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This paper proposes an analytical design method for two-dimensional square-shaped IIR filters. The designed 2D filters are
adjustable since their bandwidth and orientation are specified by parameters appearing explicitly in the filter matrices. The design
relies on a zero-phase low-pass 1D prototype filter. To this filter a frequency transformation is next applied, which yields a 2D filter
with the desired square shape in the frequency plane. The proposed method combines the analytical approach with numerical
approximations. Since the prototype transfer function is factorized into partial functions, the 2D filter also will be described by a
factorized transfer function, which is an advantage in implementation.

1. Introduction

Various designmethods for 2D filters, both FIR and IIR, have
been proposed by many researchers [1]. A frequently used
design technique is based on a specified 1D prototype filter,
whose transfer function is transformed using various fre-
quencymappings, in order to obtain a 2D filter with a desired
frequency response. Some relevant papers approaching 2D
filter design using spectral transformations are [2–6]. A class
of tunable 2D digital filters is discussed in [7]. The stability
problem for 2D filters and stabilization methods are treated
in papers like [8–11].

Diamond filters have been used as antialiasing filters in
the conversion between signals sampled on the rectangular
sampling grid and the quincunx sampling grid. Different
issues related to design methods for diamond filters were
studied in [12–14]. In [15], another design method for
diamond-shaped filters was derived, starting from discrete
filter transfer functions; two types of filters were obtained,
one with complex transfer function and another with zero-
phase transfer function. The latter is particularly appropriate
for image processing applications as the filters introduce no
phase distortions. The technique developed in [15] uses the
2D filter specification in polar coordinates.

In this paper an analytical design method is proposed
for 2D adjustable zero-phase square-shaped filters, a larger
class of filters which may be regarded as a generalization of

the common diamond filter. Starting from a 1D prototype
filter with factorized transfer function, the corresponding 2D
filters are obtained by a particular 1D to 2D frequency map-
ping. The 2D filter will have a factorized transfer function,
which is a useful feature in implementation.Thisworkmainly
focuses on presenting the proposed method and describes
in detail the design steps. Several design examples are also
provided.The typical applications of diamond filters were not
approached here, as they are extensively treated inmany other
works. Image processing applications of the square-shaped
filters with arbitrary bandwidth and orientation proposed
here will be approached in further work.

2. Specification of Square-Shaped Filters

2.1. Frequency Plane Specification of Square-Shaped Filters.
A particular case of a square-shaped filter is the standard
diamond filter; its shape in the frequency plane is shown in
Figure 1(a). It is a square with a side length of 𝜋√2, while its
axis is tilted by an angle of 𝜑 = 𝜋/4 radians about the two
frequency axes. Next we will consider the orientation angle 𝜑
about the 𝜔

2
− axis.

In this work a more general case is approached, that is, a
2D diamond-type filter with a square shape in the frequency
plane but with arbitrary side length and axis inclination
angle, as shown in Figure 1(e). Next we refer to them as
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Figure 1: (a) diamond filter; (b) wide-band oriented filter; (c), (d) wide-band oriented filters with orientations forming an angle 𝜑 = 𝜋/2; (e)
square-shaped filter resulted as product of the above oriented filters; (f) rhomboidal filter.

square-shaped filters, since they are more general than the
diamond filter from Figure 1(a).

The square-shaped filter in Figure 1(e) is derived as
the intersection of two oriented low-pass filters whose
axes are perpendicular to each other, for which the shape
in the frequency plane is given in Figures 1(c) and 1(d).
Correspondingly, the square-shaped filter transfer function
𝐻
𝑆
(𝑧
1
, 𝑧
2
) results as a product of two partial transfer func-

tions 𝐻
𝐷1
(𝑧
1
, 𝑧
2
) and 𝐻

𝐷2
(𝑧
1
, 𝑧
2
), which we refer to as

directional filters:

𝐻
𝑆
(𝑧
1
, 𝑧
2
) = 𝐻

𝐷1
(𝑧
1
, 𝑧
2
) ⋅ 𝐻
𝐷2

(𝑧
1
, 𝑧
2
) . (1)

