomposition of the set of observed signals is given by

X=UzV', (7)

where U and V are orthogonal matrices with the columns of
U being the principal components of X, and X is a diagonal
matrix of the singular values of X. It can be shown that the
decorrelating matrix, W, can then be written as [24]

W =DQx'U", (8)

where Q is a real orthogonal matrix. To obtain an estimate for
the ICA unmixing matrix, we need to optimise a given con-
trast function (we use log-likelihood of the data, as described
later). There are a variety of optimisation approaches which
can be used; our approach of choice is the Broyden-Fletcher-
Golfarb-Shanno (BFGS) quasi-Newton method, which gives
the best estimate of the minimum of the negative log-
likelihood in a computationally efficient manner and also
provides us with an estimate for the Hessian matrix. How-
ever, parameterising the optimisation problem directly by
the elements of Q makes it a constrained minimisation
problem for which BFGS is not applicable. Therefore, to
convert it into an unconstrained minimisation problem, we
constrain Q to be orthonormal by parameterising its elements
as the matrix exponential of a skew-symmetric matrix J
(nonzero elements of this matrix are known as the Cayley
coordinates), whose above diagonal elements parameterise
Q [21] (for M sources and N observed signals, the ICA
unmixing matrix may be optimised in the (1/2)M(M + 1)
dimensional space of decorrelating matrices rather than in
the full MN dimensional space, as (1/2)M(M - 1) and M
parameters are required to specify Q and D respectively. This
feature offers considerable computational benefits (especially
in high-dimensional spaces) and the resulting matrix hence
obtained is guaranteed to be decorrelating [24]):

Q=exp(J). 9)

Using this parameterisation makes it possible to apply BEGS
to any contrast function; the contrast function used as part of



the icadec algorithm is an expression for the log-likelihood of
the data, as described below.

Using (1) and assuming that the observation noise (n)
is normally distributed with a mean of zero and having an
isotropic covariance matrix with precision f3, the distribution
of the observations (as a preprocessing step, we normalise
each observed signal to have a mean of zero and unit
variance) conditioned on A and s (where we drop the time
index t for ease of presentation) is given by

p(x|As) =4 (xAsp7T), (10)

where As is the mean of the normal distribution and ' is
its covariance. The likelihood of an observation occurring is
given by

p(xIA)=Jp(x|A,s)p(s)ds. 1)

Assuming that the distribution over sources has a single
dominant peak, in this case given by the maximum likelihood
source estimates § = (ATA)_IATx, the integral in (11) can
be analysed by using a simplified (computationally efficient)
variant of Laplace’s method, as shown in [21, 25]:

p(xlA)= jP(XlA,S)p(s)ds

(12)
~ p(x| A,3) p () )™ det (G) /2,
where G is the Hessian matrix:
*logp (x| A,s)
G - —l—
[ 0s;0s; 3)

Taking log of the expanded form of (10) gives

logp(x|A,s) = glog<£> - g(x—As)T (x— As) (14)

which, via (13), results in G = BA" A. The log-likelihood, ¢ =
log p(x | A), is therefore

¢ = wlog<£) - [;(X—A§)T (x — A3)

(15)
+logp(s) - %log det (ATA) .

By using (8), we obtain A = UZQ'D™!. Hence, the log-
likelihood becomes [21]

_N-M
2

¢

log (%) +log p (8) + log det (E_ID) , (16)

where e is the average reconstruction error. Noting that we
use a reciprocal cosh source model (as given by (5)), it can
be shown that taking the derivative of this log-likelihood
expression with respect to D and J (which parameterises Q),
and by following the resulting likelihood gradient using a
BFGS optimiser, makes it possible to efficiently compute an
optimum value for the ICA unmixing matrix; details of this
procedure are presented in [24].
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3.2. Dynamic Mixing. 'The standard (offline) ICA model uses
all available data samples at times t = 1,2,...,T of the
observed signals, x(t), to estimate a single static unmixing
matrix, W. The unmixing matrix obtained provides a good
estimate of the mixing process for the complete time series
and is well suited for offline data analysis. However, many
time series, such as financial data streams, are highly dynamic
in nature with rapidly changing properties and therefore
require a source separation method that can be used in a
sequential manner. This issue is addressed here by using
a sliding-window ICA model [26]. This model makes use
of a sliding-window approach to sequentially update the
current unmixing matrix using information contained in the
previous window and can easily handle nonstationary data.
The unmixing matrix for the current window, W(t), is used
as a prior for computing the unmixing matrix for the next
window, W(t + 1). This results in significant computational
efficiency as fewer iterations are required to obtain an
optimum value for W(t + 1). The algorithm also results in
an improvement in the source separation results obtained
when the mixing process is drifting and addresses the ICA
permutation and sign ambiguity issues [21], by maintaining a
fixed (but of course arbitrary) ordering of recovered sources
through time.

