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In most missing samples problems, the signals are assumed to be bandlimited. That is, the signals are assumed to be sparsely
approximated by a known subset of the discrete Fourier transform basis vectors. We discuss the recovery of missing samples
when the signals can be sparsely approximated by an unknown subset of certain unitary basis vectors. We propose the use of
the orthogonal matching pursuit to recover missing samples by sparse approximations.

1. Introduction

Discrete signals are usually represented by their samples
taken on a uniform sampling grid. However, inmany applica-
tions, itmay happen that some samples are lost or unavailable.
In such cases, it is required to convert the irregularly sampled
signal to a regularly sampled one, that is, to restore the
missing samples. One approach for the recovery of missing
data in discrete signals is based on the assumption that
the underlying continuous-time signals are bandlimited. The
celebrated sampling theorem by Whittaker [1], Kotel’nikov
[2], and Shannon [3] implies that any continuous-time
bandlimited signal can be reconstructed by its regularly
spaced samples if the sampling frequency is higher than
two times the maximum frequency component of the signal.
The solution of the nonuniform sampling problem poses
more difficulties and there exists a vast literature dealing
with necessary and sufficient conditions for unique recon-
struction and methods for reconstructing a function from its
samples, for example, [4–6]. The numerical reconstruction
methods, however, have to operate in a finite-dimensional
model, whereas the theoretical results are usually derived
for the continuous-time bandlimited functions (an infinite-
dimensional subspace). The use of a truncated sampling
series results with a finite-dimensional model but may lead,
however, to severely ill-posed numerical problems [7].

Another approach is to address this problem in a finite-
dimensionalmodel of discrete bandlimited signals. A discrete

bandlimited (DBL) signal has a sparse representation in
terms of a certain unitary basis vector (e.g., discrete Fourier
transform). That is, the signal can be represented by only
a known subset of the unitary basis vectors. The recovery
of missing samples is, in this case, equivalent to solving
a linear system of equations [8]. In this paper, we focus
on the recovery problem, when the a priori knowledge
is that the signal is sparsely represented by an unknown
subset of certain unitary basis vectors. This problem is
much harder to solve, and there is an infinite number of
possible solutions. Our approach is to choose the sparsest
solution. That is, we are interested in approximating the
known samples with a minimum number of basis vectors.
Standard methods for solving linear systems of equations
cannot provide the sparsest solution. We suggest the use
of the orthogonal matching pursuit algorithm [9–11] for
determining the sparsest approximation to the given samples
from which the unknown samples can be determined.

2. Recovery of Missing Samples of Discrete
Bandlimited Signals

Let 𝑥 ∈ R𝑁 be a discrete signal with 𝑁 samples. That
is, 𝑥 can be described by an 𝑁-dimensional real vector
whose elements are denoted by 𝑥[0], 𝑥[1], . . . , 𝑥[𝑁−1].These
elements correspond to the samples of the signal. Let Φ be
an 𝑁 × 𝑁 orthonormal transform matrix; that is, Φ𝑇Φ =

ΦΦ
𝑇
= 𝐼, where 𝐼 is the 𝑁 × 𝑁 identity matrix and Φ𝑇
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is the transpose of Φ. The orthonormal matrix Φ defines
an orthonormal transform of the vector 𝑥, denoted by 𝑥 ∈

R𝑁, which is by definition the signal 𝑥 = Φ𝑥. The inverse
transform of 𝑥 is by definition the signal 𝑥 = Φ

𝑇
𝑥. In the

complex case, the vectors belong to the spaceC𝑁 (space of𝑁-
dimensional complex vectors), and the conjugate transpose
of the unitary matrix Φ has to be taken when computing the
inverse transform.