The frequency response of𝐻
𝐷2
(𝑧
1
, 𝑧
2
) is ideally identical

to the frequency response of𝐻
𝐷1
(𝑧
1
, 𝑧
2
), rotated by an angle

of 𝜑 = 𝜋/2. Since this axis rotation implies the frequency
variable change,𝜔

1
→ 𝜔
2
, 𝜔
2
→ −𝜔

1
, the transfer function

𝐻
𝐷2
(𝑧
1
, 𝑧
2
) can be derived from𝐻

𝐷1
(𝑧
1
, 𝑧
2
) as

𝐻
𝐷2

(𝑧
1
, 𝑧
2
) = 𝐻

𝐷1
(𝑧
2
, 𝑧
−1

1
) . (2)

A more general filter belonging to this class is a rhom-
boidal filter, as shown in Figure 1(f). In this case the two
oriented low-pass component filtersmay have different band-
widths and their axes are no longer perpendicular to each
other.

2.2. 1D Low-Pass Zero-Phase Prototype Filter. An analog filter
of order 𝑁 is described by the general transfer function in
variable 𝑠:

𝐻
𝑃
(𝑠) =

𝑃 (𝑠)

𝑄 (𝑠)

=

∑
𝑀

𝑖=0
𝑝
𝑖
⋅ 𝑠
𝑖

∑
𝑁

𝑗=0
𝑞
𝑗
⋅ 𝑠
𝑗
. (3)

A zero-phase prototype can be obtained from the general
filter 𝐻

𝑃
(𝑠) if the magnitude characteristics |𝐻

𝑃
(𝑗𝜔)| are

considered. Zero-phase filters are frequently used in image
processing as they do not introduce any phase distortions in
the filtered image. In order to obtain a maximally flat or low-
ripple square-shaped filter, we start from a maximally flat 1D
prototype.

Let us consider a Butterworth low-pass filter 𝐻
𝐵
(𝑠) of

order𝑁, having the transfer function magnitude as follows:

󵄨
󵄨
󵄨
󵄨
𝐻
𝐵
(𝑗𝜔)

󵄨
󵄨
󵄨
󵄨
=

1

√1 + (𝜔/𝜔
0
)
2𝑁

, (4)

where 𝜔
0
is the filter cut-off frequency.

We look for a rational expression of the magnitude
|𝐻
𝐵
(𝑗𝜔)|, which has to be an approximation as accu-

rate as possible within a specified error on the frequency
domain [−𝜋, 𝜋]. The most convenient for our purpose is
the Chebyshev-Padé expansion, since it yields an efficient
approximation of a given function, which is uniform along
the entire specified interval. It can be found using a symbolic
computation software like MAPLE.
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Figure 2: (a) Zero-phase low-pass prototype filter characteristic for 𝑝 = 1 (𝜔
0
= 1); (b), (c) scaled LP characteristics for 𝑝 = 0.6 (𝜔

0
= 0.53𝜋)

and 𝑝 = 2.7 (𝜔
0
= 0.118𝜋).

Let us first find the approximation for the function (4) in
normalized frequency, that is, the function |𝐻

𝐵𝑛
(𝑗𝜔)|:

󵄨
󵄨
󵄨
󵄨
𝐻
𝐵𝑛
(𝑗𝜔)

󵄨
󵄨
󵄨
󵄨
=

1

√1 + 𝜔
2𝑁

. (5)

Since a steeper filter would be desirable, let us take a
Butterworth low-pass filter of order 𝑁 = 12; we obtain
on the frequency range [−𝜋, 𝜋] the following Chebyshev-
Padé rational approximation of order 8 for the magnitude
characteristics, as a ratio of polynomials with the same degree
8, which in factorized form looks like

1

√1 + 𝜔
24

≅ 𝐻
𝑃
(𝜔) = 𝜉 ⋅

(𝜔
4
− 5.8589322 ⋅ 𝜔

2
+ 22.393616)

(𝜔
4
+ 0.253253 ⋅ 𝜔

2
+ 0.2830378)

⋅

(𝜔
4
− 13.689786 ⋅ 𝜔

2
+ 49.701196)

(𝜔
4
− 1.843889 ⋅ 𝜔

2
+ 0.999034)

= 𝜉 ⋅ 𝐻
𝑃1
(𝜔) ⋅ 𝐻

𝑃2
(𝜔) ,

(6)

where the constant has the value 𝜉 = 0.0002516.
The frequency response𝐻

𝑃
(𝜔) of this prototype is plotted

in Figure 2(a) and shows a small amplitude ripple in the
pass-band. The cut-off frequency is 𝜔

0
= 1 and 𝑝 = 1. A

low-pass filter with a better flatness would obviously have a
higher order. The advantage of using this factorized rational
approximation is that it is easily scalable on the frequency
axis, as will appear clearly in the following sections.