4. Information Coupling

We now proceed to derive the ICA-based information cou-
pling metric. Later in this section we discuss the practical
advantages this metric offers when used to analyse multivari-
ate financial time series.

4.1. Coupling Metric. Let W be any arbitrary square ICA
unmixing matrix (for the purpose of brevity and clarity, we
only consider the case of square mixing while deriving the
metric here. However, the metric derived in this section is
valid for nonsquare mixing as well, and the corresponding
derivation can be undertaken using a similar approach as
presented here but converting the nonsquare ICA unmixing
matrices in each instance into square matrices by padding
them with zeros):

W e RV, 17)

Since multiplication of W by a diagonal matrix does not affect
the mutual information of the recovered sources; therefore,
we row normalise the unmixing matrix in order to address
the ICA scale indeterminacy problem (most ICA algorithms,
including icadec, suffer from the scale indeterminacy prob-
lem; that is, the variances of the independent components
cannot be determined; this is because both the unmixing
matrix and the source signals are unknown and any scalar
multiplication on either will be lost in the mixing process).
Row normalisation implies that the elements w;; of the
unmixing matrix W are constrained, such that each row of
the matrix is of unit length; that is,

N

Ywpi=1 (18)

=1
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for all rows i. For a set of observed signals to be completely
decoupled, their latent independent components must be the
same as the observed signals; therefore, the row-normalised
unmixing matrix for decoupled signals (W,;) must be a
permutation of the identity matrix (I):

W, = Pl e R™, 19)

where P is a permutation matrix. For the case where the
observed signals are completely coupled, all the latent inde-
pendent components must be the same; therefore, the row-
normalised unmixing matrix for completely coupled signals
(W,) is given by

1 NxN
W, \/NK eR , (20)
where K is the unit matrix (a matrix of ones).

To calculate coupling, we need to consider the distance
between any arbitrary unmixing matrix (W) and the zero
coupling matrix (W,). The distance measure we use is the
generalised 2-norm, also called the spectral norm, of the
difference between the two matrices [27], although we can use
some other norms as well to get similar results. The spectral
norm of a matrix corresponds to its largest singular value
and is the matrix equivalent of the vector Euclidean norm.
Hence, the distance, d(W, W), between the two matrices can
be written as

d(W, W) = [W-W,|

, 2)

where | - ||, is the spectral norm of the matrix. As W, is a
permutation of the identity matrix, therefore,

d (W, W) = [W - PI|,. (22)

As the spectral norm of a matrix is independent of its
permutations, therefore, we may define another permutation
matrix (P) such that

d (W, W,) = |PW -1 . (23)
For this equation, the following equality holds:
d(W, W) = [PW], - 1. (24)

Again, noting that [PW|, = [W]|,, we have
d(W,W,) = [W], - 1. (25)

We normalise this measure with respect to the range over
which the distance measure can vary, that is, the distance
between matrices representing completely coupled (W) and
decoupled (W) signals. From (20) we have that W, =
(1/V/N)K; therefore,

d (W, W) = ”W1 - W0||2

K - PI (26)

1
| =
Using the same analysis as presented previously, this equation
can be simplified to

2

1

d(WI’WO) = VN

Kl - 1. (27)

For a N-dimensional square unit matrix, the spectral norm
is given by ||[K|, = N. Therefore, for a row-normalised unit
matrix, the spectral norm is (1/VN)||K|l, = VN. Hence, if W
is row-normalised, (27) can be written as

d(W,,W,) = VN - 1. (28)

The normalised information coupling metric (1) is then
defined as

d (W, W,)
= — 29
1 AW W,) 29

Substituting (25) and (28) into (29), the normalised informa-
tion coupling between N observed signals is given by