The columns of Φ𝑇 define an orthonormal basis of R𝑁.
That is, each signal 𝑥 ∈ R𝑁 can be represented by a linear
combination of the columns of Φ𝑇, where the coefficients
in this linear combination are given by the transform coef-
ficients 𝑥. Let ({𝜙

𝑟
}
𝑟=0,1,...,𝑁−1

) be the rows of Φ𝑇 (i.e., the
columns of the matrixΦ ). It follows that for each 𝑥 ∈ R𝑁

𝑥 [𝑘] =

𝑁−1

∑

𝑚=0

𝑥 [𝑚] 𝜙𝑘 [
𝑚] , 𝑘 = 0, 1, . . . , 𝑁 − 1. (1)

Let 𝑄 be a 𝐾-size proper subset of {0, 1, . . . , 𝑁 − 1} and
assume that only the 𝐾 < 𝑁 samples {𝑥[𝑘]}, 𝑘 ∈ 𝑄, are
known. Consequently, the available 𝐾 signal samples define
systems of𝐾 equations for the𝑁 transform coefficients:

𝑥 [𝑘] =

𝑁−1

∑

𝑚=0

𝑥 [𝑚] 𝜙𝑘 [
𝑚] , 𝑘 ∈ 𝑄. (2)

The recovery of missing samples from an arbitrary signal is
of course impossible: there is an infinite number of solutions
to the underdetermined system of equations (2). The signals
that occur in applications, however, often satisfy known
constraints.The constraint used in this paper is called discrete
band-limitedness: the signal can be represented by only a
known subset of the columns of Φ𝑇. That is, the signal is a
linear combination of certain subset of certain orthonormal
basis vectors of R𝑁.

Let 𝑅 be a 𝑃-size proper subset of {0, 1, . . . , 𝑁 − 1}, where
𝑃 ≤ 𝐾. A discrete bandlimited signal approximation to the
signal 𝑥 is obtained by

𝑥
BL
[𝑘] = ∑

𝑚∈𝑅

𝑥 [𝑚] 𝜙𝑘 [
𝑚] , 𝑘 = 0, 1, . . . , 𝑁 − 1. (3)

That is, we assume that all transform coefficients with indices
𝑟 ∉ 𝑅 are equal to zero.

For example, letΦ be the𝑁×𝑁discrete Fourier transform
(DFT) matrix. That is, Φ is the 𝑁 × 𝑁 unitary matrix with
elements (𝑗 is the imaginary unit)

Φ
𝑘𝑙
=

1

√𝑁

𝑒
−𝑗(2𝜋/𝑁)𝑘𝑙

. (4)

A signal 𝑥 is bandlimited if its DFT 𝑥 = Φ𝑥 vanishes on
some fixed nonempty proper subset 𝑆 of {0, 1, . . . , 𝑁−1}. The
complement of 𝑆 is the subset 𝑅. When the subset 𝑅 is the set
of 2𝑀 + 1 elements (i.e., 𝑃 = 2𝑀 + 1)

{0} ∪ {1, 2, . . . ,𝑀} ∪ {𝑁 −𝑀, . . . , 𝑁 − 1} , (5)

or equivalently (by periodicity)

{0, ±1, ±2, . . . , ±𝑀} , (6)

the signal is called a low-pass signal in DFT domain.

Another example is the discrete cosine transform. Let Φ
be the 𝑁 × 𝑁 discrete cosine transform (DCT) matrix. That
is, Φ is the𝑁 ×𝑁 orthonormal matrix with elements

Φ
𝑘𝑙
=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1

√𝑁

, 𝑘 = 0, 0 ≤ 𝑙 ≤ 𝑁 − 1,

√
2

𝑁

cos 𝜋 (2𝑙 + 1) 𝑘
2𝑁

, 1 < 𝑘 ≤ 𝑁 − 1,

0 ≤ 𝑙 ≤ 𝑁 − 1.

(7)

A signal 𝑥 is bandlimited if its DCT 𝑥 = Φ𝑥 vanishes on some
fixed nonempty proper subset 𝑆 of {0, 1, . . . , 𝑁−1}. When the
complement of 𝑆 (i.e., subset 𝑅) is the set of 𝑃 elements

{0, 1, 2, . . . , 𝑃 − 1} , (8)

the signal is called a low-pass signal in DCT domain.
Assuming that 𝑥 is a discrete bandlimited signal (i.e.,

𝑥[𝑘] = 𝑥
BL
[𝑘], 𝑘 = 0, . . . , 𝑁 − 1), then, the available signal

samples, 𝑥[𝑘], 𝑘 ∈ 𝑄, can now be expressed as

𝑥 [𝑘] = ∑

𝑚∈𝑅

𝑥 [𝑚] 𝜙𝑘 [
𝑚] , 𝑘 ∈ 𝑄. (9)

Equation (9) is a linear system consisting of 𝐾 equations
with 𝑃 ≤ 𝐾 unknowns. The existence and uniqueness of
the solution depend, for any transform, on the subsets𝑄 and
𝑅 (see, e.g., [8] for a discussion on the recovery of samples
when the signals are bandlimited in the discrete Fourier
transform domain). When the system of equations (9) has a
full column rank and 𝐾 = 𝑃, we can determine the unique
exact solution. When the system has a full column rank and
𝐾 > 𝑃 (overdetermined system of equations), we will be
interested in the least squares solution.