Each of the rational expressions 𝐻
𝑃𝑖
(𝜔) (𝑖 = 1, 2, . . .)

occurring as factors in 𝐻
𝑃
(𝜔) given by (6), with 4th order

polynomials as numerator and denominator, can be generally
written as

𝐻
𝑃𝑖
(𝜔) =

(𝜔
4
+ 𝑏
1𝑖
⋅ 𝜔
2
+ 𝑏
0𝑖
)

(𝜔
4
+ 𝑎
1𝑖
⋅ 𝜔
2
+ 𝑎
0𝑖
)

(𝑖 = 1, 2, . . .) . (7)
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Of course, in a factorized rational approximation like expres-
sion (6) there may occur also a second-order term:

𝐻
𝑃𝑖
(𝜔) =

(𝜔
2
+ 𝑐
0𝑖
)

(𝜔
2
+ 𝑑
0𝑖
)

(8)

but this case is not further considered.
As specified earlier, the variable 𝜔 represents here the

frequency normalized to the value of the cut-off frequency
𝜔
0
. In order to return to current frequency values, in the

expression of the general factor 𝐻
𝑃𝑖
(𝜔), we must substitute

𝜔 by 𝜔/𝜔
0
. It is more convenient to substitute 𝜔 by 𝑝 ⋅ 𝜔,

where 𝑝 = 1/𝜔
0
. Thus the ratio factor𝐻

𝑃𝑖
(𝜔) from (7) can be

rewritten in the following formwhich includes the parameter
𝑝, which makes it scalable along the frequency axis:

𝐻
𝑃𝑖
(𝜔) =

𝑝
4
𝜔
4
+ 𝑏
1𝑖
⋅ 𝑝
2
𝜔
2
+ 𝑏
0𝑖

𝑝
4
𝜔
4
+ 𝑎
1𝑖
⋅ 𝑝
2
𝜔
2
+ 𝑎
0𝑖

. (9)

For a value of the parameter 𝑝 different from unity, the
characteristic𝐻

𝑃
(𝜔)displayed in Figure 2 either stretches (for

𝑝 < 1) or shrinks (for 𝑝 > 1). In Figures 2(b) and 2(c)
two LP characteristics derived from𝐻

𝑃
(𝜔) are plotted, for the

indicated values of 𝑝 and 𝜔
0
, respectively.

Thus the 1D prototype is parametric depending on 𝑝, and
the derived 2D square-shaped filter will have an adjustable
pass-band region, specified by the same 𝑝.

3. Design Method

The main issue in this section is to find the transfer function
of the desired 2D square filter 𝐻

𝑆
(𝑧
1
, 𝑧
2
) using a particular

frequency transformation.
From a 1D prototype filter𝐻

𝑃
(𝑠) = 𝐻

𝑃
(𝑗𝜔) (which varies

on one axis only), a 2D oriented filter may be obtained by
rotating the axes of the plane (𝜔

1
, 𝜔
2
) by an angle 𝜑. The

rotation is defined by the following linear transformation,
where 𝜔

1
, 𝜔
2
are the original frequency variables and 𝜔

1
, 𝜔
2

the rotated ones [1]:

[

𝜔
1

𝜔
2

] = [

cos𝜑 sin𝜑
− sin𝜑 cos𝜑] ⋅ [

𝜔
1

𝜔
2

] . (10)

The spatial orientation is specified by an angle 𝜑 with respect
to 𝜔
1
− axis, defined by the following 1D to 2D frequency

mapping:

𝜔 󳨀→ 𝜔
1
cos𝜑 + 𝜔

2
sin𝜑. (11)

The oriented filter transfer function results in the following:

𝐻
𝜑
(𝜔
1
, 𝜔
2
) = 𝐻

𝑃
(𝜔
1
cos𝜑 + 𝜔

2
sin𝜑) . (12)

In the complex plane (𝑠
1
, 𝑠
2
) the frequency transformation

(11) becomes

𝑠 󳨀→ 𝑠
1
cos𝜑 + 𝑠

2
sin𝜑. (13)

The 2D oriented filter 𝐻
𝜑
(𝜔
1
, 𝜔
2
) has the magnitude section

along the line 𝜔
1
cos𝜑 + 𝜔

2
sin𝜑 = 0, identical with the

prototype 𝐻
𝑃
(𝜔), and is constant along the perpendicular

line: 𝜔
1
sin𝜑 − 𝜔

2
cos𝜑 = 0 (the filter longitudinal axis).

In our case, since the rational prototype function 𝐻
𝑃
(𝜔)

from (6) contains only even powers of frequency 𝜔, that is,
only powers of 𝜔2, we will derive a convenient expression for
Ω
𝜑
= (𝜔
1
cos𝜑 + 𝜔

2
sin𝜑)2, according to mapping (11):

Ω
𝜑
= 0.5 sin 2𝜑 ⋅ (𝜔

1
+ 𝜔
2
)
2

+ 0.5 (1 + cos 2𝜑 − sin 2𝜑) ⋅ 𝜔2
1

+ 0.5 (1 − cos 2𝜑 − sin 2𝜑) ⋅ 𝜔2
2
.

(14)

Thus using (11) we derived the mapping 𝜔
2

→ Ω
𝜑
. Since

𝑠
2

1
= −𝜔
2

1
, 𝑠2
2
= −𝜔
2

2
, the corresponding expression 𝑆

𝜑
in the

complex variables 𝑠
1
and 𝑠
2
is similar, with 𝑆

𝜑
= −Ω
𝜑
:

𝑆
𝜑
= (𝑠
1
cos𝜑 + 𝑠

2
sin𝜑)2

= 0.5 sin 2𝜑 ⋅ (𝑠
1
+ 𝑠
2
)
2

+ 0.5 (1 + cos 2𝜑 − sin 2𝜑) ⋅ 𝑠2
1

+ 0.5 (1 − cos 2𝜑 − sin 2𝜑) ⋅ 𝑠2
2
.

(15)

Therefore, after applying the 1D to 2D directional mapping
(11) by substituting 𝜔2 → Ω

𝜑
= −𝑆
𝜑
, we reach the following

rational expression in the complex frequency variables 𝑠
1
, 𝑠
2
,

which corresponds to each ratio factor 𝐻
𝑃𝑖
(𝜔) of the proto-

type frequency response, given by (9)

𝐹
𝐷𝑖
(𝑠
1
, 𝑠
2
) =

𝑝
4
𝑆
2

𝜑
− 𝑏
1𝑖
⋅ 𝑝
2
𝑆
𝜑
+ 𝑏
0𝑖

𝑝
4
𝑆
2

𝜑
− 𝑎
1𝑖
⋅ 𝑝
2
𝑆
𝜑
+ 𝑎
0𝑖

. (16)

Since finallywemust reach a transfer function of a discrete 2D
filter in the complex variables 𝑧

1
and 𝑧
2
, we must determine

the discrete counterpart 𝐻
𝐷𝑖
(𝑧
1
, 𝑧
2
) of the general factor

𝐹
𝐷𝑖
(𝑠
1
, 𝑠
2
).

The currently usedmethod to obtain a discrete filter from
an analog prototype is applying the bilinear transform. If the
sample interval takes the value 𝑇 = 1, the bilinear transform
for 𝑠
1
and 𝑠
2
in the complex plane (𝑠

1
, 𝑠
2
) has the form

𝑠
1
=

2 (𝑧
1
− 1)

(𝑧
1
+ 1)

,

𝑠
2
=

2 (𝑧
2
− 1)

(𝑧
2
+ 1)

.