_Iwl, -1
VN -1

We can consider the bounds of # as described below.
Suppose M is an arbitrary real matrix. We can look upon the
spectral norm of this matrix (M|, = [|[M — 0],) as a measure
of departure (distance) of M from a null matrix (0) [28]. The
bounds on this norm are given by

(30)

0 < M|, < oco. (31)

If M is a row-normalised ICA unmixing matrix (W), then
(as discussed earlier) it lies between W,, and W,. Hence, the
bounds on W are

[Woll, < IWI, < [W,. (32)

Using (19) and (20), we can write

1
IPI], < [WIl, < | ——=K 33
2 2 \/N 5 ( )
which can be simplified to
1< W], < VN. (34)
Rearranging terms in this inequality gives
-1
o< Whh-1 (35)

S ML S

which gives us the same coupling metric as in (30) and shows
that the metric is normalised; that is, 0 < # < 1. For real-
valued W, [[W||, can be written as

IWI; = \Amax (WTW), (36)

where A, (W'W) is the maximum eigenvalue of W' W.
The unmixing matrix obtained using most ICA algorithms,
including icadec, suffers from row permutation and sign
ambiguity problems; that is, the rows are arranged in a
random order and the sign of elements in each row is
unknown [21, 24]. We note that as [|W]||, is independent of
the sign and permutations of the rows of W, therefore our
measure of information coupling straightaway addresses the



problems of ICA sign and permutation ambiguities. Also, as
the metric’s value is independent of the row permutations of
W, therefore it provides symmetric results. The information
coupling metric is valid for all dimensions of the unmixing
matrix, W. This implies that information coupling can be
easily measured in high-dimensional spaces.

It is possible to obtain a measure of uncertainty in our
estimation of the information coupling measure. We make
use of the BFGS quasi-Newton optimisation approach over
the most probable skew-symmetric matrix, J, of (9), from
which estimates for the unmixing matrix, W, can be obtained,
and thence the coupling measure # calculated. We also
estimate the Hessian (inverse covariance) matrix, H, for J, as
part of this process. Hence, it is possible to draw samples, J',
say from the distribution over J, as a multivariate normal:

)~ (H). (37)

These samples can be readily transformed to samples in #
using (9), (8), and (30), respectively. Confidence bounds (and
here we use the 95% bounds) may then be easily obtained
from the set of samples for # (in our analysis we use 100
samples).

4.2. Computational Complexity. The information coupling
algorithm achieves computational efficiency by making use of
the sliding-window based decorrelating manifold approach
to ICA. Making use of the reciprocal cosh based ICA source
model also results in significant computational advantages.
We now take a look at the comparative computational
complexity of the information coupling measure and three
frequently used measures of statistical dependence, that is,
linear correlation, rank correlation, and mutual information.
For bivariate data (n, samples long), for which these four
measures are directly comparable, linear correlation and
rank correlation have time complexities of order O(n,) and
O(n,logn,), respectively [29], while mutual information and
information coupling scale as O(nf) and O(ny), respectively
(there have been various estimation algorithms proposed for
efficient computation of mutual information; however, they
all result in increased estimation errors and require care-
ful selection of various user-defined parameters [30]) [31].
Hence, even though the time complexity of the information
coupling measure is of the same order as linear correlation, it
can still accurately capture statistical dependencies in non-
Gaussian data streams and is a computationally efficient
proxy for mutual information.

For N-dimensional multivariate data, direct computation
of mutual information has time complexity of order O(nf’ )
compared to O(n,N?) for the information coupling measure.
In high-dimensions, even an approximation for mutual
information can be computationally very costly. For exam-
ple, using a Parzen-window density estimator, the mutual
information computational complexity can be reduced to
O(n,ny), where n, is the number of bins used for estimation
[32], which will incur a very high computational cost even
for relatively small values of N, n;,, and n,. As a simple
example, Table 1 shows a comparison of computation time
(in seconds) taken by mutual information and information
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TaBLE 1: Example showing comparison of average computation time
(in seconds) of mutual information and information coupling, when
these measures are used to analyse bivariate data sets containing
different number of samples (n,). The approach used to estimate
mutual information is based on a Parzen window based algorithm,
as described in [45]. The computational cost of this algorithm is
dependent on the window-size (h). The values of h used for the
simulations are h = 20 for n, = 10%, and & = 100 for all other
simulations. Results are obtained using a 2.66 GHz processor as an
average of 100 simulations.