3. Sparse Approximations

In the previous section, we discussed the recovery of missing
samples, when the band-limitedness was known a priori.
That is, we had the a priori knowledge of which transform
coefficients are equal to zero. The recovery of the missing
samples is, in this case, equivalent to solving a linear system
of equations for which many algorithms can be used. If we
know that the signal is a low-pass bandlimited signal (e.g.,
in DFT or DCT domain), but the bandwidth is not given, we
may start with a low bandwidthmodel and solve the resulting
linear system of equations for increasing bandwidths until
a sufficient accuracy in approximating the given samples is
obtained. If the only a priori knowledge is that the signal
is sparse in terms of the basis vectors, that is, the signal
can be represented (or accurately approximated) with a few
unknown basis vectors, the situation is very different. In this
case, we have also to determine the basis vectors that sparsely
approximate the signal.

We have to solve the underdetermined system of equa-
tions (2):

𝑥 (𝑘) =

𝑁−1

∑

𝑚=0

𝑥 (𝑚) 𝜙𝑘 (
𝑚) , 𝑘 ∈ 𝑄, (10)
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where 𝑄 is the 𝐾-size subset of indices of known samples.
The underdetermined system of equations (2) has an infinite
number of solutions. Since we know that the signal is sparsely
approximated by the basis vectors, one reasonable approach
is to choose the sparsest solution among the infinite number
of solutions. That is, the optimal approximation is defined
as either the sparsest approximation (i.e,. with the fewest
basis vectors) that yields an approximation error that is
smaller than a prespecified threshold or the approximation
using a fixed number of basis vectors that minimizes the
approximation error. Finding these approximations is an NP
hard problem [12, 13].

We will use the following notations. Let 𝑓 ∈ R𝐾 be a
signal of 𝐾 samples that contains the given samples; that is,
𝑓[𝑛] = 𝑥[𝑘

𝑛
], 𝑘
𝑛
∈ 𝑄, 𝑛 = 0, 1, . . . , 𝐾 − 1. Let 𝜑

𝑟
, 𝑟 =

0, 1, . . . , 𝑁−1, be the columns of the matrixΦ𝑇. For each 𝛾 =
0, 1, . . . , 𝑁 − 1, let 𝑔

𝛾
= ℎ
𝛾
/‖ℎ
𝛾
‖ be a unit-norm vector of 𝐾

samples, whereℎ
𝛾
[𝑛] = 𝜑

𝛾
[𝑘
𝑛
], 𝑘
𝑛
∈ 𝑄, 𝑛 = 0, 1, . . . , 𝐾−1, and

the norm is the standard 𝑙
2
norm in R𝐾: ‖𝑓‖2 = ∑𝐾−1

𝑛=0
𝑓
2
[𝑛].

The set of𝑁 unit-norm vectors 𝑔
𝛾
will be called a dictionary.

The problem is to determine a sparse approximation to the
vector 𝑓 with the dictionary vectors 𝑔

𝛾
, 𝛾 = 0, 1, . . . , 𝑁 − 1.