(17)

Even if this method is straightforward, the designed 2D
filter, corresponding to the transfer function in 𝑧

1
, 𝑧
2
, will

inherently present substantial linearity distortions towards
the limits of the frequency plane as compared to the ideal
frequency response. This fact is mainly due to the so-called
frequency warping effect of the bilinear transform, expressed
by the continuous to discrete frequency mapping:

𝜔 =

2

𝑇

⋅ arctg(
𝜔
𝑎
𝑇

2

) , (18)
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Figure 3: Plots of mapping (26)—F1 in solid line, and mapping
(21)—F2 in dash line.

where 𝜔 is a frequency of the discrete filter and 𝜔
𝑎
is the

corresponding frequency of the analog filter.This error can be
corrected by applying a prewarping. Taking 𝑇 = 1 in relation
(18) we obtain the mappings

𝜔
1
󳨀→ 2 ⋅ arctg(𝜔1

2

) ,

𝜔
2
󳨀→ 2 ⋅ arctg(𝜔2

2

) .

(19)

In order to include the nonlinear mappings (19) into the
frequency transformation, a rational approximationwould be
needed. Using again the efficient Chebyshev-Padé method,
we get the following accurate approximation on the range
[−𝜋, 𝜋]:

arctg(𝜔
2

) ≅ 0.4751 ⋅

𝜔

(1 + 0.05 ⋅ 𝜔
2
)

. (20)

Thus the prewarping correction consists in the following
substitution, also used in [15]:

𝜔 󳨀→ 0.95 ⋅

𝜔

(1 + 0.05 ⋅ 𝜔
2
)

. (21)

Even if (21) is useful in general, taking into account that the
2D filter function 𝐹

𝐷𝑖
(𝑠
1
, 𝑠
2
) has even parity in 𝑠

1
and 𝑠
2
, that

is, the variables appear as 𝑠2
1
, 𝑠
2

2
, a more efficient pre-warping

can be made in this case.
We obtain the following Chebyshev-Padé approximation

on the range 𝜔 ∈ [−𝜋, 𝜋]:

(arctg(𝜔
2

))

2

≅

(0.017251 + 0.218196 ⋅ 𝜔
2
)

(1 + 0.116048 ⋅ 𝜔
2
)

. (22)

Consequently, from (19) and (22), the frequency pre-warping
mapping can be written, on both frequency axes:

𝜔
2

1,2
󳨀→

(0.069 + 0.872783 ⋅ 𝜔
2

1,2
)

(1 + 0.116048 ⋅ 𝜔
2

1,2
)

, (23)

𝑠
2

1,2
󳨀→

−(0.069 − 0.872783 ⋅ 𝑠
2

1,2
)

(1 − 0.116048 ⋅ 𝑠
2

1,2
)

. (24)

Let us now apply the bilinear transform on both axes; that
is, we substitute relations (17) into mapping (24); we get the
following simple mapping, valid on both axes 𝜔

1
and 𝜔

2
:

𝑠
2

1,2
󳨀→ 6.3868 ⋅

(𝑧
2

1,2
− 2.080651 ⋅ 𝑧

1,2
+ 1)

(𝑧
2

1,2
+ 5.465361 ⋅ 𝑧

1,2
+ 1)

. (25)

The analog-discrete mapping (25) therefore is a corrected
form of the bilinear transform including pre-warping in
the entire region of interest, namely, 𝜔

1,2
∈ [−𝜋, 𝜋]. It is

noteworthy that this pre-warping does not increase the order.
The mapping (25) can be written on each axis in terms of
frequency 𝜔:

𝜔
2
󳨀→ 6.3868 ⋅

(1.0403 − cos𝜔)
(2.7326 + cos𝜔)

. (26)

This mapping is plotted in Figure 3 versus 𝜔2 as curve F1
in solid line and is almost linear at least on the range 𝜔 ∈

[0, 0.7𝜋], as compared to themapping (21)—curve F2, plotted
in dash line. Therefore the proposed correction compensates
the distortions introduced by the bilinear transform. As
shown further in the design examples, using the simple
frequency mapping (25) which includes pre-warping, we
obtain 2D square filters with good linearity along their axes.
For the sum of frequency variables,𝜔

1
+𝜔
2
, the mapping (26)

becomes

(𝜔
1
+ 𝜔
2
)
2

󳨀→ 6.3868 ⋅

(1.0403 − cos (𝜔
1
+ 𝜔
2
))

(2.7326 + cos (𝜔
1
+ 𝜔
2
))