Computation time (sec) n, = 10> n, =10° n =10* n =10
0.0214 2.8289 170101  119.5088
0.0073 0.0213 0.0561 0.5543

Mutual information
Information coupling

coupling measures for analysing bivariate data sets of varying
lengths. As expected, mutual information estimation using
the Parzen window based approach (which is considered
to be a relatively efficient approach to compute mutual
information) becomes computationally very demanding with
an increase in the number of samples of the bivariate
data set. In contrast, the information coupling measure is
computationally efficient, even when used to analyse very
large high-dimensional multivariate data sets.

4.3. Capturing Market Dynamics. To dynamically analyse
information coupling in multivariate financial data streams,
we need to make use of windowing techniques. Financial
markets give rise to well-defined events, such as orders, trades
and quote revisions. These events are irregularly spaced in
clock-time; that is, they are asynchronous. Statistical models
in clock-time make use of data aggregated over fixed intervals
of time [33]. The time at which these events are indexed
is called the event-time. Hence, for dynamic modelling, in
event-time the number of data points can be regarded as
fixed while time varies, while in clock-time the time period
is considered to be fixed with variable number of data points.
Although we may need adaptive windows in clock-time, we
can use sliding-windows of fixed length in event-time. Using
fixed length sliding-windows in event-time can be useful
for obtaining consistent results when developing and testing
different statistical models. Also, statistical models deployed
for online analysis of financial data operate best in event-
time as they often need to make decisions as soon as some
new market information (such as quote update etc.) becomes
available. Consider an online trading model making use of
an adaptive window in event-time. At specific times of the
day, for example, at times of major news announcements,
trading volume can significantly increase. Hence, more data
will be available to the algorithm and thus results obtained
can be misleading [34]. Using a sliding-window of fixed
length in event-time can overcome this problem. The length
of the sliding-window needs to be selected appropriately. The
financial application for which the model is being used is one
of the factors which drives the choice of window length. As a
general rule, for trading models a window of approximately
the same size as the average time period between placing
trades (inverse of trading frequency) is often used. This makes
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it possible to accurately capture the rapidly evolving dynamics
of the markets over the corresponding period, without being
too long so as to only capture major trends or too short to
capture noise in the data.

4.4. Discussion. The information coupling model offers us
with multiple advantages when used to analyse multivariate
financial data. Here we summarise some of the main prop-
erties the model, while the empirical results presented in the
next section showcase some of its practical benefits.

(i) The information coupling measure, a proxy for
mutual information, is able to accurately pick up sta-
tistical dependencies in data sets with non-Gaussian
distributions (such as financial returns).

(ii) The information coupling algorithm is computation-
ally efficient, which makes it particularly suitable for
use in an online dynamic environment. This makes
the algorithm especially attractive when dealing with
data sampled at high frequencies. This is because with
the ever-increasing use of high-frequency data, over-
coming sources of latency is of utmost importance in
a variety of applications in modern financial markets.

(iii) It gives confidence levels on the information coupling
measure. This allows us to estimate the uncertainty
associated with the measurements.

(iv) The metric provides normalised results; that is, infor-
mation coupling ranges from 0 for decoupled systems
to 1 for completely coupled systems. This makes it
easier to analyse results obtained using the metric and
to compare its performance with other similar mea-
sures of association. The metric also gives symmetric
results.

(v) The metric is valid for any number of signals in
high-dimensional spaces; that is, it consistently gives
accurate results irrespective of the number of time
series between which information coupling is being
computed. This makes it suitable for a range of
financial applications.

(vi) It is not data intensive; that is, it gives relatively
accurate results even when a small sample size is used.
This allows the metric to model the complex and
rapidly changing dynamics of financial markets.

(vii) It does not depend on user-defined parameters which
can restrict its practical utility, as the evolving market
conditions may require the parameters to be con-
stantly updated, which may not be practical.