After determining a sparse solution using 𝐿 dictionary
vectors:

𝑓 ≈

𝐿

∑

𝑖=1

𝛼
𝛾𝑖
𝑔
𝛾𝑖
=

𝐿

∑

𝑖=1

𝛽
𝛾𝑖
ℎ
𝛾𝑖
, (11)

where

𝛽
𝛾𝑖
=

𝛼
𝛾𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
ℎ
𝛾𝑖

󵄩
󵄩
󵄩
󵄩
󵄩

, (12)

the original signal 𝑥 will approximated by

𝑥 ≈

𝐿

∑

𝑖=1

𝛽
𝛾𝑖
𝜑
𝛾𝑖
, (13)

from which the missing samples can be determined.
Several algorithms have been proposed for reducing

the computational complexity by searching for efficient but
nonoptimal approximations.The matching pursuit (MP) [10,
11] is a popular iterative greedy algorithm for approximate
decomposition that addresses the sparsity issue directly.
Vectors are selected one by one from the dictionary, picking at
each iteration the vector that best correlates with the present
residual, and thus optimizing the signal approximation (in
terms of energy) at each iteration. An intrinsic feature of this
algorithm is that when stopped after a few steps, it yields an
approximation using only a few dictionary vectors.

We consider the space R𝐾 of real-valued signals of size
𝐾. Let 𝐷 = {𝑔

𝛾
}, 𝛾 = 0, 1, . . . , 𝑁 − 1, be a dictionary of

𝑁 > 𝐾 vectors, having a unit norm. Let 𝑅
𝑛
𝑓 be the residual

of an 𝑛 term approximation of a given signal 𝑓 ∈ R𝐾.
MP subdecomposes the residue 𝑅

𝑛
𝑓 by projecting it on the

dictionary vector that matches 𝑅
𝑛
𝑓 best. Starting from an

initial approximation 𝑓
0
= 0 and residue 𝑅

0
𝑓 = 𝑓, the

MP algorithm builds up a sequence of sparse approximations

stepwise. MP begins by projecting 𝑓 on a vector 𝑔
𝛾0
∈ 𝐷 and

computing the residue 𝑅
1
𝑓:

𝑓 = ⟨𝑓, 𝑔
𝛾0
⟩𝑔
𝛾0
+ 𝑅
1
𝑓, (14)

where 𝑅
1
𝑓 is the residual vector after best approximating (𝑙

2

norm sense) 𝑅
0
𝑓 = 𝑓 with 𝑔

𝛾0
. Since 𝑅

1
𝑓 is orthogonal to

𝑔
𝛾0
,

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2
=

󵄨
󵄨
󵄨
󵄨
󵄨
⟨𝑓, 𝑔
𝛾0
⟩

󵄨
󵄨
󵄨
󵄨
󵄨

2

+
󵄩
󵄩
󵄩
󵄩
𝑅
1
𝑓
󵄩
󵄩
󵄩
󵄩

2
. (15)

It follows that to minimize ‖𝑅
1
𝑓‖, we must choose 𝑔

𝛾0
∈ 𝐷

such that |⟨𝑓, 𝑔
𝛾0
⟩| is maximum.The process is iterated on the

residual. Suppose that𝑅
𝑛
𝑓 for 𝑛 ≥ 0 is already computed.The

next iteration chooses 𝑔
𝛾𝑛
such that

𝑔
𝛾𝑛
= arg min

𝑔𝛾∈𝐷

󵄩
󵄩
󵄩
󵄩
𝑅
𝑛+1
𝑓
󵄩
󵄩
󵄩
󵄩

2
= arg min

𝑔𝛾∈𝐷

󵄩
󵄩
󵄩
󵄩
󵄩
𝑅
𝑛
𝑓 − 𝑎
𝑛
𝑔
𝛾

󵄩
󵄩
󵄩
󵄩
󵄩

2

. (16)

For unit-norm vectors, the last condition is equivalent to

𝑔
𝛾𝑛
= arg max

𝑔𝛾∈𝐷

󵄩
󵄩
󵄩
󵄩
󵄩
⟨𝑔
𝛾
, 𝑅
𝑛
𝑓⟩

󵄩
󵄩
󵄩
󵄩
󵄩
. (17)

That is, the optimal vector is the one which best correlates
with the residual.TheMP projects 𝑅

𝑛
𝑓 on the chosen vector:

𝑅
𝑛
𝑓 = ⟨𝑅

𝑛
𝑓, 𝑔
𝛾𝑛
⟩𝑔
𝛾𝑛
+ 𝑅
𝑛+1
𝑓. (18)