, (27)

and since cos(𝜔
1
+ 𝜔
2
) = 0.5 ⋅ (𝑧

1
𝑧
2
+ 𝑧
−1

1
𝑧
−1

2
) we obtain the

mapping

(𝑠
1
+ 𝑠
2
)
2

󳨀→ 6.3868 ⋅

(𝑧
2

1
𝑧
2

2
− 2.0806 ⋅ 𝑧

1
𝑧
2
+ 1)

(𝑧
2

1
𝑧
2

2
+ 5.4653 ⋅ 𝑧

1
𝑧
2
+ 1)

. (28)

The next step is to substitute the mappings (25) and (28) into
the expression (15) of 𝑆

𝜑
, and we obtain a rational expression

of order 4 in the complex frequency variables 𝑧
1
and 𝑧

2
.

Thus the discrete approximation 𝐹
𝜑
(𝑧
1
, 𝑧
2
) of 𝑆
𝜑
(𝑠
1
, 𝑠
2
) may

be expressed in the matrix form

𝑆
𝜑
(𝑠
1
, 𝑠
2
) 󳨀→ 𝐹

𝜑
(𝑧
1
, 𝑧
2
) = 𝑘 ⋅

𝑀
𝜑
(𝑧
1
, 𝑧
2
)

𝑁 (𝑧
1
, 𝑧
2
)

= 𝑘 ⋅

(z1 ×M
𝜑
× z𝑇2 )

(z1 × N × z𝑇2 )
,

(29)

where the variable vectors are z1 = [1 𝑧
1
𝑧
2

1
𝑧
3

1
𝑧
4

1
],

z2 = [1 𝑧
2
𝑧
2

2
𝑧
3

2
𝑧
4

2
], 𝑘 = 3.1934, and × stands for inner

product.
The numerator matrix M

𝜑
depends on the orientation

angle 𝜑 according to the expression

M
𝜑
= M0 + sin 2𝜑 ⋅M1 + cos 2𝜑 ⋅M2, (30)
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whereM0,M1, andM2 are the followingmatrices of size 5×5
with constant elements

M0 =
[
[
[

[

−0.25 −0.42307 −0.25 0 0

−0.42307 1.47642 −2.73526 −1.36630 0

−0.25 −2.73526 15.036 −2.73526 −0.25

0 −1.36630 −2.73526 1.47642 −0.42307

0 0 −0.25 −0.42307 −0.25

]
]
]

]

,

M1 =
[
[
[

[

0.125 −0.2601 0.125 0 0

−0.2601 −4.9499 3.47347 1.62637 0

0.125 3.47347 −7.51803 3.47347 0.125

0 1.62637 3.47347 −4.9499 −0.2601

0 0 0.125 −0.2601 0.125

]
]
]

]

,

M2 =
[
[
[

[

0 −0.94322 0 0 0

0.94322 0 −4.21169 0 0

0 4.21169 0 4.21169 0

0 0 −4.21169 0 0.94322

0 0 0 −0.94322 0

]
]
]

]

.

(31)

The denominator matrix N is also a constant 5 × 5matrix:

N =

[
[
[
[
[

[

0.125 0.68315 0.125 0 0

0.68315 4.4167 4.4167 0.68315 0

0.125 4.4167 20.6546 4.4167 0.125

0 0.68315 4.4167 4.4167 0.68315

0 0 0.125 0.68315 0.125

]
]
]
]
]

]

.

(32)

From (16) and (29), after some algebra, thematricesB
𝑖
,A
𝑖
(𝑖 =

1, 2, . . .) corresponding to the numerator and denominator of
𝐹
𝐷𝑖
(𝑠
1
, 𝑠
2
) result from similar relations:

B
𝑖
= 𝑝
4
𝑘
2
⋅M
𝜑
∗M
𝜑
− 𝑏
1𝑖
⋅ 𝑝
2
𝑘 ⋅M
𝜑
∗ N + 𝑏

0𝑖
⋅ N ∗ N,

A
𝑖
= 𝑝
4
𝑘
2
⋅M
𝜑
∗M
𝜑
− 𝑎
1𝑖
⋅ 𝑝
2
𝑘 ⋅M
𝜑
∗ N + 𝑎

0𝑖
⋅ N ∗ N,

(33)

where ∗ denotes matrix convolution.
The 2D directional IIR filter will have a real-valued (zero-

phase) transfer function𝐻
𝐷
(𝑧
1
, 𝑧
2
) in the complex variables

𝑧
1
= 𝑒
𝑗𝜔
1 and 𝑧

2
= 𝑒
𝑗𝜔
2 , written in matrix form

𝐻
𝐷
(𝑧
1
, 𝑧
2
) =

𝐵
𝐷
(𝑧
1
, 𝑧
2
)