5. Results

We now present a set of synthetic and financial data examples
showing the relative accuracy and practical utility of the
information coupling measure. The following notations are
used for different measures of statistical dependence in this

paper: ICA-based information coupling (#), linear correla-
tion (p), rank correlation (py), and normalised mutual infor-
mation (I;). Normalisation of mutual information values (I)
is achieved using the following transformation [35]:

Iy = 1 - exp (=2I). (38)

The financial data examples we present in this paper
primarily make use of spot foreign exchange (FX) data. Spot
price or spot rate is the price which is actually quoted for
a currency transaction to take place. Return is the profit
realised when a currency is traded. It is common practice to
use the normalised log-returns of financial data in statistical
analysis, instead of the raw data itself [36]. Using log-returns
makes it possible to convert exponential problems into
linear ones, thus significantly simplifying relevant analysis.
A normalised log-returns data set, with a mean of zero and
unit variance, can generally be regarded as a locally stationary
process [37]. Therefore, many signal processing techniques
meant solely for stationary processes can be successfully
applied to the normalised log-returns time series in an
adaptive environment. Denoting the mid-price, at time t, of a
financial time series by P,, the log-return value is given by

(5t 3
rt—nZ- (39)

The normalisation of log-returns is achieved by converting
the data to a form such that it has a mean of zero and unit
variance. This is easily achieved by removing the mean and
dividing by the standard deviation of the data.

5.1. Synthetic Data. There is no single distribution which
fits financial returns, especially those sampled at higher fre-
quencies which tend to be highly non-Gaussian [2], although
there have been attempts to model returns using a variety of
distributions [38]. In this paper, we aim to capture the heavy-
tailed, skewed, properties of financial returns using a Pearson
type IV distribution [39, 40], which can be used to represent
distributions with varying degrees of skewness and kurtosis
and thus are useful for representing distributions of financial
returns [41, 42]. The first four moments of the distribution
can be uniquely determined by setting four parameters which
characterise the distribution [43]. Until recently, due to its
mathematical and computational complexity, this distribu-
tion has not been widely used in financial literature, although
this is rapidly changing with advances in computational
power and proposal of new, improved analytical methods
(39, 42, 44].

To test accuracy of various measures of dependence, we
need to generate coupled non-Gaussian synthetic data with
known, predefined, correlation values. There is no straight-
forward way to simulate correlated random variables when
their joint distribution is not known [46], as is the case with
multivariate financial returns. One possible method that can
be used to induce any desired predefined correlation between
independent, randomly distributed variables, irrespective of
their distributions, is commonly known as the Iman-Conover
method, as presented in [47]. This method is based on
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TABLE 2: Table showing accuracy of four measures of dependence, that is, information coupling (#), linear correlation (p), rank correlation
(pgr)> and normalised mutual information (I), when used to estimate the level of dependence in a coupled system with varying levels of true
correlation (pr¢). prc is induced in an independent bivariate, randomly distributed, system using the Iman-Conover method as described in
the text. The dependence estimates, together with their standard deviation values, shown in the table are obtained using 1000 independent
simulations using 1000 data points long data sets for each simulation. The last row of the table gives values for the mean absolute error (MAE).

Prc 1 P Pr In lprc =nl lpre =Pl lpre =pel lprc = Inl
0 0.0046 +0.0026  0.0038 +0.0022  0.0147 +0.0115  0.1851 +0.0401  0.0046 0.0038 0.0147 0.1851
01  0.1079+0.0073  0.0917+0.0058  0.0942+0.0184  0.1687 +0.0412  0.0079 0.0083 0.0058 0.0687
02  02145+0.0102  0.1862+0.0093  0.1899+0.0177  0.1131+0.0464  0.0145 0.0138 0.0111 0.0869
03  03176+0.0138 0.2812+0.0130 0.2863+0.0167  0.1644 +0.0538  0.0176 0.0188 0.0137 01356
04  04166+0.0210 0.3764+0.0165 0.3835+0.0153 02787 £0.0500  0.0166 0.0236 0.0165 0.1213
05  0.5135+00196 04720+£0.0197 04818 +0.0136 0.3819+0.0475  0.0135 0.0280 0.0182 0.1181
0.6  0.6070+0.0347 0.5688+0.0226 0.5815+0.0117  0.4788+0.0458  0.0070 0.0312 0.0185 01212
0.7  07011+0.0232 0.6670£0.0242  0.6830 £0.0093  0.5728 +0.0483  0.0011 0.0330 0.0170 01272
0.8  0.7936+0.0239  0.7676 +0.0249  0.7864+0.0066  0.6652+0.0490  0.0064 0.0324 0.0136 01348
09  0.8864+0.0252 0.8713+0.0249  0.8919+0.0034  0.7595+0.0501  0.0136 0.0287 0.0081 0.1405
1.0 1.0000+0.0000  1.0000 +0.0000  1.0000 +0.0000  0.9601 +0.0185  0.0000 0.0000 0.0000 0.0399
MAE 0.0093 0.0201 0.0125 0.1163