The orthogonality of 𝑅
𝑛+1
𝑓 and 𝑔

𝛾𝑛
implies

󵄩
󵄩
󵄩
󵄩
𝑅
𝑛
𝑓
󵄩
󵄩
󵄩
󵄩

2
=

󵄨
󵄨
󵄨
󵄨
󵄨
⟨𝑅
𝑛
𝑓, 𝑔
𝛾𝑛
⟩

󵄨
󵄨
󵄨
󵄨
󵄨

2

+
󵄩
󵄩
󵄩
󵄩
𝑅
𝑛+1
𝑓
󵄩
󵄩
󵄩
󵄩

2
. (19)

Summing (18) from 𝑛 between 0 and 𝐿 − 1 (for any integer
𝐿 > 0) yields

𝑓 =

𝐿−1

∑

𝑛=0

⟨𝑅
𝑛
𝑓, 𝑔
𝛾𝑛
⟩𝑔
𝛾𝑛
+ 𝑅
𝐿
𝑓. (20)

Similarly, summation of (19) from 𝑛 between 0 and 𝐿−1 gives

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2
=

𝐿−1

∑

𝑛=0

󵄩
󵄩
󵄩
󵄩
󵄩
⟨𝑅
𝑛
𝑓, 𝑔
𝛾𝑛
⟩

󵄩
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑅
𝐿
𝑓
󵄩
󵄩
󵄩
󵄩

2
. (21)

When dealing with finite-dimension signals (as in our case),
‖𝑅
𝐿
𝑓‖ converges exponentially to 0 when 𝐿 tends to infinity

[10].
The approximations of MP are improved by orthogonal-

izing the directions of projection with a Gram-Schmidt pro-
cedure [9]. The resulting orthogonal MP (OMP) converges
with a finite number of steps, which is not the case for a
standard MP. The vector 𝑔

𝛾𝑛
selected by the MP is a priori

not orthogonal to the previously selected vectors 𝑔
𝛾𝑝
, 𝑝 =

0, 1, . . . , 𝑛 − 1. After subtracting the projection of 𝑅
𝑛
𝑓 over

𝑔
𝛾𝑛
, new components are introduced in the direction of 𝑔

𝛾𝑝
,

𝑝 = 0, 1, . . . , 𝑛 − 1. This is avoided by projecting the residues
on an orthonormal set of vectors 𝑢

𝛾𝑝
, 𝑝 = 0, 1, . . . , 𝑛 − 1,

that span the same subspace that is spanned by 𝑔
𝛾𝑝
, 𝑝 =

0, 1, . . . , 𝑛 − 1. That is, in each iteration, we determine the
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Figure 1: (a) Original signal (dash-dot: missing samples), (b) noisy signal (dash-dot: missing samples), (c) the vector 𝑓 containing the noisy
given samples, and (d) original missing samples and the restored samples (dash-dot).

best approximation of the residual in the subspace spanned by
𝑢
𝛾𝑝
, 𝑝 = 0, 1, . . . , 𝑛 − 1. When an approximation of sufficient

accuracy is obtained, to expand𝑓 over the original dictionary
vectors 𝑔

𝛾𝑝
, 𝑝 = 0, 1, . . . , 𝑛 − 1, we perform a change of basis

by expanding 𝑢
𝑚
in 𝑔
𝛾𝑝
, 𝑝 = 0, 1, . . . , 𝑛 − 1.

We demonstrate the applicability of the approach by
example. The original 128 samples length signal is the linear
combination of two basis vectors of the DCT with randomly
chosen coefficients: 𝑥 = −0.5465𝜑

7
− 0.8468𝜑

19
. The given

signal is a noisy version of the original signal with additive
white Gaussian noise with standard deviation equal to 0.05.
We assume that 30 contiguous samples (9 to 38) of the noisy
signal are missing. The results of the OMP are depicted
in Figure 1, and we can see that the missing samples were
approximately restored. The 𝑙

2
norm of the missing samples

is 0.4339, while the norm of the error is 0.0315. If the
samples of the original exact DBL signal 𝑥 are given, the
missing 30 samples are completely recovered by the OMP
procedure.

4. Conclusions

In this paper, we addressed the recovery of missing samples
of discrete bandlimited signals. We have suggested the use of
the orthogonal matching pursuit to recover missing samples
by sparse approximations, when the signal can be sparsely
represented by an unknown subset of basis vectors of a certain
orthonormal transform.
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