𝐴
𝐷
(𝑧
1
, 𝑧
2
)

=

z
1
× BD × z𝑇

2

z
1
× AD × z𝑇

2

, (34)

where the vectors z
1
, z
2
are z
1
= [1 𝑧

1
⋅ ⋅ ⋅ 𝑧
𝑁−1

1
𝑧
𝑁

1
], z
2
=

[1 𝑧
2
⋅ ⋅ ⋅ 𝑧
𝑁−1

2
𝑧
𝑁

2
] and 𝑁 is the directional filter order.

If B
1
,B
2
,A
1
, and A

2
are the matrices corresponding to the

numerators and denominators of the two factors from (6),
the matrices BD and AD of the directional filter result as
convolution:

BD = B
1
∗ B
2
, AD = A

1
∗ A
2
. (35)

Finally, the square-shaped filter transfer function is given by
an expression similar to (34):

𝐻
𝑆
(𝑧
1
, 𝑧
2
) =

𝐵
𝑆
(𝑧
1
, 𝑧
2
)

𝐴
𝑆
(𝑧
1
, 𝑧
2
)

=

z
1
× BS × z𝑇

2

z
1
× AS × z𝑇

2

, (36)

where the matrices BS and AS result from

BS = BD ∗ B𝑅D, AS = AD ∗ A𝑅D, (37)

where the superscript 𝑅 means rotation by 90 degrees;
therefore A𝑅D is the clockwise rotated version of AD. This is
due to the fact that the matrix pairs (AD,BD) and (A𝑅D,B

𝑅

D)
correspond to two directional filters which form a right angle
in the frequency plane.

To summarize, the design steps for the adjustable square-
shaped filter are the following.

(a) Once adopted an 1D low-pass filter prototype of
the form given by (4), its 4th order factors are
determined; therefore the coefficients 𝑎

0𝑖
, 𝑎
1𝑖
, 𝑏
0𝑖
, and

𝑏
1𝑖
are found; if a second-order factor occurs, 𝑐

0𝑖
and

𝑑
0𝑖
are also found.

(b) For a specified orientation angle 𝜑, the matrix M
𝜑

is determined using expression (30) and the partial
constant matrices (31).

(c) For a desired filter bandwidth 𝜔
0
, specified by the

parameter 𝑝 = 1/𝜔
0
, the partial matrices B

𝑖
and A

𝑖

for each of the 4-order factors result from relations
(33).

(d) ThematricesBD andAD of the directional filter result
as convolution of the matrices determined at the
previous step, according to (35).

(e) The matrices BS and AS of the square-shaped filter
result as convolution of the matrices determined at
the previous step, according to (37).

4. Design Examples

Following the previous steps, the design of a 2D square-
shaped filter using this method is straightforward.The band-
width 𝜔

0
is specified by the parameter 𝑝 = 1/𝜔

0
. As shown

before, the 5 × 5 matrices M0, M1, M2, and N are constant
once specified the 1D prototype 𝐻

𝑃
(𝜔), in our case given by

(6).
The first design example is the diamond-type filter whose

frequency response 𝐻
𝑆1
(𝜔
1
, 𝜔
2
) is shown in Figure 4(a). In

order to obtain a diamond filter as in Figure 1(a), the orienta-
tion anglemust be set𝜑 = 𝜋/4. Ideally, the bandwidth (cut-off
frequency) should be 𝜔

0
= 𝜋/√2, corresponding to 𝑝 = 0.45.