inducing a known dependency structure in samples taken
from the input independent marginal distributions using
reordering techniques. The multivariate coupled structure
obtained as the output can thus be used as the input data in
various models of dependency analysis to test their relative
accuracies.

We set parameters of the Pearson type IV distribution
such that the coupled synthetic data we obtain using the
Iman-Conover method has similar properties to financial
returns. But first we need to consider some properties of
financial returns which we want to mimic. Figures 1(a) and
1(b) show the distributions of two higher-order moments,
that is, skewness (y) and kurtosis (x), for FX spot data sets
sampled at three different frequencies. The plots are obtained
using a sliding-window of length 50 data points, as an average
of all G10 (Group of Ten) currency pairs, covering a period of
8 hours in the case of 0.25 second and 0.5 second sampled
data and 2 years in case of 0.5 hour sampled data. The non-
Gaussian (heavy-tailed, skewed) nature of the data is clearly
visible. It is interesting to note that the kurtosis value almost
never goes below three for any of the data sets, signifying
the temporal persistence of non-Gaussianity. We now make
use of the Iman-Conover method to induce varying levels of
correlation between 1000 samples taken from independent,
randomly distributed, Pearson type IV distributions. A 1000
sample data set makes it easier to accurately induce prede-
fined correlations in the system as well as makes it possible
to generate data with relatively accurate average kurtosis and
skewness values, hence, allowing us to accurately capture the
higher-order moments of financial returns. As an example,
Figures 1(c) and 1(d) show distributions of the kurtosis and
skewness of two variables for 1000 independent simulations.
Note the similarity of these plots with the average of the
corresponding distributions of higher-order moments for
financial data, as presented in Figures 1(a) and 1(b). This
shows the effectiveness of using synthetic data sampled from

a Pearson type IV distribution for capturing higher-order
moments of financial returns.

Four different approaches are now used to estimate the
level of dependence between the output coupled data. The
process is repeated 1000 times for each level of true correlation
(prc)- Table 2 presents the results obtained. The results show
the accuracy of the information coupling measure when
used to analyse non-Gaussian data. For this synthetic data
example, on average, the information coupling measure was
53.7% more accurate than the linear correlation measure and
25.6% more accurate with respect to the rank correlation
measure. The normalised mutual information provided the
least accurate results.

We now extend this example by incorporating data
dynamics. The same data generation process, as described
above, is now used to construct a 32000 samples long bivariate
data set in which the induced true correlation changes every
8000 time steps; that is, pyc = 0.2 whent = 1:8000, ppc = 0.4
when ¢t = 8001:16000, p = 0.6 when t = 16001 : 24000,
and prc = 0.8 when t = 24001:32000. A 1000 data
points wide sliding-window is used to dynamically measure
dependencies in the data set. The resulting temporal informa-
tion coupling plot, together with the 5th and 95th percentile
confidence intervals, is presented in Figure 2(a). The four
different coupling regions are clearly visible, together with
the step changes in coupling after every 8000 time steps,
showing ability of the algorithm to detect abrupt changes in
coupling. The normalised empirical probability distributions
over 7 for the four coupling regions are shown in Figure 2(b).
Also plotted in the same figure are the normalised empirical
pdfs for linear correlation (p) and rank correlation (pg).
The mutual information pdf is omitted for clarity as it gives
relatively less accurate results, as presented in Table 2. It
is interesting to see how the peaks of the # distribution
correspond very closely to pr¢ values, showing ability of the
information coupling model to accurately capture statistical
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FIGURE 1: (a, b) Plots showing the normalised pdfs of (a) kurtosis (x) and (b) skewness (y), obtained using a sliding-window of length 50 data
points, as an average of all G10 currency pairs, covering a period of 8 hours in case of 0.25 second and 0.5 second sampled data and 2 years
in case of 0.5 hour sampled data. The plots clearly show the heavy-tailed, skewed, nature of FX returns at all three sampling frequencies. (c,
d) An example of the normalised pdf plots showing the average kurtosis and skewness values, respectively, for synthetic data generated using
Pearson type IV distributions. The data has properties similar to the average of the distributions presented in (a) and (b). The vertical lines
indicate the kurtosis (x = 3) and skewness (y = 0) values for a Gaussian distribution.

dependencies in a dynamic environment. The least accurate
measure in this example is the linear correlation.

5.2. Financial Data. We first present a simple application
of the information coupling algorithm to a section of 0.5
second sampled FX spot log-returns data set (in this paper,
all currencies are referred by their standardised international
three-letter codes, as described by the ISO 4217 standard. For
the currencies mentioned in this paper, the three-letter codes
are USD (U.S. dollar), EUR (Euro), JPY (Japanese yen), GBP

(British pound), CHF (Swiss franc), and AUD (Australian
dollar)). Figure 3 shows the variation of information coupling
and linear correlation with time for EURUSD and GBPUSD.
The results are obtained using a 5-minute wide sliding-
window. We note that the two measures of dependence fre-
quently give different results, which reflects on the inability of
linear correlation to capture dependencies in non-Gaussian
data streams. We also note that dependencies in FX log-
returns exhibit rapidly changing dynamics, often charac-
terised by regions of quasi-stability punctuated by abrupt
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FIGURE 2: (a) Temporal variation of information coupling, #(t), plotted as a function of time. Step changes in coupling are visible after
every 8000 time steps; that is, prc = 0.2 when t = 1:8000, p;c = 0.4 when ¢t = 8001:16000, p;c = 0.6 when t = 16001 :24000, and
prc = 0.8 when t = 24001 :32000. Also plotted are the median, [#(£)],,.4;.n» and the 5% and 95% confidence interval contours, [17(t)]95%. (b)
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Normalised empirical pdf plots for information coupling (#), linear correlation (p), and rank correlation (p). The vertical lines represent the
true correlation (pp) values. The relative accuracy of the information coupling measure is evident from these results.
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FIGURE 3: Information coupling (#,) and linear correlation (p,)
plotted as a function of time for a section of 0.5 second sampled
EURUSD and GBPUSD log-returns data set. A 5-minute wide
sliding-window is used to obtain the results.

changes. In [48] we show that these regions of persistence
in statistical dependence may be captured using a hidden
Markov ICA model, which is a hidden Markov model with
an ICA observation model. The information thus obtained
can be useful for a range of financial applications, such as
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Date
—— AUDUSD
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FIGURE 4: Daily closing mid-prices (P,) of AUDUSD and USDJPY.
The two plots are adjusted for ease of comparison. The vertical line
corresponds to the September 2008 financial meltdown.

finding regions of financial market volatility clustering and
persistence [49].

There have been numerous academic studies on the
causes and effects of the 2008 financial crisis [50, 51].
However, very few of these have focused on the impact of the
crisis on interdependencies in the global FX market. Here we
present a set of examples which give a unique insight into the
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effects of the crisis on the nature of statistical dependencies
in the spot FX market. Accurate estimation of dependencies
at times of financial crises is of utmost importance, as these
estimates are used by financial practitioners for a range
of tasks, such as rebalancing portfolios, accurately pricing
options, and deciding on the level of risk-taking. We first
present an application of the information coupling model
for detecting temporal changes in dependencies in bivariate
FX data streams at times of financial crises. Figure 4 shows
the adjusted daily closing mid-prices (P,) for AUDUSD and
USDJPY from January 2005 till April 2010. The two plots
clearly show an abrupt change in the exchange rates in
September-October 2008. This was caused at the height of
the 2008 global financial crisis due to the unwinding of
carry trades [52]. Figure 5(a) displays three plots showing the
temporal variation of information coupling (,), linear cor-
relation (p;), and rank correlation (pg;) between AUDUSD
and USDJPY log-returns. The plots are obtained using a six-
month long sliding-window. We notice the rise in uncer-
tainty of the information coupling measure (Figure 5(b))
right before the crash, with uncertainty decreasing gradually
thereafter; this information may be useful to systematically
predict upheavals in the market, although we do not carry
out this study in detail in this paper. Information about the
level of uncertainty can be used as a measure of confidence
in the information coupling values and can be useful in
various practical decision making scenarios, such as deciding
on the capital to deploy for the purpose of trading or
selecting stocks (or currencies) for inclusion in a portfolio. As
daily sampled data is generally less non-Gaussian than data
sampled at higher frequencies, therefore, the three plots in
Figure 5(a) are somewhat similar during certain time periods.
However, right after the September 2008 crash, the plots
significantly deviate from each other. We believe that this is
because the nature of the data, in particular its level of non-
Gaussianity, has changed. As shown in Figure 6, the distance
measure, (17, —|p,| )%, between information coupling and linear
correlation closely matches the non-Gaussianity of the data
under consideration. The two plots are adjusted for ease
of comparison. The degree of non-Gaussianity is calculated
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FIGURE 6: Difference between information coupling and linear
correlation plotted as a function of time. Also plotted is a measure
of non-Gaussianity of the two time series as defined by (40). The
two plots are adjusted for ease of comparison. The vertical line
corresponds to the September 2008 financial meltdown.