However, due to the inherent errors and the finite slope of the
filter transition region, using these valueswould lead to a filter
with large distortions towards the margins of the frequency
plane. Using instead the value 𝑝 = 0.6, corresponding to
a bandwidth 𝜔

0
= 0.53𝜋, the filter will have a slightly

narrower bandwidth but also smaller distortions. Also the
contour plot shows a satisfactory linearity on the four sides
of the square-shaped section. In Figures 4(c) and 4(d), the
frequency responses and contour plots are displayed for the
two directional component filters 𝐻

𝐷1
(𝑧
1
, 𝑧
2
), 𝐻
𝐷2
(𝑧
1
, 𝑧
2
).

The square-shaped filter characteristic results as a product of
the two directional characteristics.

In Figures 5 and 6, the frequency responses and contour
plots are shown, for other square-shaped filters with different
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Figure 4: (a) Frequency response of a square-shaped filter with orientation 𝜑 = 𝜋/4 and 𝑝 = 0.6 (bandwidth 𝜔
0
= 1.66 ≅ 0.53𝜋); (b) contour

plot of this filter; (c), (d) frequency responses and contour plots of the two partial oriented filters.
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Figure 5: (a) Frequency response of a square-shaped filter with orientation 𝜑 = 3𝜋/8 and 𝑝 = 0.54 (bandwidth 𝜔
0
= 1.85 ≅ 0.589𝜋); (b)

contour plot of this filter; (c), (d) frequency response and contour plot of one oriented filter.

specifications, that is, bandwidth and orientation. It can
be noticed that the filter characteristics have satisfactory
steepness and relatively low ripple distortions in the pass-
band region. Of course, better characteristics can be obtained
using a higher order 1D prototype filter, that is, a more
accurate approximation of the Butterworth LP filter. This
however would increase the order of the 2D square-shaped
filter.

A more general filter of this kind can also be derived,
namely, a rhomboidal-shaped filter, in which the two compo-
nent filters are not in a right angle to each other. Furthermore,
a directional filter like the ones in Figure 4(c) or Figure 6(c)
can be used independently, especially if it has a narrow
bandwidth and can be used to extract lines with different
spatial orientations from an image by tuning it to specified
directions.

Even if this analytical design method may not yield
optimal filters in terms of complexity, as is generally the
case with techniques based on numerical optimization, the
advantage of having parametric, closed form expressions for
the filter matrices is the possibility of tuning or adjusting

the 2D filter for a new set of specifications—in our case
bandwidth and orientation—without the need to resume the
design process every time.

Stability of the proposed filters is also an important issue.
The stability problem for 2D filters is much more difficult
than for 1D filters. There exist various stability criteria [7, 8]
and also stabilizationmethods which can be applied for some
unstable filters [9, 10]. A full stability analysis of the proposed
adjustable 2D filters will be approached in further work.

The main goal of the paper was to present in detail
this analytical design method and some relevant design
examples for these filters. Since they can select adjustable
square or rhomboidal regions in the frequency plane, they
may have interesting applications in image processing. Their
applications in image filtering will be investigated in future
work on this topic.

5. Conclusions

An analytical designmethod for recursive zero-phase square-
shaped filters was proposed. The design is based on analog
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Figure 6: (a) Frequency response of a square-shaped filter with orientation 𝜑 = 3𝜋/8 and 𝑝 = 1.6 (bandwidth 𝜔
0
= 0.625 ≅ 0.2𝜋); (b)

contour plot of this filter; (c), (d) frequency response and contour plot of one oriented filter; (e), (f) frequency response and contour plot for
a square-shaped filter with 𝜑 = 𝜋/3 and 𝑝 = 1 (bandwidth 𝜔

0
= 1 ≅ 0.318𝜋).

zero-phase low-pass prototypeswith specified parameters. As
1D prototype, a Butterworth filter was used, and, using an effi-
cient rational approximation, a zero-phase filter small pass-
band ripple was derived. The resulted 2D filter is parametric
or adjustable in the sense that the specified parameters—
bandwidth and orientation angle—appear explicitly in the

final filter matrices. The method includes the bilinear trans-
form applied along the two axes and uses a frequency
pre-warping to compensate for distortions. This leads to
a particular frequency mapping, which is applied to the
1D prototype in order to obtain the 2D filter. This design
technique is relatively simple, efficient and versatile, in the
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sense that, by changing the specifications, the new 2D filter
matrices result directly, without the need to resume the entire
design process all the way from the start.
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