using the multivariate Jarque-Bera statistic (JBy;,) which we
define for a N-dimensional multivariate data set as

2\ 12
N L
IBMV:Z i y?+u ,

Sle\ " 4

(40)

where #, is the number of data points (in this case the size
of the sliding-window), y is the skewness of the data under
analysis, and « is its kurtosis. This shows that relying solely on
correlation measures to model dependencies in multivariate
financial time series, even when using data sampled at
relatively lower frequencies, can potentially lead to inaccurate
results. In contrast, the information coupling model takes
into account properties of the data being analysed, resulting
in an accurate approach to measure statistical dependencies.

We now show utility of the information coupling
model for analysing multivariate statistical dependencies.
Figure 7 shows the temporal variation of information cou-
pling between four major liquid currency pairs (EURUSD,
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FIGURE 7: Information coupling between EURUSD, GBPUSD,
USDCHE and USDJPY log-returns plotted as a function of time.
Also plotted is the FTSE-100 index, which is adjusted for ease of
comparison. The vertical line corresponds to the September 2008
financial meltdown.

GBPUSD, USDCHE, and USDJPY). The results are obtained
using daily log-returns for a seven-year period and a six-
month long sliding-window. Also plotted on the same figure
is the FTSE-100 (Financial Times Stock Exchange 100) index
for the corresponding time period, which has been adjusted
for ease of comparison. The plot clearly shows an abrupt
upward shift in coupling between the four currency pairs
right at the time of the September 2008 financial meltdown,
with gradual decrease in coupling over the next year. We
also notice an increase in the uncertainty associated with the
information coupling measure before the 2008 crash. The
increase in dependence of financial instruments in times of
financial crises has been observed for other asset classes as
well [53]. Our unique example, showing the dynamics of
multivariate dependencies within the spot FX space, provides
further insight into the nature of interdependencies in times
of financial crisis.

6. Conclusions

We present an ICA-based approach to dynamically measure
information coupling, as a proxy for mutual information.
This approach makes use of ICA as a tool to capture
information in the tails of the underlying distributions and
is suitable for efficiently and accurately measuring statistical
dependencies between multiple non-Gaussian signals. As far
as we know, this is the first attempt to quantify multivari-
ate dependencies using information encoded in the ICA
unmixing matrix. Our proposed information coupling model
has multiple other benefits associated with its practical use.
It provides a framework for estimating confidence bounds
on the information coupling metric, can be efficiently used
to directly model dependencies in high-dimensional spaces,
and gives normalised, symmetric results. It has the added
advantage of not depending on any user-defined parameters
and is not data intensive; that is, it can be used even with
relatively small data sets without significantly affecting its

ISRN Signal Processing

performance, an important requirement for analysing data
streams with rapidly changing dynamics such as financial
returns. The model makes use of a sliding-window based
decorrelating manifold approach to ICA, with a reciprocal
cosh source model, to infer the ICA unmixing matrix, which
results in increased accuracy and efficiency of the algorithm.
This gives the information coupling model the computational
complexity similar to that of linear correlation with the
accuracy of mutual information.
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